JP2959141B2 - Absorption refrigeration equipment - Google Patents

Absorption refrigeration equipment

Info

Publication number
JP2959141B2
JP2959141B2 JP2877191A JP2877191A JP2959141B2 JP 2959141 B2 JP2959141 B2 JP 2959141B2 JP 2877191 A JP2877191 A JP 2877191A JP 2877191 A JP2877191 A JP 2877191A JP 2959141 B2 JP2959141 B2 JP 2959141B2
Authority
JP
Japan
Prior art keywords
refrigerant
absorbent
evaporator
regenerator
absorbing liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2877191A
Other languages
Japanese (ja)
Other versions
JPH04268176A (en
Inventor
裕司 渡部
俊孝 武居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Kogyo Co Ltd filed Critical Daikin Kogyo Co Ltd
Priority to JP2877191A priority Critical patent/JP2959141B2/en
Publication of JPH04268176A publication Critical patent/JPH04268176A/en
Application granted granted Critical
Publication of JP2959141B2 publication Critical patent/JP2959141B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、吸収式冷凍装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption refrigeration system.

【0002】[0002]

【従来の技術】従来より、例えばリチウムブロマイド等
の吸水性の強い物質と水との混合液を吸収液として、ま
た水を冷媒として用い、吸収液の吸収作用によって冷媒
を蒸発させ、その際の蒸発潜熱を冷凍用熱源として利用
する一方、冷媒蒸気の吸収によって濃度が低下(即ち、
吸収能力が低下)した吸収液を加熱により冷媒を蒸発さ
せて再生するとともに、該冷媒蒸気を凝縮させて冷媒と
して再利用できるように構成した吸収式冷凍装置が知ら
れている(特開昭62ー73055号公報参照)。
2. Description of the Related Art Conventionally, a mixture of water and a highly water-absorbing substance, such as lithium bromide, has been used as an absorbing liquid, and water has been used as a refrigerant. While using the latent heat of evaporation as a heat source for freezing, the concentration is reduced by absorption of refrigerant vapor (that is,
An absorption refrigeration system is known in which an absorbing liquid whose absorption capacity has been reduced is heated to evaporate a refrigerant by heating to regenerate the refrigerant, and to condense the refrigerant vapor so that it can be reused as a refrigerant (Japanese Patent Laid-Open No. Sho 62-62). -73055).

【0003】[0003]

【発明が解決しようとする課題】ところで、このような
従来の吸収式冷凍装置においては、冷媒蒸気である水蒸
気を空間移動によって蒸発器から吸収器へ、あるいは再
生器から凝縮器へとそれぞれ移動させる構成とするのが
一般的であるが、この場合、冷媒蒸気の移動空間内に酸
素、窒素等の凝縮性ガスが存在すると冷媒蒸気の移動が
阻害されて冷凍能力が低下することから、冷媒循環系内
を真空構造とするのが通例である。
Incidentally, in such a conventional absorption refrigeration system, water vapor as a refrigerant vapor is moved from an evaporator to an absorber or from a regenerator to a condenser by spatial movement. Generally, in this case, the presence of condensable gas such as oxygen and nitrogen in the space for moving the refrigerant vapor hinders the movement of the refrigerant vapor and lowers the refrigeration capacity. Usually, the inside of the system has a vacuum structure.

【0004】ところが、このように冷媒循環系内を真空
とする構造の場合には、その真空度の低下が冷凍性能の
低下に直結することから、その真空度を保持すべく真空
容器等の特別の真空対策を講じる必要があり、その結
果、装置構造の複雑化あるいは大形化を招来するという
問題があった。
However, in the case of such a structure in which the inside of the refrigerant circulation system is evacuated, a decrease in the degree of vacuum is directly linked to a decrease in the refrigerating performance, so that a special vacuum container or the like is required to maintain the degree of vacuum. It is necessary to take a countermeasure against vacuum, and as a result, there is a problem that the structure of the apparatus becomes complicated or large.

【0005】そこで本願発明は、吸収式冷凍装置におい
て、系内の真空構造を不要として装置の簡略化あるいは
コンパクト化を図り、併せて吸収液の動作温度範囲を広
げて装置の適用範囲の拡大を図ることを目的としてなさ
れたものである。
[0005] Accordingly, the present invention provides an absorption refrigeration apparatus that simplifies or downsizes the apparatus by eliminating the need for a vacuum structure in the system, and at the same time, expands the operating temperature range of the absorbing liquid to expand the applicable range of the apparatus. This was done for the purpose of planning.

