WO1981001326A1 - Method of cooling and heating by solar heat while dehumidifying - Google Patents

Method of cooling and heating by solar heat while dehumidifying Download PDF

Info

Publication number
WO1981001326A1
WO1981001326A1 PCT/JP1979/000279 JP7900279W WO8101326A1 WO 1981001326 A1 WO1981001326 A1 WO 1981001326A1 JP 7900279 W JP7900279 W JP 7900279W WO 8101326 A1 WO8101326 A1 WO 8101326A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
concentrated
tank
concentrated liquid
dehumidifying
Prior art date
Application number
PCT/JP1979/000279
Other languages
French (fr)
Japanese (ja)
Inventor
S Suzuki
Original Assignee
S Suzuki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by S Suzuki filed Critical S Suzuki
Priority to PCT/JP1979/000279 priority Critical patent/WO1981001326A1/en
Publication of WO1981001326A1 publication Critical patent/WO1981001326A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/10Vacuum distillation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/006Central heating systems using heat accumulated in storage masses air heating system
    • F24D11/007Central heating systems using heat accumulated in storage masses air heating system combined with solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B17/00Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement
    • F26B17/18Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed by rotating helical blades or other rotary conveyors which may be heated moving materials in stationary chambers, e.g. troughs
    • F26B17/20Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed by rotating helical blades or other rotary conveyors which may be heated moving materials in stationary chambers, e.g. troughs the axis of rotation being horizontal or slightly inclined
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/28Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal

Definitions

  • the conventional dehumidifying cooling and heating method using solar heat has the disadvantage that the entire apparatus is large and the efficiency is low. In addition, there is a disadvantage that it is difficult to average the solar energy used in the summer, such as accumulating solar energy in summer and using it in winter.
  • the present invention uses a multi-stage solar water heater, a dehumidifying solution such as calcium chloride, and a vacuum evaporation process to eliminate the disadvantages of the conventional dehumidifying cooling and heating method using solar heat. They are trying to do so.
  • Concentrate tank 1 contains concentrated solution 2 of the dehumidifying solution.
  • the dehumidifying solution may be an appropriate one, but for convenience, the explanation will be made using kanoleum chloride.
  • the concentrated liquid 2 is supplied to the dehumidifying chamber 3 by, for example, a spray or the like, and the air in the dehumidifying chamber 3 is dehumidified into a diluted liquid 4, and the diluted liquid 4 is a diluted liquid tank. 5 housed.
  • the diluted solution 4 is concentrated by a vacuum process, and the generated concentrated solution S is returned to the concentrated solution tank 1.
  • the vacuum evaporation process is performed as follows.
  • the heated dilute solution 8 generated from the dilute solution 4 in the dilute solution tank 5 through the heat exchanger 7 is applied to the hot water 10 in the flat plate solar water heater 3]? To make the concentrated solution 1 2. Since the configuration of the flat-plate solar water heater 9 is well known, its description is omitted.
  • the concentrated liquid 12 is sent to the condenser water heater. ?? The concentrated liquid 6 generated through the high-temperature evaporators 13, 14, and 15 to be heated is diluted through the heat exchanger 7. 4) Cool and return to concentrated tank 1 via receiving tank 1S.
  • the condensing water heater collects solar heat with a condensing mirror.] 5)
  • the heating temperature of the condensing water heater is higher than that of the flat-plate solar water heater S.
  • Well-known collector water heaters can be used, but the three high-temperature evaporators 13, 14, and 15 are heated by the collector mirror. It is assumed that Here, the number of high-temperature evaporators is not limited to three.
  • the concentrated liquid 12 is the second concentrated liquid 17 in the high-temperature evaporator 13]? The second middle liquid 17 enters the high-temperature evaporator 14 and becomes the third middle liquid 18], and the third middle liquid 18 enters the high-temperature evaporator 15 and becomes the concentrated liquid S.
  • a vacuum path 1 S connecting the upper parts of the low-temperature evaporator 11 and the high-temperature evaporators 13, 14, 15 is cooled by a condenser 21 through which cold water 20 passes.
  • the vacuum path 19 is formed by the vacuum pump 22]. The above is the vacuum process. Air from room 2 in house, etc. The air in the dehumidifying chamber 3 is cooled by the cooler 25, and the air is returned to the indoor room 23 of the house. If necessary, water 27 is supplied into the outlet pipe 2S by spraying or the like.
