JPH0228767B2 - - Google Patents

Info

Publication number
JPH0228767B2
JPH0228767B2 JP57022330A JP2233082A JPH0228767B2 JP H0228767 B2 JPH0228767 B2 JP H0228767B2 JP 57022330 A JP57022330 A JP 57022330A JP 2233082 A JP2233082 A JP 2233082A JP H0228767 B2 JPH0228767 B2 JP H0228767B2
Authority
JP
Japan
Prior art keywords
heating
sensor
time
heating chamber
relative humidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57022330A
Other languages
Japanese (ja)
Other versions
JPS58140521A (en
Inventor
Kenji Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2233082A priority Critical patent/JPS58140521A/en
Priority to AU11536/83A priority patent/AU549194B2/en
Priority to PCT/JP1983/000028 priority patent/WO1983002818A1/en
Priority to CA000421488A priority patent/CA1212406A/en
Publication of JPS58140521A publication Critical patent/JPS58140521A/en
Publication of JPH0228767B2 publication Critical patent/JPH0228767B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/642Cooling of the microwave components and related air circulation systems
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/6447Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors
    • H05B6/6458Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors using humidity or vapor sensors

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electric Ovens (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)

Description

【発明の詳細な説明】 本発明は自動加熱器に関し、特に被加熱物から
出る水蒸気に感応するセンサ手段を用いて自動的
に加熱調理を制御する加熱調理器に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an automatic heater, and more particularly to a heating cooker that automatically controls cooking using sensor means that is sensitive to water vapor emitted from an object to be heated.

従来一般に電子レンジには第1図に示すように
被加熱物2から出る水蒸気に感応する相対湿度検
知センサ12は加熱室1又は排気ダクト11内に
取付けられるため長時間使用すると被加熱物2か
ら出た飛沫や、揮発生物質、油煙等によつてセン
サ12が汚染され、使用するうちに初期の性能、
感度が得られなくなるという問題がある。そこで
センサ素子13の周囲近傍に第2図に示すように
コイルヒータ14を設けて、調理開始直後にコイ
ルヒータ14に通電し、センサ素子13を400℃
以上に加熱して、付着した汚れを焼き切り性能・
感度を常に良好に保つクリーニング方法が考えら
れ電子レンジ等に実施されてきている。ところ
で、このセンサ12のクリーニングが終了し、コ
イルヒータ14への通電を停止した後、センサ1
2はすぐには安定した良好な検知性能を得ること
はできない。この理由を第3図aに基づき説明す
る。第3図aは横軸に時間t、縦軸に相対湿度
RHをとつたもので、加熱を開始してからの排気
ダクト11内の相対湿度の変化を表わしたもので
ある。A点から加熱開始するわけであるが、同時
にセンサ12のクリーニングも開始されるのでセ
ンサ12の周囲温度はコイルヒータ14の加熱に
より温度が急激に上昇し、相対湿度はB点に向つ
てどんどん下つてゆく。B点はセンサ12部が所
定の温度に達し、クリーニングが終了した点であ
る。B点でコイルヒータ14の通電が終了するた
め若干のオーバーシユートはあるものの、今度は
センサ12が排気風によつて冷却され、徐々に常
温に戻つてゆくため相対湿度はC点に向つて上昇
してゆく。C点に達しセンサー12が定常状態に
戻つた後は加熱の進行によつて排気風の温度が
徐々にではあるが上昇してゆくため、D点に向つ
て下つてゆく。D点は被加熱物2から出る水蒸気
による相対湿度の上昇分が排気風の温度上昇によ
る相対湿度の下降分を上まわる点であり、この後
被加熱物2からの水蒸気量が増えるため相対湿度
はE点、F点と上昇していく。
Conventionally, in a microwave oven, as shown in FIG. 1, a relative humidity detection sensor 12 that is sensitive to water vapor emitted from the object to be heated 2 is installed in the heating chamber 1 or inside the exhaust duct 11. The sensor 12 becomes contaminated by emitted droplets, volatile substances, oil smoke, etc., and its initial performance deteriorates as it is used.
There is a problem that sensitivity cannot be obtained. Therefore, a coil heater 14 is provided near the sensor element 13 as shown in FIG.
It has the ability to burn off adhered dirt by heating to a temperature higher than
Cleaning methods that maintain good sensitivity at all times have been devised and implemented for microwave ovens and the like. By the way, after the cleaning of this sensor 12 is completed and the power supply to the coil heater 14 is stopped, the sensor 1
2, it is not possible to immediately obtain stable and good detection performance. The reason for this will be explained based on FIG. 3a. In Figure 3a, the horizontal axis is time t, and the vertical axis is relative humidity.
It shows the change in relative humidity inside the exhaust duct 11 after heating started. Heating starts from point A, but cleaning of the sensor 12 also starts at the same time, so the ambient temperature of the sensor 12 increases rapidly due to the heating of the coil heater 14, and the relative humidity gradually decreases toward point B. It goes on. Point B is the point at which the sensor 12 reaches a predetermined temperature and cleaning is completed. Although there is a slight overshoot because the coil heater 14 is no longer energized at point B, the sensor 12 is now cooled by the exhaust air and the temperature gradually returns to room temperature, so the relative humidity moves toward point C. going up. After reaching point C and returning the sensor 12 to a steady state, the temperature of the exhaust air gradually increases as heating progresses, and therefore decreases toward point D. Point D is the point where the increase in relative humidity due to the water vapor emitted from the heated object 2 exceeds the decrease in relative humidity due to the temperature rise of the exhaust air, and after this the amount of water vapor from the heated object 2 increases, so the relative humidity decreases. increases from point E to point F.