【0006】[0006]

【課題を解決するための手段】本願発明ではかかる課題
を解決するための具体的手段として、請求項1記載の発
明では、図1及び図2に例示するように、冷媒を蒸発さ
せる蒸発器21と、該蒸発器21において発生した冷媒
蒸気を吸収液で吸収してこれを希薄吸収液とする吸収器
22と、該吸収器22における希薄吸収液を加熱源によ
り加熱して冷媒を蒸発させてこれを濃厚吸収液とし上記
吸収器22に還流せる再生器11と、該再生器11にお
いて発生した冷媒蒸気を凝縮させて冷媒として上記蒸発
器21に還流させる凝縮器12とを備えた吸収式冷凍装
置において、上記再生器11内の吸収液と凝縮器12内
の冷媒とを、冷媒蒸気は通すが冷媒及び吸収液は通さな
い性状を有する樹脂多孔膜13を介して接触せしめたこ
とを特徴としている。
According to the present invention, as a specific means for solving the above-mentioned problems, the evaporator 21 for evaporating the refrigerant is exemplified by FIGS. 1 and 2. And an absorber 22 that absorbs the refrigerant vapor generated in the evaporator 21 with the absorbing liquid and makes the diluted absorbing liquid a dilute absorbing liquid; and that the dilute absorbing liquid in the absorber 22 is heated by a heating source to evaporate the refrigerant. An absorption refrigeration system comprising: a regenerator 11 for returning the concentrated absorbent to the absorber 22; and a condenser 12 for condensing refrigerant vapor generated in the regenerator 11 and returning the refrigerant to the evaporator 21 as a refrigerant. In the apparatus, the absorbing liquid in the regenerator 11 and the refrigerant in the condenser 12 are brought into contact with each other via a resin porous membrane 13 having a property of allowing the refrigerant vapor to pass but not the refrigerant and the absorbing liquid. I .

【0007】請求項2記載の発明では、図1及び図3に
例示するように、冷媒を蒸発させる蒸発器21と、該蒸
発器21において発生した冷媒蒸気を吸収液で吸収して
これを希薄吸収液とする吸収器22と、該吸収器22に
おける希薄吸収液を加熱源により加熱して冷媒を蒸発さ
せてこれを濃厚吸収液とし上記吸収器22に還流させる
再生器11と、該再生器11において発生した冷媒蒸気
を凝縮させて冷媒として上記蒸発器21に還流させる凝
縮器12とを備えた吸収式冷凍装置において、上記蒸発
器21内の冷媒と吸収器22内の吸収液とを、冷媒蒸気
は通すが冷媒及び吸収液は通さない性状を有する樹脂多
孔膜23を介して接触せしめたことを特徴としている。
According to the second aspect of the present invention, as shown in FIGS. 1 and 3, an evaporator 21 for evaporating a refrigerant, and a refrigerant vapor generated in the evaporator 21 is absorbed by an absorbing liquid and diluted. An absorber 22 serving as an absorbing liquid; a regenerator 11 for heating a dilute absorbing liquid in the absorber 22 by a heating source to evaporate a refrigerant and returning the concentrated absorbing liquid to the absorber 22; And a condenser 12 for condensing the refrigerant vapor generated in 11 and returning the refrigerant vapor to the evaporator 21 as a refrigerant, wherein the refrigerant in the evaporator 21 and the absorbing liquid in the absorber 22 are: It is characterized in that it is brought into contact via a resin porous membrane 23 having the property of allowing the refrigerant vapor to pass but not the refrigerant and the absorbing liquid.

【0008】請求項3記載の発明では、図1及び図4に
例示するように、冷媒を蒸発させる蒸発器21と、該蒸
発器21において発生した冷媒蒸気を吸収液で吸収して
これを希薄吸収液とする吸収器22と、該吸収器22に
おける希薄吸収液を加熱源により加熱して冷媒を蒸発さ
せてこれを濃厚吸収液とし上記吸収器22に還流せる再
生器11と、該再生器11において発生した冷媒蒸気を
凝縮させて冷媒として上記蒸発器21に還流させる凝縮
器12とを備えるとともに、上記吸収器22と再生器1
1との間において上記濃厚吸収液と希薄吸収液との間で
熱交換を行わせる熱交換器3を備えた吸収式冷凍装置に
おいて、上記熱交換器3において上記吸収器22からの
濃厚吸収液と上記再生器11からの希薄吸収液とを、冷
媒蒸気は通すが冷媒及び吸収液は通さない性状を有する
樹脂多孔膜31を介して接触せしめたことを特徴として
いる。
According to the third aspect of the present invention, as shown in FIGS. 1 and 4, an evaporator 21 for evaporating a refrigerant, and a refrigerant vapor generated in the evaporator 21 is absorbed by an absorbent and diluted. An absorber 22 serving as an absorbing liquid; a regenerator 11 for heating a dilute absorbing liquid in the absorber 22 by a heating source to evaporate a refrigerant and returning the concentrated absorbing liquid to the absorber 22; And a condenser 12 for condensing the refrigerant vapor generated in 11 and returning the refrigerant vapor to the evaporator 21 as a refrigerant, the absorber 22 and the regenerator 1
1. In an absorption refrigeration system provided with a heat exchanger 3 for exchanging heat between the rich absorbing solution and the lean absorbing solution between the rich absorbing solution and the rich absorbing solution from the absorber 22 in the heat exchanger 3. And the dilute absorbent from the regenerator 11 are brought into contact with each other via a resin porous membrane 31 having a property of allowing the refrigerant vapor to pass but not the refrigerant and the absorbent.

【0009】[0009]

【作用】本願各発明ではかかる構成とすることによって
それぞれ次のような作用が得られる。
In each invention of the present application, the following effects can be obtained by adopting such a configuration.