  • the pressure in the vacuum path 19 is 100 HgnjXm.
  • Point A is a state in which the concentrated liquid 2 is stored in the concentrated liquid tank 1, and the temperature is 20 ° C.
  • the temperature of the concentrated liquid 2 is controlled by the temperature of the outside world.
  • the concentrate 2 is sprayed into the dehumidifying chamber 3.
  • the dehumidifying chamber 3 is cooled by the cooler 25]. Assuming that the dehumidifying chamber 3 is cooled and kept at 35 ° C., the concentrated liquid 2 absorbs moisture at 2 MZ. Reach C. If not, point G moves up on the two lines.
  • the third medium 18 is heated to, for example, 75, and the concentrated solution S is heated to 83 ° C.
  • the concentrated liquid S goes to the heat exchanger 7]? It is cooled and goes down on the 10M line]) For example, at 42 ° C! Reach one point and touch the solid phase region.
  • the concentrated solution 6 that has exited the heat exchanger 7 enters the concentrated solution tank 1], is naturally cooled, and comes into contact with the solid phase region. You. Is used to mean “one liter” of water.
  • the temperature is lower than the point F, the chlorinated sodium precipitates, and the concentrated liquid 2 in the concentrated liquid tank 1 gradually becomes thin, and reaches 7 at the point A.
  • the first one when returning from point F to point A may pass in receiving tank 16 o
  • the pressure in the receiving tank 1S is reduced by a vacuum pump or the like, so that the concentrated liquid 6 can be easily transferred to the receiving tank 1S.
  • Hot water 10 whose temperature has decreased through the low-temperature evaporator 11 1 is stored in the medium-temperature water bath 28.
  • the cold water 20 whose temperature has risen through the condenser 21 is stored in the low-temperature water tank 23.
  • the cooler 25 may be air-cooled, water-cooled, or a combination of the two.
  • the opening / closing bubble, the pump for transferring the liquid, and the like are omitted altogether because the force is merely a design problem.
  • the arrow in Fig. 1 indicates the direction of movement of the liquid or the like. -Since the present invention has such a configuration, its operation and effect are as follows.
  • the air in the room 23 is sufficiently dried in the dehumidifying room 3 and if water 27 is injected into the outlet pipe 26 so that the air has an appropriate humidity, the vaporization heat of the water 27 As a result, the air is cooled, that is, the room 23 can be cooled.
  • the atmosphere will be heated because the steam in the atmosphere will generate heat when it is trapped in the concentrated liquid 2. .
  • This air can be introduced into the room 23 to heat it.
  • air containing water vapor from ordinary water that has received solar heat or the like may be used.
  • Casium chloride in the solid phase region has a dislocation point of about 30 ° C
  • the hexahydrate is equivalent to about 10 and has a dislocation point of about 30 ° C and a dislocation point of about 45. Between C and C, it is a hydrate and corresponds to about 15; at a dislocation point of about 45 ° C or more, it is a dihydrate and corresponds to about 31 U. Therefore, solid-phase calcium chloride is equivalent to a highly concentrated solution] 5, and potentially possesses dehumidifying ability.
  • the present invention if solar leeks that are abundant in summer are used, if the calcium chloride solution is concentrated to a solid phase, the wintertime when solar energy is not sufficient can be obtained. In this case, dehumidifying and heating can be performed by using the solid phase chlorinated caneous chloride. That is, solar energy can be accumulated and used as needed when needed.] Also, the use of solar energy can be seasonally averaged. Yes o
  • the present invention applies vacuum evaporation to a low-temperature evaporator and a high-temperature evaporator to effectively utilize solar heat and recover heat of a concentrated liquid by a heat exchanger, so that efficiency is improved. Is high.
  • the entire device can be relatively small.
  • the hot water in the medium-temperature water tank 28 and the low-temperature water tank 29 can be used properly.
  • FIG. 1 is a system diagram of an embodiment of the present invention, which is partially cut away.
  • Fig. 2 is a vapor pressure diagram with Ai ⁇ of canoyl chloride as a parameter.
  • 1 is a concentrated liquid tank
  • 2 is a concentrated liquid
  • 3 is a dehumidifying chamber
  • 4 is a dilute liquid
  • 5 is a dilute liquid tank
  • S is a concentrated liquid
  • 7 is a heat exchanger
  • 8 is a heated diluted liquid
  • 9 is a flat plate solar water heater
  • 10 is hot water
  • 1 1 is a low-temperature evaporator
  • 1 2 is a medium-concentrated liquid
  • 13, 14, 15 is a high-temperature evaporator
  • 16 is a receiving tank
  • 19 is a vacuum path
  • 20 is cold water
  • 21 is a condenser
  • 23 is a house room
  • 24 is an inlet
  • 25 is a cooler
  • 26 is an outlet
  • 27 is water.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Drying Of Gases (AREA)