一般にD点から相対湿度変化量△RHを検知し
て自動的にマグネトロン3の出力を制御し、加熱
をコントロールしている。
Generally, the relative humidity change amount ΔRH is detected from point D and the output of the magnetron 3 is automatically controlled to control heating.

ところでこの相対湿度変化量△RHはクリーニ
ングが終了して定常状態に戻るまでのB点からC
点の間においても生ずることが第3図aより明白
であるがこの間の相対湿度の変化は被加熱物2か
ら大量に出た蒸気によるものではないので、加熱
の検知に利用することはできない。従つてセンサ
12による検知は時間tcだけ待つ必要がある。
By the way, this relative humidity change △RH is the change from point B to point C until the cleaning is completed and the steady state is returned.
It is clear from FIG. 3a that this also occurs between the points, but since the change in relative humidity during this period is not due to a large amount of steam emitted from the object to be heated 2, it cannot be used to detect heating. Therefore, it is necessary to wait for the time tc for detection by the sensor 12.

ところで、今仮に加熱開始から高出力で加熱を
始めたとすると、被加熱物2が小さいものの場合
にはセンサ12が定常状態に戻るまでの時間、す
なわち時間tcに達するまでに相対湿度が100%に
到達し、時間tcに達した時には相対湿度変化量△
RHが得られないような状態になつてしまうこと
が考えられる。そこで第3図bに示すように調理
を開始してから時間tcまでは加熱出力P0を零出力
でゆきtc後高出力にする方法がある。
By the way, if we start heating at high output from the start of heating, if the object to be heated 2 is small, the relative humidity will reach 100% by the time it takes for the sensor 12 to return to a steady state, that is, by the time it reaches time tc . and when time t c is reached, the relative humidity change △
It is possible that the condition will become such that RH cannot be obtained. Therefore, as shown in FIG. 3b, there is a method in which the heating output P0 is set to zero from the start of cooking until time tc , and then increased to a high output after tc .

ところが上記の方法では加熱を開始してからtc
までの間は実際には加熱を全く行つていないので
加熱に要する時間はまるまるtcだけ余計にかかる
ことになり時間効率が悪くなるという欠点があつ
た。そこで、従来、第3図cに示すように、時間
tcに達する前の時間t1から高出力で加熱し始め
(tc−t1)だけ時間効率を良くする手段があつた。
ところが、t1を決定するに当つては実際に加熱さ
れる被加熱物2等から時間(tc−t1)の間の高出
力加熱によつて大量の水蒸気が出ないように注意
して決定しなければならない。従つて時間(tc
t1)は10秒程度しか取れないのが現状であり、時
間効率は良くなるとはいうものの大幅な時間効率
の向上には至つていないという問題があつた。
However, in the above method, t c
Until then, no heating is actually performed at all, so the time required for heating is an additional tc , which has the disadvantage of poor time efficiency. Therefore, conventionally, as shown in Figure 3c, the time
There was a means to improve time efficiency by starting heating at high output from time t 1 before reaching t c (t c −t 1 ).
However, when determining t 1 , care must be taken to ensure that a large amount of water vapor does not come out from the heated object 2 etc. due to high-power heating during the time (t c - t 1 ). Must be decided. Therefore, time (t c
t1 ) is currently only about 10 seconds, and although time efficiency has improved, there has been a problem in that time efficiency has not been significantly improved.