【0010】請求項1記載の発明では、再生器11内の
吸収液と凝縮器12内の冷媒とが樹脂多孔膜13を介し
て相互に接触していることから、該再生器11内におい
て吸収液から発生した冷媒蒸気は例えば大気圧下であっ
ても樹脂多孔膜13を通してそのまま容易に凝縮器12
側に移動し、これにより吸収液の濃縮(即ち、再生)作用
が促進される。
According to the first aspect of the present invention, since the absorbing liquid in the regenerator 11 and the refrigerant in the condenser 12 are in contact with each other via the porous resin film 13, the absorption liquid in the regenerator 11 Refrigerant vapor generated from the liquid easily passes through the resin porous membrane 13 easily even under atmospheric pressure, for example.
Side, which promotes the concentration (ie, regeneration) action of the absorbent.

【0011】請求項2記載の発明では、蒸発器21内の
冷媒と吸収器22内の吸収液とが樹脂多孔膜23を介し
て接触していることから、該蒸発器21内において発生
した冷媒蒸気は、例え大気圧下であっても容易に樹脂多
孔膜23を通してそのまま吸収器22内の吸収液に吸収
され、冷媒の蒸発作用が促進される。
According to the second aspect of the present invention, since the refrigerant in the evaporator 21 and the absorbing liquid in the absorber 22 are in contact with each other via the resin porous film 23, the refrigerant generated in the evaporator 21 The vapor is easily absorbed by the absorbing liquid in the absorber 22 as it is through the resin porous membrane 23 even under the atmospheric pressure, and the evaporating action of the refrigerant is promoted.

【0012】請求項3記載の発明では、熱交換器3にお
いて、樹脂多孔膜31を介して高温の濃厚吸収液と低温
の希薄吸収液との間での熱交換により熱回収が行なわれ
るとともに、吸収液から蒸発分離した冷媒蒸気が樹脂多
孔膜31を通って蒸気圧の高い濃厚吸収液側から上記圧
の低い希薄吸収液側に移動し、濃厚吸収液がより一層濃
縮されることとなる。
According to the third aspect of the present invention, in the heat exchanger 3, heat is recovered by heat exchange between the high-temperature rich absorbing liquid and the low-temperature dilute absorbing liquid via the resin porous membrane 31, and The refrigerant vapor evaporated and separated from the absorption liquid moves through the resin porous membrane 31 from the thick absorption liquid side having a high vapor pressure to the lean absorption liquid side having a low pressure, and the concentrated absorption liquid is further concentrated.

【0013】[0013]

【発明の効果】従って、本願の請求項1及び2記載の発
明にかかる吸収式冷凍装置によれば、再生器11と凝縮
器12の間、あるいは蒸発器21と吸収器22の間にお
ける冷媒蒸気の移動が樹脂多孔膜13,23を介して直
接的に行なわれることから、従来の吸収式冷凍装置のよ
うに冷媒循環系内を真空にする必要がなく、装置自体の
構造の簡略化及びコスト低減が図れるという効果があ
る。また、再生器11と凝縮器12、蒸発器21と吸収
器22をそれぞれ一体化することができることから、装
置のコンパクト化が図れるという効果も得られる。
According to the absorption refrigerating apparatus according to the first and second aspects of the present invention, the refrigerant vapor between the regenerator 11 and the condenser 12 or between the evaporator 21 and the absorber 22 is obtained. Is performed directly through the porous resin membranes 13 and 23, so that there is no need to evacuate the refrigerant circulation system as in the conventional absorption refrigeration system, which simplifies the structure of the system itself and reduces costs. There is an effect that reduction can be achieved. Further, since the regenerator 11 and the condenser 12 and the evaporator 21 and the absorber 22 can be integrated respectively, the effect that the apparatus can be made compact can be obtained.

【0014】請求項3記載の発明にかかる吸収式冷凍装
置によれば、高温の濃厚吸収液と低温の希薄吸収液との
間において、樹脂多孔膜31を介しての熱回収と蒸気圧
差を利用した吸収液の濃縮とが同時に行なわれることか
ら、例えば従来一般のように熱回収のみしか行なわれな
い構成のものに比して、吸収液の動作温度幅が拡大し、
より低温の熱源あるいはより高温の冷却水の使用が可能
となり、その結果、吸収式冷凍装置の汎用化が促進され
るという効果が得られる。
According to the third aspect of the present invention, the heat recovery and the vapor pressure difference between the high-temperature concentrated absorbent and the low-temperature diluted absorbent through the porous resin membrane 31 are utilized. Since the concentration of the absorbed liquid is performed at the same time, the operating temperature range of the absorbent is expanded, for example, as compared to a conventional configuration in which only heat recovery is performed, and
Use of a lower-temperature heat source or higher-temperature cooling water becomes possible, and as a result, an effect that generalization of the absorption refrigeration apparatus is promoted is obtained.

