WO1982001420A1 - Procede et installation de determination des coordonnees de deplacement pour le parcours telecommande d'un corps mobile - Google Patents

Procede et installation de determination des coordonnees de deplacement pour le parcours telecommande d'un corps mobile Download PDF

Info

Publication number
WO1982001420A1
WO1982001420A1 PCT/CH1981/000115 CH8100115W WO8201420A1 WO 1982001420 A1 WO1982001420 A1 WO 1982001420A1 CH 8100115 W CH8100115 W CH 8100115W WO 8201420 A1 WO8201420 A1 WO 8201420A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring
distance
reflector
angle
devices
Prior art date
Application number
PCT/CH1981/000115
Other languages
German (de)
English (en)
Inventor
Laszlo Arato
Original Assignee
Laszlo Arato
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laszlo Arato filed Critical Laszlo Arato
Publication of WO1982001420A1 publication Critical patent/WO1982001420A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00

Definitions

  • the present invention has for its object to find a method for determining any movement coordinates for the direction-controlled workflow of a portable body, which has high accuracy, largely insensitivity to interference and can be carried out continuously during the local movement.
  • the process should be able to be carried out with little skill and manual work.
  • a method is to be found that is particularly suitable in connection with the programmed control of mobile robots by supplying the necessary position or location movement coordinates as input.
  • the electronic distance measurement can be carried out with known electronic distance meters with transit time measurement of coded electromagnetic waves, for example in an advantageous embodiment by intensity modulation.
  • the measure of the distance to be measured is the transit time between the wave emerging from a transmitter and reflected by a reflector in a receiver.
  • a suitable modern electronic distance meter, that with light waves works, is known for example under the name DM 500 from Kern AG, CH-Aarau, and described in brochures of this company.
  • omnidirectional triple mirrors are used as the reflector device, which have the property of deflecting the incident rays by 180 ° at any angle, so that they are reflected back in the direction of incidence.
  • the alignment of the distance meter on the reflector post is carried out by means of a target search, through which the Device is pivoted about a vertical axis of the portable body until the highest intensity of the reflected beam is received by the round reflector post of the distance measuring device. Because the pivoting movement of the thus also used as a search beam, the distance measuring device is tracked using the difference signal as a reference variable for two directly adjacent, horizontally arranged receiver diodes (or receiving areas of a common diode, e.g. SFH 204 from Siemens) of the receiving device .
  • the system or its device for electronic evaluation can additionally be connected to a course gyro in order to prevent a substantial course deviation when the portable body is at a standstill while the portable body is moving.
  • a course gyroscope is not required in an embodiment of the invention in which at least one angle is continuously measured, which is present between a reference axis of the movable body and a connecting line that runs between an angle measurement device attached to the movable body and a reflector device.
  • a device according to the invention suitable for non-contact angle measurement has a transmitter and receiver device for bundled radiation, the diameter of which at a distance of 50 m is, for example, 60 mm, an angle encoder connected to the transmitter and receiver for emitting a signal corresponding to the measured angle, if that of the receiver received radiation intensity has reached a maximum, and a rotary table driven with a servo motor.
  • Posts are used as the reflector device, around which a reflective film is placed in accordance with the triple mirror principle.
  • Such reflective foils are e.g. known under the trade name of the company 3M, St. Paul, Minnesota / USA, "Scotch light reflex foil high intensity grade 2870".
  • the diameter of the posts of the reflector devices is, for example, 100 mm.
  • the intensity of the reflection can be formed as a sum for the guide variable of the target search.
  • the partial sums of the diodes change. Because of this change, a differential signal formed for the management variable of the tracking.
  • the angle measurement beam remains aligned with the central axis of the predetermined reflector devices despite the continued movement, so that the movement coordinates can be determined continuously during the movement of the body, provided that a second comparable device for distance or angle measurement is based on the second Reflector device is aligned and is tracked according to the movement.
  • 1 is a schematic representation of a plant for performing the method
  • 3 + 4 a graphical representation of the geometric conditions for the coordinate determination based on the measurement of a distance and two angles and a representation of the computer work, 5 + 6 a representation corresponding to FIGS. 3 and 4, but for a coordinate determination based on the measurement of three angles,
  • Fig. 7 is a schematic representation of an arrangement for the angle and / or distance measurement
  • Fig. 8 shows the function of the leaders for the target search and tracking.
  • the distance measuring device 2 is firmly attached to the movable body 6 via a swivel drive 4 and can be swiveled around the vertical shaft 8 of the swivel drive in order to perform a search movement.