さらに第3図dに他の従来例を示す。所定時間
t1′の間は低出力PLで加熱しその後、高出力に切
換えて加熱するという方法である。
Furthermore, another conventional example is shown in FIG. 3d. Predetermined time
The method is to heat with low output P L during t 1 ' and then switch to high output to heat.

また、第3図eに示す従来例もある。これは、
所定の時間t1″の間はT1時間はオン、T2時間はオ
フの断続運転で加熱しt1″後は高出力で連続運転
に切換えるという方法である。この場合も、前述
の従来例と同様に低出力PL、t1′、t1″、T1、T2
各要素は被加熱物2を対象に決定しなければなら
ない。つまり、被加熱物2から大量の水蒸気が出
ないように、出力を決定するわけであるが、調理
開始からtcまでの間に被加熱物2に吸収されるエ
ネルギーが所定のレベル以上を越えると大量の水
蒸気が発生するため、第3図cに示す従来例と同
程度にしか時間効率を改善することはできない。
There is also a conventional example shown in FIG. 3e. this is,
During a predetermined time t 1 ″, heating is performed in intermittent operation with the heating on for T 1 hour and off for T 2 hours, and after t 1 ″, the heating is switched to continuous operation at high output. In this case as well, the elements of low power P L , t 1 ′, t 1 ″, T 1 , and T 2 must be determined for the object to be heated 2, as in the conventional example described above. The output is determined so that a large amount of steam does not come out from the object 2, but if the energy absorbed by the object 2 from the start of cooking to tc exceeds a predetermined level, a large amount of steam will be generated. Therefore, the time efficiency can only be improved to the same extent as in the conventional example shown in FIG. 3c.

そこで本発明は上記欠点を解消し、時間効率の
大幅な改善を図ることを目的とする。
Therefore, the present invention aims to eliminate the above-mentioned drawbacks and significantly improve time efficiency.

以下本発明の実施例について図面に基づき説明
する。
Embodiments of the present invention will be described below based on the drawings.

第1図において1は加熱室で、中に入れた被加
熱物2をマグネトロン3から発振された高周波エ
ネルギーで加熱する。4はフアンモータであり、
マグネトロン3等を冷却するとともに、送風ダク
ト5、送風口6を通つて換気風7を加熱室内に送
風する。食品2から出た水蒸気8を含んだ排気風
9は排気口10を通つて排気ダクト11に排出さ
れる。12は相対湿度検知センサーであり排気風
9の相対湿度に感応する。第2図に相対湿度検知
センサ(以下、単にセンサと呼ぶ)12の拡大し
たものを示す。13はセンサ素子、14はセンサ
素子13の周囲近傍に設けられたコイルヒータ、
15はセラミツク材から成る支持部である。
In FIG. 1, reference numeral 1 denotes a heating chamber, in which an object to be heated 2 placed therein is heated by high frequency energy oscillated from a magnetron 3. 4 is a fan motor;
While cooling the magnetron 3 and the like, ventilation air 7 is blown into the heating chamber through the ventilation duct 5 and the ventilation opening 6. Exhaust air 9 containing water vapor 8 emitted from the food 2 is discharged into an exhaust duct 11 through an exhaust port 10. Reference numeral 12 is a relative humidity detection sensor that is sensitive to the relative humidity of the exhaust air 9. FIG. 2 shows an enlarged view of the relative humidity detection sensor (hereinafter simply referred to as sensor) 12. 13 is a sensor element, 14 is a coil heater provided near the periphery of the sensor element 13,
Reference numeral 15 denotes a support portion made of ceramic material.