【0015】[0015]

【実施例】以下、添付図面を参照して本願発明を説明す
ると、図1には本願発明の実施例にかかる吸収式冷凍装
置Zのシステム図が示されている。この吸収式冷凍装置
Zは、リチウムブロマイド(LiBr)の水溶液を吸収液と
し、また水を冷媒として用いるとともに、吸収液への水
蒸気の吸収時あるいはこれからの放出時における水蒸気
の移動を、水蒸気は通すが水及び吸収液は通さない性状
を有する樹脂多孔膜(例えば、ポリプロピレン製多孔膜
とかフッ素樹脂成形体多孔膜)を介して行わせるように
し、もって冷媒循環系内の非真空構造化を実現したもの
であって、後述する再生・凝縮ユニット1と蒸発・吸収
ユニット2と作動側熱交換器3と利用側熱交換器4とを
備えて構成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the accompanying drawings. FIG. 1 shows a system diagram of an absorption refrigeration apparatus Z according to an embodiment of the present invention. This absorption refrigerating apparatus Z uses an aqueous solution of lithium bromide (LiBr) as an absorbing liquid, uses water as a refrigerant, and allows the water vapor to pass through when the water vapor is absorbed into or discharged from the absorbing liquid. However, it is performed through a resin porous membrane having a property of impervious to water and absorbing liquid (for example, a polypropylene porous membrane or a fluororesin molded article porous membrane), thereby realizing a non-vacuum structure in the refrigerant circulation system. It comprises a regenerating / condensing unit 1, an evaporating / absorbing unit 2, a working-side heat exchanger 3 and a use-side heat exchanger 4, which will be described later.

【0016】上記再生・凝縮ユニット1は、加熱流体
(例えば、温排水)による加熱手段を備えた再生器11
と、冷却水による冷却手段を備えた凝縮器12とを、樹
脂多孔膜13を介して相互に接触させた状態で一体化し
て構成されている。そして、この再生器11には吸収液
が、また凝縮器12には水がそれぞれ流される。
The regenerating / condensing unit 1 includes a heating fluid
Regenerator 11 provided with a heating means (for example, hot waste water)
And a condenser 12 provided with a cooling means using cooling water are integrated with each other while being in contact with each other via a resin porous membrane 13. Then, the absorbent is flowed into the regenerator 11 and the water is flown into the condenser 12.

【0017】尚、この再生・凝縮ユニット1のより具体
的な構造例を図2に示している。即ち、この実施例で
は、樹脂多孔膜13を介して相互に接触する冷媒通路1
6と吸収液通路17の外側に冷却水通路14と加熱流体
通路15とがそれぞれ位置するように、これら各通路1
3,14,16,17を複数個づつ層状に積層するととも
に、同一種類の通路を上下方向に順次接続して所要の通
路長さを確保するようにしている。従って、この例で
は、上下に並設された3本の冷媒通路16,16,16で
凝縮器12が、また同じく3本の吸収液通路17,17,
17で再生器11がそれぞれ構成されている。
FIG. 2 shows a more specific structural example of the regenerating / condensing unit 1. That is, in this embodiment, the refrigerant passages 1 contacting each other via the resin porous membrane 13
The cooling water passage 14 and the heating fluid passage 15 are located outside the absorption liquid passage 6 and the absorption liquid passage 17, respectively.
A plurality of layers 3, 14, 16, 17 are stacked in layers, and the same type of passages are sequentially connected in the up-down direction to secure a required passage length. Therefore, in this example, the condenser 12 is formed by the three refrigerant passages 16, 16, 16 arranged vertically above and below the three absorbent passages 17, 17,
Reference numeral 17 denotes each of the regenerators 11.

【0018】上記蒸発・吸収ユニット2は、上記再生・
凝縮ユニット1と同様に、蒸発器21と吸収器22と
を、樹脂多孔膜23を介して相互に接触させた状態で一
体化して構成されている。尚、図3にはこの蒸発・吸収
ユニット2の具体的な構造例を示しているが、この蒸発
・吸収ユニット2の場合も上記再生・凝縮ユニット1の
場合と同様に、樹脂多孔膜23を介して相互に接触状態
とされた冷媒通路16と吸収液通路17を、冷却水通路
24を順次挟んで複数層に積層して構成され、各冷媒通
路16,16,16で蒸発器21が、また各吸収液通路1
7,17,17で吸収器22が構成されている。
The evaporating / absorbing unit 2 is provided with the regenerating / absorbing unit.
Similarly to the condensing unit 1, the evaporator 21 and the absorber 22 are integrally formed in a state where they are in contact with each other via a resin porous film 23. FIG. 3 shows a specific example of the structure of the evaporating / absorbing unit 2. In the case of the evaporating / absorbing unit 2, similarly to the case of the regenerating / condensing unit 1, the resin porous film 23 is formed. The refrigerant passage 16 and the absorption liquid passage 17 which are brought into contact with each other via the cooling water passage 24 are sequentially laminated in a plurality of layers, and the evaporator 21 is formed by each of the refrigerant passages 16, 16, 16. In addition, each absorption liquid passage 1
7, 17, 17 constitute the absorber 22.