Abstract

A method of cooling and heating while dehumidifying by concentrating the dilute liquid (4) of a dehumidifying solution into a concentrated liquid (2) by means of solar heat or vacuum evaporation, and then using the concentrated liquid (2). A dilute liquid (4) obtained through dehumidification is heated through a heat exchanger (7), subjected to solar heat, and passed through a low temperature evaporator (11) and high temperature evaporators (13), (14) and (15), each of which is reduced in pressure via a vacuum passage (19), and through a heat exchanger (7) back to a concentrated liquid tank (1). This is essentially utilized to cool or heat the inside of a room (23) or the like while dehumidifying it. When solar heat is plentiful, the solution is concentrated or further solidified. By doing so, solar energy can be stored and utilized evenly thereafter.

Description

(1) 発明の名称  (1) Title of invention
太陽熱利用除湿冷暖房法 Solar thermal dehumidification cooling and heating method
(2) 技術分野  (2) Technical field
太陽熱を利用する除湿冷暖房法の改良 Improvement of dehumidification cooling and heating method using solar heat
(3) 技術背景  (3) Technical background
従来の太陽熱を利用する除湿冷暖房法にあっては、 装置 全体が大形と な 、 しか も 効率が低い欠点があった。 ま た夏季の太陽二ネ ルギを蓄積して冬季に使用する等の利 用太陽エネ ギ p平均化が困難であ る欠点があった。 The conventional dehumidifying cooling and heating method using solar heat has the disadvantage that the entire apparatus is large and the efficiency is low. In addition, there is a disadvantage that it is difficult to average the solar energy used in the summer, such as accumulating solar energy in summer and using it in winter.
本発明は、 多段式の太陽温水器と塩化カ ル シユ ウ ム の如 き脱湿溶液と 真空蒸発プロ セ ス と を利用 し、 従来の.太陽 熱利用の除湿冷暖房法の有する欠点を除去しよ う とする も の で あ る。 The present invention uses a multi-stage solar water heater, a dehumidifying solution such as calcium chloride, and a vacuum evaporation process to eliminate the disadvantages of the conventional dehumidifying cooling and heating method using solar heat. They are trying to do so.
(4) 発明の開示 (4) Disclosure of the invention
本発明をその実施例の圖面に よって説明する。 The present invention will be described with reference to the drawings of the embodiments.
濃液槽 1 には、 脱湿性溶液の濃液 2 が収容されている。 脱湿性溶液は適宜の も の で よ いが、 便宜上 こ こ では塩化 カ ノレ シ ユ ウ ム を用 いて説明する 。 Concentrate tank 1 contains concentrated solution 2 of the dehumidifying solution. The dehumidifying solution may be an appropriate one, but for convenience, the explanation will be made using kanoleum chloride.
濃液 2 を除湿室 3 に た と えば ス プ レ ー等の方法に よ つ て供給 し、 除湿室 3 内の空気を除湿 して稀薄液 4 と し 、 こ の稀薄液 4 は稀薄液槽 5 に収容 さ れる 。 The concentrated liquid 2 is supplied to the dehumidifying chamber 3 by, for example, a spray or the like, and the air in the dehumidifying chamber 3 is dehumidified into a diluted liquid 4, and the diluted liquid 4 is a diluted liquid tank. 5 housed.
こ の稀薄液 4 を真空 プ ロ セ ス に よ 濃縮 して 生 じた濃 液 S を濃液槽 1 に も ど す よ う にする。 真空蒸発プ ロ セ ス は、 次の よ に して行な われ る。 The diluted solution 4 is concentrated by a vacuum process, and the generated concentrated solution S is returned to the concentrated solution tank 1. The vacuum evaporation process is performed as follows.
稀薄液槽 5 の稀薄液 4 を熱交換器 7 を通 して生 じた加 熱稀薄液 8 を、 平板太陽温水器 3 の温水 1 0 に よ ]? 加 熱 さ れる 低温蒸発器 1 1 を通 して 中濃液 1 2 と する 。 平板太陽温水器 9 の搆成等は周知であ るか ら、 その説 明は省略する 。 The heated dilute solution 8 generated from the dilute solution 4 in the dilute solution tank 5 through the heat exchanger 7 is applied to the hot water 10 in the flat plate solar water heater 3]? To make the concentrated solution 1 2. Since the configuration of the flat-plate solar water heater 9 is well known, its description is omitted.