次に本発明の特徴である加熱パワーのコントロ
ールを第4図a,bに基づき説明する。
Next, control of heating power, which is a feature of the present invention, will be explained based on FIGS. 4a and 4b.

図において、クリーニング開始と同時に高出力
で所定の時間t2まで被加熱物を加熱しその後相対
湿度検知センサ12が定常状態に戻る時間tcまで
被加熱物の加熱を停止し、tcに達した後再び高出
力で被加熱物の加熱を再開する。
In the figure, at the same time as cleaning starts, the object to be heated is heated at high output for a predetermined time t2 , and then the heating of the object is stopped until the time tc when the relative humidity detection sensor 12 returns to a steady state, and when tc is reached. After that, heating of the object to be heated is resumed at high output.

すなわち加熱室1内の水蒸気量の変化は第4図
aに示される。調理開始時の水蒸気量x0は電子レ
ンジの置かれた環境により決定される。調理開始
からt2までの高出力による加熱により水蒸気量は
x2まで増加する。しかし、t2からセンサ12が感
知可能状態になるtcまでは零出力となつているた
め、この間は蒸気が発生せず、また加熱室1内の
蒸気はフアンモータ4により加熱室1の外に排気
され、従つて、加熱室1内の水蒸気量は初期の水
蒸気量x0に戻るので、調理開始からt2までの加熱
は相対湿度の検知にはなんら影響を及ぼさない。
しかも、調理開始からt2までの加熱により大量の
水蒸気量が発生してもt2からtcまでの間に、ほぼ
初期の環境条件に戻すことができるため、調理開
始からt2までの間に充分にエネルギーを加えるこ
とができる。従つてt2の時間だけ加熱時間が短く
なり、時間効率が良くなるというものである。
That is, the change in the amount of water vapor in the heating chamber 1 is shown in FIG. 4a. The amount of water vapor x 0 at the start of cooking is determined by the environment in which the microwave oven is placed. The amount of water vapor is reduced by high output heating from the start of cooking to t2 .
Increase to x 2 . However, since the output is zero from t 2 to t c when the sensor 12 becomes detectable, no steam is generated during this period, and the steam inside the heating chamber 1 is transferred to the outside of the heating chamber 1 by the fan motor 4. Therefore, the amount of water vapor in the heating chamber 1 returns to the initial amount x 0 of water vapor, so the heating from the start of cooking to t 2 has no effect on the detection of relative humidity.
Moreover, even if a large amount of water vapor is generated due to heating from the start of cooking to t2 , it is possible to return to almost the initial environmental conditions from t2 to tc . can add enough energy to Therefore, the heating time is shortened by the time t2 , improving time efficiency.

第5図にこのような電気回路の実施例を示す。
16は商用電源、17は主回路に挿入された接点
で、調理開始と共にONし、フアンモータ4に電
圧を印加する。19は高圧トランス、20は高圧
コンデンサ、21はスタツクダイオードであり、
マグネトロン3への陽極電源となつている。23
は高圧リードリレーの接点で、マグネトロン3へ
の陽極電圧をオン、オフしている。22はそのコ
イルでマイクロコンピユータを含むコントロール
部18によつて制御されている。
FIG. 5 shows an example of such an electric circuit.
16 is a commercial power supply, and 17 is a contact inserted into the main circuit, which is turned ON when cooking starts, and applies voltage to the fan motor 4. 19 is a high voltage transformer, 20 is a high voltage capacitor, 21 is a stack diode,
It serves as the anode power source for magnetron 3. 23
is the contact point of the high voltage reed relay, which turns on and off the anode voltage to magnetron 3. The coil 22 is controlled by a control section 18 including a microcomputer.

また第6図には上記電気回路の他の実施例を示
す。25はリレーであり24はそのコイルで、コ
ントロール部18によつて制御されている。ま
た、リレー25とそのコイル24はトライアツク
でも実施可能である。
Further, FIG. 6 shows another embodiment of the above electric circuit. 25 is a relay, and 24 is its coil, which is controlled by the control unit 18. Further, the relay 25 and its coil 24 can also be implemented as a triax.