  • the portable body corresponds, for example, to a vehicle which is provided with a program control for its movement, which is based on the determined coordinate value or the angular position in relation to a defined coordinate system.
  • a plurality of triple mirrors 10 are attached to a post, not shown, in the form of a film element, one of which is shown in FIG. 1, at a point B and at a point C of the driving area.
  • a transmitter 12 attached to the distance measuring device passes through the optics (not shown) by means of a semiconductor diode an infrared beam 14 whose wave is intensity modulated.
  • the search movement of the device 2 is stopped in order to achieve a large number in this position in a manner known per se Make distance measurements, the mean value of which is determined by an electronic calculation.
  • a corresponding measurement is also carried out on the second triple mirror, for example in accordance with positions C according to FIG. 2, so that an electronic calculation based on the determined distances and the routes as shown in FIG. 2 and or can determine the coordinate values or the direction angle ⁇ , the vehicle position or the vehicle direction.
  • the reflected beam 16 arrives in the distance measuring device 2 via the reflection on a semi-transparent mirror 18 and a fully reflecting mirror 20 through a converging lens 22 to the receiver part 24 of the device.
  • the receiver part 24 gives an interference suppression device 26 for the swivel drive 4 e in signal r, by which the search movement is stopped.
  • the receiver part 24 is connected to a device 28 for the electronic evaluation in order, on the basis of the phase difference between the wave of the emitted radiation and the wave of the triple mirror gel 10 reflected radiation to calculate the distance.
  • the result is forwarded to a digital display device 30 and to a computer 32.
  • the aforementioned calculation of the vehicle position takes place in the computer 32 on the basis of the geometric relationship shown in FIG. 2.
  • the arrangement of the reflector posts at points B and C, which is defined with respect to the grid north defining a coordinate axis, and the electronic measurement of the distances of the distance measuring device or a reference point A of the vehicle 6, are those shown in FIG. 2 stretch . and as well as the angle ⁇ between the way and the route or a coordinate axis known.
  • the angle ⁇ results from the following relationship
  • the distance corresponds, for example, to the ordinate value of a Cartesian coordinate system and BD to the abscissa value.
  • the angle ⁇ of the direction of travel of the vehicle 6 can then be determined as follows:
  • the program can be compared with the determined coordinate value in order to carry out a course correction in the event of a deviation.
  • the washing vehicle gradually assumes various positions, from which the brushes move over the surface of the aircraft with the aid of the washing vehicle mechanics become.
  • the determination of the coordinates of the respective vehicle position can then be carried out with high accuracy while the vehicle is stationary.
  • the calculation of the directional angle of the vehicle axle is 4 and 6 for two exemplary embodiments of the method according to the invention.
  • FIG. 7 shows a measuring device, one of which is arranged at points M and L according to FIG. 3 and points C and E according to FIG. 5 on the vehicle at a distance a from their axes of rotation.
  • the rotary drive 40 is a worm gear with a reduction ratio of 1: 180, is operated with a max. Speed driven by 5 rpm, for example.
  • An absolute angle encoder 50 for example with 10 bit resolution, is coupled to the axis of the transmission and an absolute angle encoder 52 with 6 bit resolution is coupled to the drive of the transmission and is synchronized electrically via a so-called “V” logic (not shown) siert.
  • the angular resolution that can be achieved in this way is approximately 0.01 degrees at a distance of approximately 50 m.
  • Fig . 8 shows the typical function of the command variables for the target search (bell curve) and the difference measurement.
  • the method according to the invention enables automatic directional control of a movable body with a high degree of accuracy, since the electronic distance measurement of the distances is carried out with an accuracy of ⁇ 1.0 cm and the angle measurement also allows high accuracy.
  • the use of triple mirrors or corresponding reflective foils, the attachment of which at predetermined locations does not require any particular care, has great advantages, since the omnidirectional reflector post has a working range of approximately 360 °, i.e. the directional reversal of the incident beam regardless of the angular position of the reflector post to the ground as to the radiation generator.
  • the method according to the invention can be used advantageously in numerous areas, for example also for mobile robots and for automation Location of container train stations, construction and conveyor systems, agricultural machinery, road marking vehicles, tunnel cleaning machines, etc.
  • moving vehicles can be directionally controlled according to the disclosed principle without interruption, if triple mirrors are arranged along the carriageway at predetermined positions, as is necessary to identify the Limitation of roads is already common.
  • the measuring devices on the vehicle gradually detect a pair of reflector devices. After a predetermined angle is exceeded, the measuring devices automatically search for a new pair of reflector devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