中濃液 1 2 を集光温水器に よ ]? 加熱 さ れる 高温蒸発器 1 3 、 1 4 、 1 5 を通 して生 じた濃液 6 を、 熱交換器 7 を通 して稀薄液 4 に よ ]) 冷却 して、 受槽 1 S を介 し て濃液槽 1 に も どす。 集光温水器は太陽熱を集光鏡に よ 集め る も ので あ ]5 、 それ'に よ る 加熱温度は平板太 陽温水器 S に よ る 加熱温度 よ も 高い。 集光温水器 と しては周知の も のを 用い る こ と がで き る が、 集光鏡に よ って三個の 高温蒸発器 1 3 、 1 4 、 1 5 が加熱さ れ る も の と す る。 こ こ に高温蒸発器は三個 と は限らる い o 中濃液 1 2 は高温蒸発器 1 3 では第二中液 1 7 と ]? 、 第二中液 1 7 は高温蒸発器 1 4 に入って第三中液 1 8 と ]? 、 第三中液 1 8 は高温蒸発器 1 5 に入っ て 濃液 S と る る。 The concentrated liquid 12 is sent to the condenser water heater. ?? The concentrated liquid 6 generated through the high-temperature evaporators 13, 14, and 15 to be heated is diluted through the heat exchanger 7. 4) Cool and return to concentrated tank 1 via receiving tank 1S. The condensing water heater collects solar heat with a condensing mirror.] 5) The heating temperature of the condensing water heater is higher than that of the flat-plate solar water heater S. Well-known collector water heaters can be used, but the three high-temperature evaporators 13, 14, and 15 are heated by the collector mirror. It is assumed that Here, the number of high-temperature evaporators is not limited to three. O The concentrated liquid 12 is the second concentrated liquid 17 in the high-temperature evaporator 13]? The second middle liquid 17 enters the high-temperature evaporator 14 and becomes the third middle liquid 18], and the third middle liquid 18 enters the high-temperature evaporator 15 and becomes the concentrated liquid S.
低温蒸発器 1 1 と 高温蒸発器 1 3 、 1 4 、 1 5 と の上 部同士を接続する真空路 1 S を冷水 2 0 が通った凝結 器 2 1 に よ って冷却す.る。 真空路 1 9 は真空ポ ン プ 2 2 に よ ]? 減圧 さ れる 。 以上が真空プ ロ セ ス で あ る。 家屋の室内等 2 3 の空気を入管 2 4 に よ 除湿室 3 に 導 き、 除湿室 3 内の空気を 冷却器 2 5 に よ 冷却す る と 共に、 出管 2 6 に よ ]? 家屋の室内等 2 3 に も どす。 必要に応 じて は、 出 管 2 S の中に水 2 7 を噴射等に よ つ て供給する 。 A vacuum path 1 S connecting the upper parts of the low-temperature evaporator 11 and the high-temperature evaporators 13, 14, 15 is cooled by a condenser 21 through which cold water 20 passes. The vacuum path 19 is formed by the vacuum pump 22]. The above is the vacuum process. Air from room 2 in house, etc. The air in the dehumidifying chamber 3 is cooled by the cooler 25, and the air is returned to the indoor room 23 of the house. If necessary, water 27 is supplied into the outlet pipe 2S by spraying or the like.
さ ら に、 水蒸気を含む大気か、 ま たは 一般の水か ら の 水蒸気を含む空気を除湿室 3 に導 き、 除湿室 3 の空気 か ま たは除湿室 3 の空気に よ 加熱 さ れた空気を家屋 の室内等 2 3 に導 く よ う にする。 Furthermore, air containing water vapor or air containing water vapor from ordinary water is led to the dehumidifying chamber 3 where it is heated by the air in the dehumidifying chamber 3 or the air in the dehumidifying chamber 3. Air into the interior of the house.
真空蒸発プ ロ セ ス を さ ら に数量的 に第 2 圖の塩化力 ノレ シ ユ ウ ム 蒸気圧線圖に よ 説明する 。 The vacuum evaporation process will be explained more quantitatively with reference to the chlorination pressure vapor pressure diagram in Fig. 2.
真空路 1 9 の圧力は、 1 0 0 HgnjXm と する。 The pressure in the vacuum path 19 is 100 HgnjXm.
A点は濃液 2 が濃液槽 1 の 中に貯蔵 さ れてい る状態 で 、 温度は 2 0 °C と する 。 濃液槽 1 か ら除湿室 3 に移動 . する途中 にお いて濃液 2 の温度は外界の温度に支配 さ れて 3 5 で に達する と する と A点力、 ら 7 線上を あ がって B 点で除湿室 3 に濃液 2 は ス プ レ ー さ れる こ と に な る 。 こ の と き 除湿室 3 が冷却器 2 5 に よ ]? 冷却 さ れて 3 5 °C に保たれてい る と する と、 濃液 2 は吸湿 し て た と え ば 2 MZ と な 、 点 C に達す る。 も し も 冷却 さ れて い な ければ、 点 G は 2 線上 を上の方に移 る。 Point A is a state in which the concentrated liquid 2 is stored in the concentrated liquid tank 1, and the temperature is 20 ° C. During the movement from the concentrated liquid tank 1 to the dehumidifying chamber 3, the temperature of the concentrated liquid 2 is controlled by the temperature of the outside world. At point B, the concentrate 2 is sprayed into the dehumidifying chamber 3. At this time, the dehumidifying chamber 3 is cooled by the cooler 25]. Assuming that the dehumidifying chamber 3 is cooled and kept at 35 ° C., the concentrated liquid 2 absorbs moisture at 2 MZ. Reach C. If not, point G moves up on the two lines.
2 U £ と な った稀薄液 4 は熱交換器 7 に よ っ て加熱 さ れて加熱稀薄液 8 にな る が、 こ の こ と は 2 ¼ 線上を あ がった D 点に達 した こ と を意味する。 加熱稀薄液 8 は、 1 0 0 Hg m/m に減圧 さ れた低温蒸発器 1 1 、 高温 蒸発器 1 3 、 1 4 、 1 5 を通って順次中濃液 1 2 、 第 二中液 1 7 、 第三中液 1 8 、 濃液 S と 濃縮 さ れて濃液 6 力; 1 0 と ¾ つた と する と 、 D点から i 0 0 Hgm m 線 上をた ど って E 点に達 した こ と に ¾ る。 熱交渙器 7 では点 !) の 5 5 °C ま で加熱 さ れた こ と に な 、 中濃液 1 2 は た と えば 6 0 °C ま で、 -第二中液 1 7 はた と え ば 6 8 で ま で、 第三中液 1 8 はた と えば 7 5 で ま で、 濃 液 S は 8 3 °C ま で加熱 さ れた こ と にな る。 濃液 S は熱 交換器 7 に よ ]? 冷却 さ れて 1 0 M 線上を く だ ]) 、 た と えば 4 2 °C で !1点 に達 して固相域に接する。 熱交換 器 7 を 出た濃液 6 は濃液槽 1 に入 ]? 、 自然冷却 さ れ、 固相域に接 し ¾ が ら た と えば 2 0 で に は じめ の A点に も ど る。 は、 水 1 リ ッ ト ノレ に対す るモ ノレ の 意味で用い て い る。 F 点 よ も 温度が下が る と塩化 力 シ ユ ウ ム は析出 し、 濃液槽 1 内 の濃液 2 は次第に稀 薄にな 、 A点において 7 にな る 。 