【0019】一方、上記蒸発・吸収ユニット2の吸収器
22と上記再生・凝縮ユニット1の再生器11とは、第
1吸収液管路41と第2吸収液管路42とを介して接続
されて吸収液循環系を構成している。そして、この第1
吸収液管路41と第2吸収液管路42の中間位置に作動
側熱交換器3が配置されている。この作動側熱交換器3
は、第1吸収液管路41内を流れる高温の吸収液と第2
吸収液管路42内を流れる低温の吸収液との間において
熱回収を行うとともに、後述のように両者の蒸気圧差を
利用して吸収液の濃縮をも行おうとするものであって、
具体的には図4に示すように、第1吸収液管路41に連
通する複数の第1通路32と第2吸収液管路42に連通
する複数の第2通路33とを樹脂多孔膜31を介して順
次接触するように積層して構成されている。
On the other hand, the absorber 22 of the evaporating / absorbing unit 2 and the regenerator 11 of the regenerating / condensing unit 1 are connected via a first absorbent pipe 41 and a second absorbent pipe 42. To form an absorption liquid circulation system. And this first
The working-side heat exchanger 3 is arranged at an intermediate position between the absorption liquid pipe 41 and the second absorption liquid pipe 42. This working side heat exchanger 3
Is the high-temperature absorbent flowing in the first absorbent pipe 41 and the second absorbent.
In addition to performing heat recovery between the low-temperature absorbent and the low-temperature absorbent flowing in the absorbent pipe 42, the absorbent is also concentrated by utilizing the vapor pressure difference between the two, as described below.
Specifically, as shown in FIG. 4, the plurality of first passages 32 communicating with the first absorbing liquid conduit 41 and the plurality of second passages 33 communicating with the second absorbing liquid conduit 42 are connected to the resin porous membrane 31. Are laminated so as to sequentially contact each other.

【0020】さらに、上記再生・凝縮ユニット1の凝縮
器12は第1冷媒管路43により、また上記蒸発・吸収
ユニット2の蒸発器21は第2冷媒管路44によりそれ
ぞれ冷媒循環系を形成するとともに、これら二つの冷媒
循環系43,44を第3冷媒管路45によって相互に接
続することによって、後述のように蒸発器21への冷媒
補給を可能としている。尚、上記第2冷媒管路44には
利用側熱交換器4が接続されている。
Further, the condenser 12 of the regenerating / condensing unit 1 forms a refrigerant circulation system by a first refrigerant pipe 43, and the evaporator 21 of the evaporating / absorbing unit 2 forms a refrigerant circulation system by a second refrigerant pipe 44. At the same time, by connecting these two refrigerant circulation systems 43 and 44 to each other through a third refrigerant pipe 45, it is possible to supply the refrigerant to the evaporator 21 as described later. The use-side heat exchanger 4 is connected to the second refrigerant pipe 44.

【0021】次に、このように構成された吸収式冷凍装
置Zの動作を簡単に説明すると、まず蒸発・吸収ユニッ
ト2側においては、その蒸発器21内には水(冷媒)が、
吸収器22内には吸収液がそれぞれ流通せしめられてい
る。この場合、蒸発器21の樹脂多孔膜23の界面付近
においては、蒸発により水蒸気が発生するが、この水蒸
気は樹脂多孔膜23を通ってそのまま吸収器22側に移
動して該吸収器22内の吸収液に吸収される。従って、
蒸発器21側においては、蒸発潜熱によって冷媒温度が
低下し、この冷媒を利用側熱交換器4に供給することに
より室内冷房が行なわれる。
Next, the operation of the absorption refrigeration system Z constructed as described above will be briefly described. First, on the side of the evaporation / absorption unit 2, water (refrigerant) is contained in the evaporator 21 thereof.
The absorbing liquid is circulated in the absorber 22. In this case, water vapor is generated by evaporation in the vicinity of the interface of the resin porous film 23 of the evaporator 21, and this water vapor moves through the resin porous film 23 to the absorber 22 side as it is, and Absorbed by absorbing liquid. Therefore,
On the evaporator 21 side, the refrigerant temperature decreases due to the latent heat of evaporation, and the refrigerant is supplied to the use-side heat exchanger 4 to perform indoor cooling.

【0022】また、吸収器22側においては、水蒸気の
吸収によって吸収液の濃度が次第に低下せしめられる
が、この吸収液の水蒸気吸収能力は、その濃度の低下及
び温度上昇に伴って次第に低下する特性がある。このた
め、吸収液を冷却水によって冷却して吸収能力の維持を
図るとともに、後述の再生器11において濃度回復(即
ち、吸収能力の回復)を図るようになっている。
On the absorber 22 side, the concentration of the absorbing liquid is gradually reduced by the absorption of water vapor, and the water absorbing capacity of the absorbing liquid gradually decreases as the concentration decreases and the temperature rises. There is. For this reason, the absorption liquid is cooled by the cooling water to maintain the absorption capacity, and the regenerator 11 described later recovers the concentration (that is, recovers the absorption capacity).

【0023】一方、再生・凝縮ユニット1側において
は、吸収器22から送られてくる希薄吸収液を加熱流体
によって加熱して水を蒸発除去してこれを濃厚吸収液と
して吸収能力を回復させるとともに、これを上記吸収器
22に還流させる。一方、この再生器11において発生
した水蒸気は、樹脂多孔膜13を通ってそのまま凝縮器
12側に移動して凝縮せしめられ、再び上記蒸発器21
に冷媒として補給される。
On the other hand, in the regenerating / condensing unit 1, the diluted absorbing solution sent from the absorber 22 is heated by a heating fluid to evaporate and remove water, thereby recovering the absorbing capacity as a concentrated absorbing solution. This is returned to the absorber 22. On the other hand, the water vapor generated in the regenerator 11 passes through the resin porous membrane 13 and moves to the condenser 12 as it is, where it is condensed.
Is supplied as refrigerant.