Pour determiner les coordonnees du deplacement (xW, yW, W) d'un corps mobile, on utilise deux dispositifs reflecteurs fixes en dehors de son champ de deplacement (A, B), qui se composent d'une feuille reflechissante fixee sur un poteau. Sur le corps mobile sont disposes selon un intervalle horizontal determine (a) une premiere installation de goniometrie pourvue d'un dispositif de telemetrie et une deuxieme installation de goniometrie, l'une et l'autre comportant un mecanisme moteur qui entraine un emetteur recepteur sur un axe vertical. Lors de la reception d'une onde d'intensite maximale reflechie par l'une des installations reflechissantes, on determine la position instantanee et, ainsi, on identifie un poteau reflecteur et on determine l'angle qu'il faut mesurer, apres quoi un signal correspondant est transmis a un calculateur qui donne les coordonnees de position en fonction de la mesure de deux angles, d'une distance et d'une triangulation geometrique. Le calcul est possible grace a la mesure de deux distances par rapport aux installations reflechissantes ou a la mesure d'une distance et de deux angles.
PCT/CH1981/000115 1980-10-21 1981-10-19 Procede et installation de determination des coordonnees de deplacement pour le parcours telecommande d'un corps mobile WO1982001420A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH784180 1980-10-21
CH7841/80801021 1980-10-21

Publications (1)

Publication Number Publication Date
WO1982001420A1 true WO1982001420A1 (fr) 1982-04-29

Family

ID=4331217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH1981/000115 WO1982001420A1 (fr) 1980-10-21 1981-10-19 Procede et installation de determination des coordonnees de deplacement pour le parcours telecommande d'un corps mobile

Country Status (2)

Country Link
EP (1) EP0063127A1 (fr)
WO (1) WO1982001420A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0185816A1 (fr) * 1984-12-27 1986-07-02 THE GENERAL ELECTRIC COMPANY, p.l.c. Système de commande et de guidage pour véhicules
FR2631469A1 (fr) * 1988-05-13 1989-11-17 Honda Motor Co Ltd Systeme de commande de position pour vehicule automatique sans pilote
US5455669A (en) * 1992-12-08 1995-10-03 Erwin Sick Gmbh Optik-Elektronik Laser range finding apparatus
EP1408342A2 (fr) * 2002-10-08 2004-04-14 Abatec-Electronic AG Méthode et dispositif pour la determination de la position d'un objet avec des moyens optiques
EP1517117A1 (fr) * 2003-09-22 2005-03-23 Leica Geosystems AG Méthode et système pour la détermination de la position actuelle d'un appareil de postionement

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2504112A1 (de) * 1974-02-01 1975-08-07 Thomson Csf Anordnung zur automatischen fuehrung von fahrzeugen
US3905680A (en) * 1973-12-28 1975-09-16 Beatrice Foods Co 360{20 {0 Reflex reflector
FR2293714A1 (fr) * 1974-12-06 1976-07-02 Thomson Csf Systeme opto-electrique de localisation angulaire d'une cible
DE2605410A1 (de) * 1975-02-10 1976-08-19 Minnesota Mining & Mfg Retroreflektierendes material mit geometrischen fresnellinsenplaettchen
DE2617797A1 (de) * 1976-04-23 1977-11-03 Wolfgang Dipl Phys Dr I Schulz Vorrichtung zur optischen messung der position und der bewegung eines objektes
FR2377026A1 (fr) * 1977-01-05 1978-08-04 Sfim Dispositif pour mesurer a distance l'orientation d'une structure, notamment par rapport au nord
DE2749578A1 (de) * 1977-11-05 1979-05-10 Licentia Gmbh Vorrichtung zur automatischen positionierung der ladeluke einer schute unter der austrittsoeffnung eines schuettgutrohres

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3905680A (en) * 1973-12-28 1975-09-16 Beatrice Foods Co 360{20 {0 Reflex reflector
DE2504112A1 (de) * 1974-02-01 1975-08-07 Thomson Csf Anordnung zur automatischen fuehrung von fahrzeugen
FR2293714A1 (fr) * 1974-12-06 1976-07-02 Thomson Csf Systeme opto-electrique de localisation angulaire d'une cible
DE2605410A1 (de) * 1975-02-10 1976-08-19 Minnesota Mining & Mfg Retroreflektierendes material mit geometrischen fresnellinsenplaettchen
DE2617797A1 (de) * 1976-04-23 1977-11-03 Wolfgang Dipl Phys Dr I Schulz Vorrichtung zur optischen messung der position und der bewegung eines objektes
FR2377026A1 (fr) * 1977-01-05 1978-08-04 Sfim Dispositif pour mesurer a distance l'orientation d'une structure, notamment par rapport au nord
DE2749578A1 (de) * 1977-11-05 1979-05-10 Licentia Gmbh Vorrichtung zur automatischen positionierung der ladeluke einer schute unter der austrittsoeffnung eines schuettgutrohres