F点 か ら A点 に も ど る と き の最初の方は受槽 1 6 の中で経過する こ と も ¾> る o 2 U £ a dilute solution 4 was Tsu Do is ing to heating dilute solution 8 is heated in Tsu by the heat exchanger 7, but a child of this was us Oh wants to point D of the 2 ¼ line Means this. The heated diluted liquid 8 was reduced in pressure to 100 Hg m / m, a low-temperature evaporator 11 The concentrated liquids 12, 17, 18, and S are concentrated through the evaporators 13, 14, and 15, respectively. In other words, it follows that the vehicle has reached point E from point D by following the i00Hgmm line. In the heat exchange machine 7 points! ) To 55 ° C, the concentrated solution 12 to 60 ° C, for example, and-the second concentrated solution 17 to 68, for example. The third medium 18 is heated to, for example, 75, and the concentrated solution S is heated to 83 ° C. The concentrated liquid S goes to the heat exchanger 7]? It is cooled and goes down on the 10M line]) For example, at 42 ° C! Reach one point and touch the solid phase region. The concentrated solution 6 that has exited the heat exchanger 7 enters the concentrated solution tank 1], is naturally cooled, and comes into contact with the solid phase region. You. Is used to mean “one liter” of water. When the temperature is lower than the point F, the chlorinated sodium precipitates, and the concentrated liquid 2 in the concentrated liquid tank 1 gradually becomes thin, and reaches 7 at the point A. The first one when returning from point F to point A may pass in receiving tank 16 o
受槽 1 S は真空ポ ン プ等で減圧 してお き、 濃液 6 が受 槽 1 S に移 やす く してお く 。 The pressure in the receiving tank 1S is reduced by a vacuum pump or the like, so that the concentrated liquid 6 can be easily transferred to the receiving tank 1S.
低温蒸発器 1 1 を通っ て温度が さ がっ た温水 1 0 は 中 温水槽 2 8 に収容 さ れ る。 Hot water 10 whose temperature has decreased through the low-temperature evaporator 11 1 is stored in the medium-temperature water bath 28.
凝結器 2 1 を通っ て温度上昇 した冷水 2 0 は低温水槽 2 3 に収容 さ れる。 The cold water 20 whose temperature has risen through the condenser 21 is stored in the low-temperature water tank 23.
'二.. Ϊ'二 .. Ϊ
、 冷却器 2 5 は、 空冷で も 水冷で も 、 あ る いは両者の併 用 で も よ い。 , The cooler 25 may be air-cooled, water-cooled, or a combination of the two.
第 1 園に示す本発明の実施例の 系銃圖においては、 開 閉バ ブ、 液体移動用 ポ ン プ等は、 単に設計上の問題 に過 ぎ な い力ゝ ら、 すべて省略 してあ る。 また第 1 圖 の 矢印は液体等の移動方向 を示す。 - 本発明は こ の よ う 構成を有するの で、 そ.の作用、 効 果は次の よ う であ る。 In the system diagram of the embodiment of the present invention shown in the first garden, the opening / closing bubble, the pump for transferring the liquid, and the like are omitted altogether because the force is merely a design problem. You. The arrow in Fig. 1 indicates the direction of movement of the liquid or the like. -Since the present invention has such a configuration, its operation and effect are as follows.
家屋の室内等 2 3 の空気を入管 2 4 に よ ]? 除湿室 3 に 導き、 そ こ で除湿 して 出管 2 S に よ 家屋の室内等 2 3 に も ど し、 家屋の 室内等 2 3 の空気を乾燥 さ せる 。 す なわ ち、 除湿に よ っ て不快指数を改善す る こ と が で ョ る o The indoor air of the house, etc. 23 goes to the inlet pipe 24.]? It is guided to the dehumidifying chamber 3, where it is dehumidified and returned to the outlet pipe 2S. It is returned to the house indoors, etc. 23, and the house indoors, etc. 2 Dry the air in step 3. O Dehumidification can improve discomfort index o
室内等 2 3 の 空気を除湿室 3 で充分乾燥 さ せてお き 、 出管 2 6 内に空気が適当 な湿度にな る程度に水 2 7 を 噴射する と 水 2 7 の気化熱に よ って空気は冷却 さ れ、 すなわ ち室内等 2 3 を冷房する こ と がで き る 。 The air in the room 23 is sufficiently dried in the dehumidifying room 3 and if water 27 is injected into the outlet pipe 26 so that the air has an appropriate humidity, the vaporization heat of the water 27 As a result, the air is cooled, that is, the room 23 can be cooled.
冷却器 2 5 を止めて お き 、 大気を除湿室 3 に導 く と 、 大気中の水蒸気が濃液 2 の 中に と こ ま れ る と き に 発熱する の で、 大気が加熱 さ れ る 。 こ の大気を室内等 2 3 に導いて暖房す る こ と がで き る。 大気の か わ に 、 太陽熱等を受けた一般の水か らの水蒸気を含む空気 を用いて も よ い。 If the cooler 25 is stopped and the atmosphere is introduced into the dehumidifying chamber 3, the atmosphere will be heated because the steam in the atmosphere will generate heat when it is trapped in the concentrated liquid 2. . This air can be introduced into the room 23 to heat it. Instead of the atmosphere, air containing water vapor from ordinary water that has received solar heat or the like may be used.