【0024】このように、再生・凝縮ユニット1及び蒸
発・吸収ユニット2における水蒸気の移動を、再生器1
1と凝縮器12の間、及び蒸発器21と吸収器22の間
にそれぞれ設けた樹脂多孔膜13,23を通して行わせ
るようにした場合には、例えこれが大気圧下で行なわれ
るとしても該水蒸気の移動に大気の影響が介在する余地
が全くといって良いほどなく、従って水蒸気を空間移動
させるようにした従来の吸収式冷凍装置のように系内を
真空として該水蒸気の移動性を確保するというような手
段を講ずる必要がなくなる。この結果、装置の構造の簡
略化等によりコスト低減が図れることとなる。また、再
生器11と凝縮器12、蒸発器21と吸収器22とがそ
れぞれ一体化構造であることから、装置のコンパクト化
も可能となるものである。
As described above, the movement of the steam in the regeneration / condensation unit 1 and the evaporation / absorption unit 2 is controlled by the regenerator 1
1 and the condenser 12 and between the evaporator 21 and the absorber 22 through the resin porous membranes 13 and 23, respectively, even if this is carried out under atmospheric pressure, There is almost no room for the influence of the atmosphere to intervene in the movement of the water, and therefore, as in a conventional absorption refrigeration system in which water vapor is moved in space, the inside of the system is vacuumed to ensure the mobility of the water vapor. There is no need to take such measures. As a result, costs can be reduced by simplifying the structure of the device and the like. In addition, since the regenerator 11 and the condenser 12 and the evaporator 21 and the absorber 22 have an integrated structure, the apparatus can be made compact.

【0025】一方、上記作動側熱交換器3においては、
第1吸収液管路41側を流れる低温の希薄吸収液と、第
2吸収液管路42側を流れる高温の濃厚吸収液とが樹脂
多孔膜31を介して接触していることから、先ず第1
に、濃厚吸収液側から希薄吸収液側への熱回収が行なわ
れる。この熱回収により、希薄吸収液は昇温した状態で
再生器11に導入されることから、蒸発作用(即ち、再
生作用)が促進されるとともに、濃厚吸収液はより低い
温度で吸収器22に導入されることによりその吸収能力
が高められることとなる。
On the other hand, in the working side heat exchanger 3,
Since the low-temperature diluted absorbing liquid flowing through the first absorbing liquid pipe 41 and the high-temperature concentrated absorbing liquid flowing through the second absorbing liquid pipe 42 are in contact with each other via the resin porous film 31, first, 1
Then, heat is recovered from the rich absorbent side to the lean absorbent side. By this heat recovery, the dilute absorbent is introduced into the regenerator 11 in a heated state, so that the evaporating action (that is, the regenerating action) is promoted, and the rich absorbent is supplied to the absorber 22 at a lower temperature. By being introduced, its absorption capacity will be enhanced.

【0026】第2に、希薄吸収液と濃厚吸収液の間には
蒸気圧差があることから、作動側熱交換器3においては
蒸気圧の高い濃厚吸収液から蒸気圧の低い希薄吸収液側
に水蒸気の移動が起こり、濃厚吸収液はより一層濃縮
(希薄吸収液はさらに希釈)され、さらに高い吸収能力を
もった状態で吸収器22に導入されることになる。従っ
て、この吸収式冷凍装置Zにおいては、吸収液が作動側
熱交換器3においてさらに濃縮あるいは希釈される分だ
け該吸収液の動作濃度幅が拡大し、より低温の加熱熱源
あるいはより高温の冷却水を使用して装置を運転するこ
とが可能であり、例えば太陽熱とか低温の排熱の利用促
進により、その汎用化を図ることがかのうとなる。
Second, since there is a vapor pressure difference between the lean absorbent and the rich absorbent, the working side heat exchanger 3 moves from the rich absorbent having a high vapor pressure to the lean absorbent having a low vapor pressure. Movement of water vapor occurs, and the concentrated absorbent becomes even more concentrated
(The diluted absorption liquid is further diluted) and introduced into the absorber 22 in a state having a higher absorption capacity. Therefore, in this absorption refrigeration apparatus Z, the operating concentration range of the absorption liquid is expanded by an amount corresponding to the concentration or dilution of the absorption liquid in the working-side heat exchanger 3, and a lower-temperature heating heat source or higher-temperature cooling is performed. It is possible to operate the apparatus by using water. For example, it is possible to promote the general use of the apparatus by promoting the use of solar heat or low-temperature exhaust heat.

【0027】尚、この実施例のように樹脂多孔膜を使用
した場合には、腐蝕による生成物が次第に樹脂多孔膜の
表面に付着し冷媒蒸気の透過性能が低下することも考え
られるが、このような点に関しては、例えば装置の配管
や熱交換器として樹脂製のものを用いることによって容
易に解決することができる。
When a porous resin membrane is used as in this embodiment, it is conceivable that the corrosion product gradually adheres to the surface of the porous resin membrane and the permeability of the refrigerant vapor is reduced. Such a problem can be easily solved, for example, by using resin-made pipes and heat exchangers for the apparatus.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願発明の実施例にかかる吸収式冷凍装置の全
体システム図である。
FIG. 1 is an overall system diagram of an absorption refrigeration apparatus according to an embodiment of the present invention.