上記第5図および第6図に示す回路構成により
調理開始した後t2までは第5図では高圧リードリ
レー23、第6図ではリレー25をオンして、マ
グネトロン3を発振させ、t2後オフして発振停止
状態し、tc後再度オンしてマグネトロン3を発振
させ高出力にて加熱することができる。上記第6
図の回路ではリレー25が高圧トランス19の1
次側である低圧側にあるので、特殊なリレースイ
ツチが要らず経済的であるといえる。
After starting cooking using the circuit configuration shown in FIGS. 5 and 6 above, the high voltage reed relay 23 in FIG. 5 and the relay 25 in FIG. 6 are turned on until t 2 to oscillate the magnetron 3, and after t 2 It is turned off to stop oscillation, and then turned on again after tc to oscillate the magnetron 3 and heat it at high output. 6th above
In the circuit shown, relay 25 is connected to 1 of high voltage transformer 19.
Since it is located on the next side, the low pressure side, it can be said that it is economical as there is no need for a special relay switch.

以上説明したように本発明によれば、次のよう
な効果を得ることができる。
As explained above, according to the present invention, the following effects can be obtained.

(1) 本発明により調理開始時にセンサ素子をクリ
ーニングするので、常に安定した検知性能が得
られ、しかもセンサが感知可能状態に戻るまで
待たずに加熱しているため、時間効率が良い。
(1) According to the present invention, since the sensor element is cleaned at the start of cooking, stable detection performance is always obtained, and since heating is performed without waiting until the sensor returns to a sensing state, it is time efficient.

(2) センサが感知可能状態に戻る直前には常に調
理開始直後の環境条件とほぼ同等となるように
構成しているため、センサが感知可能状態に戻
つた後の検知は、従来例で示した検知と同様の
正確な検知ができ、しかも、センサが感知可能
状態に戻る前に大量のエネルギーを加えること
ができるため大幅な加熱調理時間の短縮が可能
である。
(2) Immediately before the sensor returns to a detectable state, the environment is configured so that it is almost the same as immediately after cooking starts, so the detection after the sensor returns to a detectable state is different from that shown in the conventional example. It is possible to perform accurate detection similar to that used in conventional methods, and since a large amount of energy can be applied before the sensor returns to a sensing state, it is possible to significantly shorten the cooking time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の加熱調理器の側面断面図、第
2図は同器のセンサ部の拡大外観斜視図、第3図
a〜eは従来の加熱調理器の相対湿度の変化およ
び加熱パターンを示す特性図、第4図aは本発明
の加熱調理器の水蒸気量の変化を示す特性図、第
4図bは同器の加熱パターンを示す特性図、第5
図は本発明の加熱調理器における電気回路図、第
6図は加熱調理器における他の電気回路図であ
る。 1……加熱室、2……被加熱物、3……マグネ
トロン(加熱する手段)、4……フアンモータ
(排風手段)、11……排気ダクト(排気部)、1
2……相対湿度検知センサ(センサ手段)、13
……センサ素子、14……コイルヒータ、18…
…コントロール部(制御部)。
Fig. 1 is a side sectional view of the heating cooker of the present invention, Fig. 2 is an enlarged external perspective view of the sensor section of the same, and Figs. 3 a to e are changes in relative humidity and heating pattern of the conventional heating cooker. FIG. 4a is a characteristic diagram showing changes in the amount of water vapor in the cooking device of the present invention, FIG. 4b is a characteristic diagram showing the heating pattern of the cooking device, and FIG.
The figure is an electric circuit diagram of the heating cooker of the present invention, and FIG. 6 is another electric circuit diagram of the heating cooker. DESCRIPTION OF SYMBOLS 1... Heating chamber, 2... Heated object, 3... Magnetron (heating means), 4... Fan motor (air exhaust means), 11... Exhaust duct (exhaust part), 1
2... Relative humidity detection sensor (sensor means), 13
...Sensor element, 14...Coil heater, 18...
...Control unit (control unit).