固相域に おけ る塩化カ シ ユ ウ ム は、 転位点約 3 0 °c Casium chloride in the solid phase region has a dislocation point of about 30 ° C
- ΰ、 -ΰ,
ΥΓΙΓ-Ο 以下では 6 水塩であ って約 1 0 に 相当 し、 転位点 約 3 0 °C と 転位点約 4 5 。C と の間では 水塩であっ て 約 1 5 に 相当 し、 転位点約 4 5 °C 以上では 2水塩 であ って約 3 1 U に 相当する。 したがって 固相の塩 化カ シ ユ ウ ム は高濃度溶液と 等価 ¾ も の で あ ] 5 、 潜 在的 に除湿能力 を保有す る も の で あ る。 ΥΓΙΓ-Ο In the following, the hexahydrate is equivalent to about 10 and has a dislocation point of about 30 ° C and a dislocation point of about 45. Between C and C, it is a hydrate and corresponds to about 15; at a dislocation point of about 45 ° C or more, it is a dihydrate and corresponds to about 31 U. Therefore, solid-phase calcium chloride is equivalent to a highly concentrated solution] 5, and potentially possesses dehumidifying ability.
したがって本発明に よ 夏季の豊富る太陽ヱ ネ ギ を を利用 してた と え ば塩化カ ル シ ユ ウ ム 溶液を濃縮 して 固相に しておけば、 太陽エネ ノレギの不充分な 冬季にお いて こ の 固相の塩化カ ノレ シ ユ ウ ム を利用 して 除湿暖房 等を行 う こ と がで き る も の であ る。 すな わ ち太陽ェ ネ ギ を蓄積 して必要な と き に適宜に利用で き る も の であ ]? 、 ま た太陽エネ ギの利用 を季節的に平均化で. き る も の であ る o  Therefore, according to the present invention, if solar leeks that are abundant in summer are used, if the calcium chloride solution is concentrated to a solid phase, the wintertime when solar energy is not sufficient can be obtained. In this case, dehumidifying and heating can be performed by using the solid phase chlorinated caneous chloride. That is, solar energy can be accumulated and used as needed when needed.] Also, the use of solar energy can be seasonally averaged. Yes o
本発明は、 低温蒸発器と 高温蒸発器 と に真空蒸発を適 用 して太陽熱を効果的に利用 し、 熱交換器に よ って濃 液の熱を 回収する 如 く してい る ので、 効率が高い。 The present invention applies vacuum evaporation to a low-temperature evaporator and a high-temperature evaporator to effectively utilize solar heat and recover heat of a concentrated liquid by a heat exchanger, so that efficiency is improved. Is high.
したが っ て装置全体を比較的 に小形に ま と め る こ と が で き る 。  Therefore, the entire device can be relatively small.
中温水槽 2 8 と 低温水槽 2 9 と の温水は適当に利用す る こ と 力 で き る o The hot water in the medium-temperature water tank 28 and the low-temperature water tank 29 can be used properly.
こ の よ う に して本発明 に よ れば、 従来の太陽熱利用 の 除湿冷暖房法の欠点 を除去 し得る も の で あ る。 - - (5) 圖面 の簡単な説明 Thus, according to the present invention, it is possible to eliminate the disadvantages of the conventional dehumidifying cooling and heating method using solar heat. -- (5) Brief explanation of the diagram
第 1 圖は本発明の実施例の 系統圖 であ 、 一部切欠い て示 して あ る。 第 2 圖は塩化カ ノレ シ ユ ウ 厶 の Ai^ を パ ラ メ ー タ と した蒸気圧線圖で あ る。 FIG. 1 is a system diagram of an embodiment of the present invention, which is partially cut away. Fig. 2 is a vapor pressure diagram with Ai ^ of canoyl chloride as a parameter.
圖におい て、 1 は濃液槽、 2 は濃液、 3 は除湿室、 4 は稀薄液、 5 は稀薄液槽、 S は濃液、 7 は熱交換器、 In the diagram, 1 is a concentrated liquid tank, 2 is a concentrated liquid, 3 is a dehumidifying chamber, 4 is a dilute liquid, 5 is a dilute liquid tank, S is a concentrated liquid, 7 is a heat exchanger,
8 は加熱稀薄液、 9 は平板太陽温水器、 1 0 は温水、 8 is a heated diluted liquid, 9 is a flat plate solar water heater, 10 is hot water,
1 1 は低温蒸発器、 1 2 は 中濃液、 1 3 、 1 4 、 1 5 は高温蒸発器、 1 6 は 受槽、 1 9 は真空路、 2 0 は冷 水、 2 1 は凝結器、 2 3 は家屋の室内等、 2 4 は入管 、 2 5 は冷却器、 2 6 は出 管、 2 7 は水であ る。  1 1 is a low-temperature evaporator, 1 2 is a medium-concentrated liquid, 13, 14, 15 is a high-temperature evaporator, 16 is a receiving tank, 19 is a vacuum path, 20 is cold water, 21 is a condenser, 23 is a house room, 24 is an inlet, 25 is a cooler, 26 is an outlet, and 27 is water.
(6) 発明 を実施する ため の最良の状態  (6) Best condition for carrying out the invention
第 1 圖に示 さ れてい る よ う 状態であ る。 The situation is as shown in Fig. 1.
(7) 産業上の 利用可能性  (7) Industrial applicability
除湿冷暧房への 太陽エネ ギ の利用効率改善のため To improve the efficiency of solar energy usage in dehumidifying and cooling
、 さ ら に は太陽エネ ^ギ の貯蔵、 も し く は太陽エネ Or storage of solar energy, or solar energy
ノレギの季節に対する平均化のた め に、 産業上におい In order to average the Noregi season,
て利用 さ れる 可能性が あ る。  May be used.
v-'i ° tvV. v- ' i ° tvV.