【図2】図1における再生・凝縮ユニットの具体的な構
造説明図である。
FIG. 2 is a specific structural explanatory view of a regeneration / condensation unit in FIG. 1;

【図3】図1における蒸発・吸収ユニットの具体的な構
造説明図である。
FIG. 3 is a specific structural explanatory view of an evaporating / absorbing unit in FIG. 1;

【図4】図1における作動側熱交換器の具体的な構造説
明図である。
FIG. 4 is a specific structural explanatory view of the working-side heat exchanger in FIG. 1;

【符号の説明】[Explanation of symbols]

1は再生・凝縮ユニット、2は蒸発・吸収ユニット、3
は作動側熱交換器、4は利用側熱交換器、11は再生
器、12は凝縮器、13は樹脂多孔膜、14は冷却水通
路、15は加熱流体通路、21は蒸発器、22は吸収
器、23は樹脂多孔膜、24は冷却水通路、31は樹脂
多孔膜、32は第1通路、33は第2通路である。
1 is a regeneration / condensation unit, 2 is an evaporation / absorption unit, 3
Is an operation side heat exchanger, 4 is a use side heat exchanger, 11 is a regenerator, 12 is a condenser, 13 is a resin porous membrane, 14 is a cooling water passage, 15 is a heating fluid passage, 21 is an evaporator, and 22 is an evaporator. An absorber, 23 is a resin porous membrane, 24 is a cooling water passage, 31 is a resin porous membrane, 32 is a first passage, and 33 is a second passage.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F25B 39/04 F25B 39/04 Q (58)調査した分野(Int.Cl.6,DB名) F25B 33/00 F25B 15/00 F25B 15/00 301 F25B 15/14 F25B 39/02 F25B 39/04 ──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 6 identification code FI F25B 39/04 F25B 39/04 Q (58) Investigated field (Int.Cl. 6 , DB name) F25B 33/00 F25B 15 / 00 F25B 15/00 301 F25B 15/14 F25B 39/02 F25B 39/04

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 冷媒を蒸発させる蒸発器(21)と、該蒸
発器(21)において発生した冷媒蒸気を吸収液で吸収し
てこれを希薄吸収液とする吸収器(22)と、該吸収器
(22)における希薄吸収液を加熱源により加熱して冷媒
を蒸発させてこれを濃厚吸収液とし上記吸収器(22)に
還流せる再生器(11)と、該再生器(11)において発生
した冷媒蒸気を凝縮させて冷媒として上記蒸発器(21)
に還流させる凝縮器(12)とを備えた吸収式冷凍装置で
あって、上記再生器(11)内の吸収液と凝縮器(12)内
の冷媒とが、冷媒蒸気は通すが冷媒及び吸収液は通さな
い性状を有する樹脂多孔膜(13)を介して接触せしめら
れていることを特徴とする吸収式冷凍装置。
1. An evaporator (21) for evaporating a refrigerant, an absorber (22) that absorbs refrigerant vapor generated in the evaporator (21) with an absorbing liquid and uses the absorbing liquid as a dilute absorbing liquid. vessel
A regenerator (11) that heats the dilute absorbent in (22) by a heating source to evaporate the refrigerant to convert the refrigerant into a rich absorbent and recirculates the absorbent (22), and is generated in the regenerator (11) The evaporator (21) which condenses the refrigerant vapor to produce a refrigerant.
An absorption refrigerating apparatus comprising a condenser (12) for refluxing the refrigerant, wherein the absorbent in the regenerator (11) and the refrigerant in the condenser (12) pass through the refrigerant vapor but absorb the refrigerant and the refrigerant. An absorption type refrigerating apparatus characterized in that it is brought into contact with a resin porous membrane (13) having a property of impervious to liquid.
【請求項2】 冷媒を蒸発させる蒸発器(21)と、該蒸
発器(21)において発生した冷媒蒸気を吸収液で吸収し
てこれを希薄吸収液とする吸収器(22)と、該吸収器
(22)における希薄吸収液を加熱源により加熱して冷媒
を蒸発させてこれを濃厚吸収液とし上記吸収器(22)に
還流させる再生器(11)と、該再生器(11)において発
生した冷媒蒸気を凝縮させて冷媒として上記蒸発器(2
1)に還流させる凝縮器(12)とを備えた吸収式冷凍装
置であって、上記蒸発器(21)内の冷媒と吸収器(22)
内の吸収液とが、冷媒蒸気は通すが冷媒及び吸収液は通
さない性状を有する樹脂多孔膜(23)を介して接触せし
められていることを特徴とする吸収式冷凍装置。
2. An evaporator (21) for evaporating a refrigerant, an absorber (22) for absorbing a refrigerant vapor generated in the evaporator (21) with an absorbing liquid and using the absorbing liquid as a dilute absorbing liquid, vessel
A regenerator (11) that heats the dilute absorbent in (22) by a heating source to evaporate the refrigerant to make it a rich absorbent and recirculates it to the absorber (22), and is generated in the regenerator (11) The evaporator (2) condenses the refrigerant vapor and converts it into a refrigerant.
1. An absorption refrigeration system comprising a condenser (12) for refluxing the refrigerant in 1), wherein the refrigerant in the evaporator (21) and the absorber (22)
An absorption type refrigerating apparatus characterized in that the inside of the absorption type refrigerating apparatus is brought into contact with the absorption liquid through a resin porous membrane (23) having a property of allowing the refrigerant vapor to pass but not the refrigerant and the absorption liquid.
【請求項3】 冷媒を蒸発させる蒸発器(21)と、該蒸
発器(21)において発生した冷媒蒸気を吸収液で吸収し
てこれを希薄吸収液とする吸収器(22)と、該吸収器
(22)における希薄吸収液を加熱源により加熱して冷媒
を蒸発させてこれを濃厚吸収液とし上記吸収器(22)に
還流せる再生器(11)と、該再生器(11)において発生
した冷媒蒸気を凝縮させて冷媒として上記蒸発器(21)
に還流させる凝縮器(12)とを備えるとともに、上記吸
収器(22)と再生器(11)との間において上記濃厚吸収
液と希薄吸収液との間で熱交換を行わせる熱交換器(3)
を備えた吸収式冷凍装置であって、上記熱交換器(3)に
おいて上記吸収器(22)からの濃厚吸収液と上記再生
器(11)からの希薄吸収液とが、冷媒蒸気は通すが冷
媒及び吸収液は通さない性状を有する樹脂多孔膜(31)
を介して接触せしめられていることを特徴とする吸収式
冷凍装置。
3. An evaporator (21) for evaporating a refrigerant, an absorber (22) that absorbs refrigerant vapor generated in the evaporator (21) with an absorbing liquid and uses the absorbing liquid as a dilute absorbing liquid, vessel
A regenerator (11) that heats the dilute absorbent in (22) by a heating source to evaporate the refrigerant to convert the refrigerant into a rich absorbent and recirculates the absorbent (22), and is generated in the regenerator (11) The evaporator (21) which condenses the refrigerant vapor to produce a refrigerant.
And a heat exchanger (12) for performing heat exchange between the rich absorbent and the lean absorbent between the absorber (22) and the regenerator (11). 3)
An absorption refrigeration system comprising: a heat exchanger (3) in which the rich absorbent from the absorber (22) and the lean absorbent from the regenerator (11) pass refrigerant vapor; Resin porous membrane (31) having the property of impervious to refrigerant and absorbing liquid
An absorption type refrigeration apparatus, wherein the absorption type refrigeration apparatus is brought into contact with the refrigeration apparatus via an air conditioner.
JP2877191A 1991-02-22 1991-02-22 Absorption refrigeration equipment Expired - Fee Related JP2959141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2877191A JP2959141B2 (en) 1991-02-22 1991-02-22 Absorption refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2877191A JP2959141B2 (en) 1991-02-22 1991-02-22 Absorption refrigeration equipment