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Messtechnik 12/69, Vol. 77, December 1969, G. STRASSER "Die Elektronischen Entfernungsmesser Wild Distomat Di50 und Di10", pages 279-287 see page 283, right-hand column, paragraph 2 to page 284 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0185816A1 (fr) * 1984-12-27 1986-07-02 THE GENERAL ELECTRIC COMPANY, p.l.c. Système de commande et de guidage pour véhicules
FR2631469A1 (fr) * 1988-05-13 1989-11-17 Honda Motor Co Ltd Systeme de commande de position pour vehicule automatique sans pilote
AU605423B2 (en) * 1988-05-13 1991-01-10 Honda Giken Kogyo Kabushiki Kaisha Position control system for a moving vehicle
US5011288A (en) * 1988-05-13 1991-04-30 Honda Giken Kogyo Kabushiki Kaisha Position control system for unmanned automated vehicle
US5455669A (en) * 1992-12-08 1995-10-03 Erwin Sick Gmbh Optik-Elektronik Laser range finding apparatus
EP1408342A2 (fr) * 2002-10-08 2004-04-14 Abatec-Electronic AG Méthode et dispositif pour la determination de la position d'un objet avec des moyens optiques
EP1408342A3 (fr) * 2002-10-08 2004-08-04 Abatec-Electronic AG Méthode et dispositif pour la determination de la position d'un objet avec des moyens optiques
EP1517117A1 (fr) * 2003-09-22 2005-03-23 Leica Geosystems AG Méthode et système pour la détermination de la position actuelle d'un appareil de postionement
WO2005031259A1 (fr) * 2003-09-22 2005-04-07 Leica Geosystems Ag Procede et systeme de determination de la position spatiale d'un appareil de mesure portable
AU2004276459B2 (en) * 2003-09-22 2009-07-16 Leica Geosystems Ag Method and system for determining the spatial position of a hand-held measuring appliance
US7742176B2 (en) 2003-09-22 2010-06-22 Leica Geosystems Ag Method and system for determining the spatial position of a hand-held measuring appliance

Also Published As

Publication number Publication date
EP0063127A1 (fr) 1982-10-27

Similar Documents

Publication Publication Date Title
DE68914553T2 (de) Lasermesssystem.
DE69716671T2 (de) Steuervorrichtung für Baumaschinen
EP1842077B1 (fr) Procédé pour la détermination d'une information de positionnement d'au moins un objet
DE3781519T2 (de) Standortbestimmungsgeraet.
DE3787003T2 (de) Lenkvorrichtung für sich unbemannt bewegende körper.
DE69616041T2 (de) Verfahren und gerät für das berührungsfreie messen der verbiegungen von wegen oder schienen
DE69131837T2 (de) Räumliche Positionierungsvorrichtung
DE3888732T2 (de) Verfahren und Vorrichtung für laser-optische Navigation.
WO2000026612A1 (fr) Systeme de mesure de profil et procede approprie
DE3741259A1 (de) Verfahren und vorrichtung zur autonomen steuerung eines fahrzeuges
DE3404495A1 (de) Polygonzug-vermessungsverfahren und vermessungseinrichtung
DE102010043359A1 (de) Lichtstrahlempfänger mit Sprachausgabe
EP3674744A1 (fr) Procédé d'étalonnage de l'alignement d'un capteur d'objet en mouvement
EP0412395B1 (fr) Conduite d'une roue excavatrice pour la réalisation de surfaces de forme prédéterminée
DE2901908A1 (de) Verfahren zur regelung der arbeitsbewegung eines ueber die ortsbrust bewegbaren schraemwerkzeuges einer streckenvortriebsmaschine und vorrichtung zur durchfuehrung dieses verfahrens
WO2008017486A1 (fr) Dispositif de détermination de position
EP0618459A2 (fr) Système pour arrêrer des véhicules sur une position exacte
DE19543299A1 (de) Verfahren und Vorrichtung zum Vermessen von Gegenständen
WO1982001420A1 (fr) Procede et installation de determination des coordonnees de deplacement pour le parcours telecommande d'un corps mobile
EP2749982B1 (fr) Production de modèles de référence et actualisation
DE3913159A1 (de) Verfahren und vorrichtung zur messung von wellenfoermigen deformationen an wenigstens einer schienenoberseite (schienenlaufflaeche) eines schienenweges
DE102022125367A1 (de) Entfernungsmessvorrichtung, montageausrichtungserkennungsverfahren und montageausrichtungserkennungsprogramm dafür
WO2018162461A1 (fr) Procédé et dispositif de détermination de la position de cinématiques, en particulier de machines de travail mobiles
EP0600048B1 (fr) Procede de mesure d'angles relatifs
DE69018826T2 (de) Einrichtung zur messung der position einer unterirdischen grabmaschine.

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): JP US

AL Designated countries for regional patents

Designated state(s): AT DE FR GB