Claims

2 請求の範囲  2 Claims
1  1
濃液槽に収容 された塩化力 ノレ シ ュ ゥ ム の如き脱湿性溶液 の濃液を供給 して除湿室の空気を除湿して生じた稀薄液 を稀薄液槽に収容 し、 こ の稀薄液を真空蒸発プ ロ セ ス に よ i? 濃縮 して生 じた濃液を濃液槽に も どす如 く し、 真空 蒸発プ ロ セ ス と しては、 稀薄液槽の稀薄液を熱交換器を 通 して生 じた加熱稀薄液を平板太陽温水器の温水によ 加熱される低温蒸発器を通 して中濃液と し、 こ の中濃液 を集光温水器に よ 加熱される高温蒸発器を通 して生じ た濃液を熱交換器を通して稀薄液に よ 冷却 して受槽を 介して濃液槽にも ど し、 低温蒸発器と 高温蒸発器と の上 部同士を接続する真空路を冷水が通った凝縮器に よ って 冷却する こ と を特徵とする太陽熱利用除湿冷暖房法 A concentrated solution of a dehumidifying solution, such as a chlorination solution, stored in a concentrated solution tank is supplied, and the diluted solution produced by dehumidifying the air in the dehumidifying chamber is stored in the diluted solution tank. The concentrated liquid produced by the concentration is returned to the concentrated liquid tank, and heat exchange of the dilute liquid in the diluted liquid tank is performed as the vacuum evaporating process. The heated dilute liquid generated through the heater is turned into a medium-concentrated liquid through a low-temperature evaporator heated by hot water from a flat-plate solar water heater, and the medium-concentrated liquid is heated by a condensing water heater. The concentrated liquid generated through the high-temperature evaporator is cooled by the diluted liquid through the heat exchanger, returned to the concentrated liquid tank via the receiving tank, and the upper parts of the low-temperature evaporator and the high-temperature evaporator are connected. Solar heat dehumidification cooling and heating method, which cools the vacuum path to be cooled by a condenser through which cold water passes
2  Two
濃液槽に収容された塩化力 レ シ ュ ゥ ム の如 き脱湿性溶液 の濃液を供給して除湿室の空気を除湿して生じた稀薄液 を稀薄液槽に収容 し、 こ の稀薄液を真空蒸発プ ロ セ ス に よ ]? 濃縮 して生じた濃液を濃液槽に も どす如 く し、 真空 蒸発プ ロ セ ス と しては、 稀薄液槽の稀薄液を熱交換器を 通 して生 じた加熱稀薄液を平板太陽温水器の温水に よ 加熱 される低温蒸発器を通 して中濃液と し、 こ の中濃液 を集光温水器 よ 加熱される高温蒸発器を通して生じ た濃液を熱交換器を通して稀薄液に よ ? 冷却して受槽を A concentrated solution of a dehumidifying solution, such as a chlorinated residium, stored in a concentrated solution tank is supplied to dilute the air in the dehumidifying chamber, and the diluted solution is stored in the diluted solution tank. The concentrated liquid produced by the concentration is returned to the concentrated liquid tank, and the diluted liquid in the dilute liquid tank is subjected to heat exchange as the vacuum evaporation process. The heated dilute liquid generated through the heater is turned into a medium-concentrated liquid through a low-temperature evaporator, which is heated by hot water from a flat-plate solar water heater, and the medium-concentrated liquid is heated by a condensing water heater. Is the concentrated liquid generated through the high-temperature evaporator a dilute liquid through the heat exchanger?
C .iPI_ WIFO 介 して濃液槽にも ど し、 低温蒸発器と高温蒸発器と ¾上 部同士を接続する真空路を冷水が通った凝縮器に よ って 冷却 し、 家屋の室内等の空気を入管に よ 除湿室に導き 、 除湿室内の空気を冷却器に よ ]5 冷却する と共に出管に よ ]) 家屋の室内等に も ど し、 必要に応 じては出管の中に 水を噴射する こ と を特徵と する太陽熱利用除湿冷暖房法 3 C .iPI_ WIFO Via a condenser through which cold water passes through the vacuum path connecting the low-temperature evaporator and the high-temperature evaporator, and the upper part of the evaporator. 5) Cool the air inside the dehumidifying chamber and use the outlet pipe.) Return to the house room, etc., and spray water into the outlet pipe if necessary. Solar heat dehumidifying cooling and heating method 3
濃液槽に収容された塩化カ シ ュ ゥ ム の如き脱湿性溶液 の濃液を供給して除湿室の空気を除湿して生じた稀薄液 を稀薄液槽に収容 し、 こ の稀薄液を真空蒸発プ ロ セ ス に よ 濃縮 して生 じた濃液を濃液槽に も どす如 く し、 真空 蒸発プ ロ セ ス と しては、 稀薄液槽の稀薄液を熱交換器を 通 して生じた加熱稀薄液を平板太陽温水器の温水によ 加熱される低温蒸発器を通して中濃液と し、 こ の中濃液 を集光温水器に よ ]? 加熱 される高温蒸発器を通 して生じ た濃液を熱交換器を通して稀薄液に よ 冷却して受槽を 介 して濃液槽に も ど し、 低温蒸発器と 高温蒸発器と の上 部同士を接続する真空路を冷水が通った凝縮器によ って 冷却 し、 水蒸気を含む大気かまたは一般の水からの水蒸 気を含む空気を除湿室に導き、 除湿室の空気か または除 湿室の空気によ ? 加熱された空気を家屋の室内等に導く こ と を特徵と する太陽熱利用除湿冷暧房法 A concentrated solution of a dehumidifying solution such as calcium chloride stored in the concentrated solution tank is supplied to dilute the air in the dehumidifying chamber, and the diluted solution produced is stored in the diluted solution tank. The concentrated liquid generated by concentration by the vacuum evaporation process is returned to the concentrated liquid tank, and the diluted liquid in the diluted liquid tank is passed through a heat exchanger as the vacuum evaporation process. The resulting diluted liquid is converted into a concentrated liquid through a low-temperature evaporator heated by hot water from a flat-plate solar water heater, and the concentrated liquid is condensed by a condensing water heater. The concentrated liquid produced through the heat exchanger is cooled by a dilute liquid through a heat exchanger, returned to the concentrated liquid tank via a receiving tank, and a vacuum path connecting the upper parts of the low-temperature evaporator and high-temperature evaporator is established. It is cooled by a condenser through which cold water passes, and the air containing water vapor or the air containing water vapor from ordinary water is led to the dehumidifying chamber. Solar dividing Shimehiya 暧房 method with Toku徵 that you lead by the air in the air or dividing a moist chamber? The heated air into the room of a house or the like
ο: ·ίΡΐ /If o ο: · ίΡΐ / If o
PCT/JP1979/000279 1979-10-30 1979-10-30 Method of cooling and heating by solar heat while dehumidifying WO1981001326A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1979/000279 WO1981001326A1 (en) 1979-10-30 1979-10-30 Method of cooling and heating by solar heat while dehumidifying