Claims (1)

【特許請求の範囲】[Claims] 1 被加熱物を収納する加熱室と、前記加熱室内
を加熱する手段と、前記加熱室内を換気する送風
手段と、前記加熱室内に連通する排気部と、前記
排気部に設けられ前記加熱室内に発生する水蒸気
に感応するセンサ素子および前記センサ素子をク
リーニングする手段とを有するセンサ手段と、前
記センサ素子からの信号によつて前記加熱する手
段の加熱出力を制御する制御装置とを備え、調理
開始の入力信号が入力されてから前記センサ手段
が感知可能状態に戻るまでに要する時間内に加熱
出力を所定の時間だけ高出力としかつ前記所定の
時間が経過してから前記センサ手段が感知可能状
態に戻るまでの間を零出力とした加熱調理器。
1. A heating chamber for storing an object to be heated, a means for heating the inside of the heating chamber, an air blowing means for ventilating the inside of the heating chamber, an exhaust section communicating with the inside of the heating chamber, and a heating chamber provided in the exhaust section and inside the heating chamber. A method for starting cooking, comprising a sensor means having a sensor element that is sensitive to generated water vapor and a means for cleaning the sensor element, and a control device that controls the heating output of the heating means based on a signal from the sensor element. The heating output is set to be high for a predetermined period of time within the time required for the sensor means to return to the sensing state after the input signal is input, and after the predetermined time has elapsed, the sensor means is in the sensing state. A heating cooker with zero output until it returns to normal.
JP2233082A 1982-02-15 1982-02-15 Heating cooker Granted JPS58140521A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2233082A JPS58140521A (en) 1982-02-15 1982-02-15 Heating cooker
AU11536/83A AU549194B2 (en) 1982-02-15 1983-01-31 Cooking device
PCT/JP1983/000028 WO1983002818A1 (en) 1982-02-15 1983-01-31 Cooking device
CA000421488A CA1212406A (en) 1982-02-15 1983-02-11 Heating appliances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2233082A JPS58140521A (en) 1982-02-15 1982-02-15 Heating cooker

Publications (2)

Publication Number Publication Date
JPS58140521A JPS58140521A (en) 1983-08-20
JPH0228767B2 true JPH0228767B2 (en) 1990-06-26

Family

ID=12079691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2233082A Granted JPS58140521A (en) 1982-02-15 1982-02-15 Heating cooker

Country Status (4)

Country Link
JP (1) JPS58140521A (en)
AU (1) AU549194B2 (en)
CA (1) CA1212406A (en)
WO (1) WO1983002818A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2870875B2 (en) * 1989-10-27 1999-03-17 松下電器産業株式会社 Heating device with sensor
JP2661581B2 (en) * 1995-03-02 1997-10-08 ソニー株式会社 Objective lens drive

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54120438A (en) * 1978-03-10 1979-09-19 Matsushita Electric Ind Co Ltd Heating apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54120438A (en) * 1978-03-10 1979-09-19 Matsushita Electric Ind Co Ltd Heating apparatus

Also Published As

Publication number Publication date
JPS58140521A (en) 1983-08-20
AU1153683A (en) 1983-08-25
AU549194B2 (en) 1986-01-16
WO1983002818A1 (en) 1983-08-18
CA1212406A (en) 1986-10-07

Similar Documents

Publication Publication Date Title
JPS6228554B2 (en)
US5360966A (en) Microwave oven with temperature fluctuation detection
JPH0228767B2 (en)
JPS5856059B2 (en) Heater
JPS6329169B2 (en)
JPS594839B2 (en) Heater
JP2561535Y2 (en) Cooker
JP2001349556A (en) Heating and cooking appliance
JP2538650B2 (en) Cooking device
KR950008381B1 (en) A cooking apparatus
JPS6237624A (en) Electronic cooking range with piezoelectric element sensor
JP3579814B2 (en) Cooking device
JP2506932B2 (en) Dishwasher
JPH0138217B2 (en)
JPS5927129A (en) Heating cooker
JPS6026321Y2 (en) Cooking device
JP2584056B2 (en) Heating equipment
JPS58175723A (en) Heating cooker
JP2548369B2 (en) Heating cooker
JP2870270B2 (en) Electric drip-proof ceiling system
JP2932109B2 (en) Cooker
JP2931378B2 (en) Cooking device
JPH02225915A (en) Microwave oven with piezo-electric element sensor
JPH0666152B2 (en) Induction heating cooker
JPS58200936A (en) Electronic range