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP1979/000279 WO1981001326A1 (en) 1979-10-30 1979-10-30 Method of cooling and heating by solar heat while dehumidifying
WOJP79/00279 1979-10-30

Publications (1)

Publication Number Publication Date
WO1981001326A1 true WO1981001326A1 (en) 1981-05-14

Family

ID=13677732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1979/000279 WO1981001326A1 (en) 1979-10-30 1979-10-30 Method of cooling and heating by solar heat while dehumidifying

Country Status (1)

Country Link
WO (1) WO1981001326A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986007437A1 (en) * 1985-06-07 1986-12-18 Roger Eriksson A method of cooling air for air conditioning of a space in a building

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2575478A (en) * 1948-06-26 1951-11-20 Leon T Wilson Method and system for utilizing solar energy
JPS5079153A (en) * 1973-11-14 1975-06-27
JPS52142673A (en) * 1976-05-24 1977-11-28 Tomimaru Iida Solar waterrobtaining apparatus
JPS5324728B2 (en) * 1976-06-03 1978-07-22

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2575478A (en) * 1948-06-26 1951-11-20 Leon T Wilson Method and system for utilizing solar energy
JPS5079153A (en) * 1973-11-14 1975-06-27
JPS52142673A (en) * 1976-05-24 1977-11-28 Tomimaru Iida Solar waterrobtaining apparatus
JPS5324728B2 (en) * 1976-06-03 1978-07-22

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986007437A1 (en) * 1985-06-07 1986-12-18 Roger Eriksson A method of cooling air for air conditioning of a space in a building

Similar Documents

Publication Publication Date Title
US4287721A (en) Chemical heat pump and method
TW431890B (en) Borage seed oil as an anti-irritant in compositions containing hydroxy acids or retinoids
Hollands The regeneration of lithium chloride brine in a solar still for use in solar air conditioning
RU2131000C1 (en) Installation for fresh water condensation from atmospheric air
CN101418972A (en) Solar groove type and flat-plate type combine heat-collecting solution regeneration method, device thereof and applications
JP2959141B2 (en) Absorption refrigeration equipment
JP2008249165A (en) Interior humidistat
JP2001082823A (en) Absorption type cooling and heating device
JPH0657296B2 (en) Air conditioner in a sealed body
WO1981001326A1 (en) Method of cooling and heating by solar heat while dehumidifying
CN104613670B (en) Using the lithium bromide water absorption type refrigeration device of solar heat
JP2018516726A (en) Clothes dryer and control method thereof
KR20170106662A (en) Agricultural and fishery dry using the aluminum solar panels and thermodynamic solar hot water system
JP2003130485A (en) Two-stage absorption chilled or hot-water machine
US20210113957A1 (en) Apparatus and method for producing water
JP2858908B2 (en) Absorption air conditioner
Enayatollahi et al. Mathematical modeling of a solar powered humidification dehumidification desalination prototype
JPS5815701B2 (en) Solar heat absorption type air conditioning and water heater
JPS62136287A (en) Pure water making apparatus utilizing solar heat
JP3381094B2 (en) Absorption type heating and cooling water heater
JPS6255063B2 (en)
CN107364913A (en) A kind of solar energy bubbling humidifies semiconductor sea water desalinating unit
SU857658A1 (en) Combined solar unit
JP2568828Y2 (en) Heat storage device
CN207588298U (en) A kind of power distribution cabinet dehumidification system based on semiconductor chilling plate

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): BR JP SU US

AL Designated countries for regional patents

Designated state(s): CH DE FR GB LU SE