Publications (2)

Publication Number Publication Date
JPH04268176A JPH04268176A (en) 1992-09-24
JP2959141B2 true JP2959141B2 (en) 1999-10-06

Family

ID=12257673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2877191A Expired - Fee Related JP2959141B2 (en) 1991-02-22 1991-02-22 Absorption refrigeration equipment

Country Status (1)

Country Link
JP (1) JP2959141B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2871221B1 (en) * 2004-06-02 2007-09-14 Peugeot Citroen Automobiles Sa DEVICE FOR EXCHANGE AND HEAT TRANSFER, IN PARTICULAR FOR A MOTOR VEHICLE
DE102005028451B4 (en) 2005-06-17 2017-02-16 Evonik Degussa Gmbh Method of transporting heat
EP2123997A1 (en) * 2007-02-16 2009-11-25 Hachiyo Engineering Co., Ltd. Absorption-type freezing unit
EP2088389B1 (en) * 2008-02-05 2017-05-10 Evonik Degussa GmbH Absorption cooling machine
EP2087930A1 (en) 2008-02-05 2009-08-12 Evonik Degussa GmbH Method for the absorption of volatile material in a fluid absorption agent
DE102009000543A1 (en) 2009-02-02 2010-08-12 Evonik Degussa Gmbh Process, absorption media and apparatus for absorbing CO2 from gas mixtures
DE102009047564A1 (en) 2009-12-07 2011-06-09 Evonik Degussa Gmbh Working medium for an absorption chiller
JP2011169537A (en) * 2010-02-19 2011-09-01 Aisin Seiki Co Ltd Absorbing solution concentration adjusting device
DE102011077377A1 (en) 2010-11-12 2012-05-16 Evonik Degussa Gmbh Process for the absorption of acid gases from gas mixtures
DE102011110018A1 (en) * 2011-08-11 2013-02-14 Aaa Water Technologies Ag Absorption chiller
WO2013072147A1 (en) 2011-11-14 2013-05-23 Evonik Degussa Gmbh Method and device for the separation of acidic gases from a gas mixture
DE102012200907A1 (en) 2012-01-23 2013-07-25 Evonik Industries Ag Method and absorption medium for absorbing CO2 from a gas mixture
DE102012207509A1 (en) 2012-05-07 2013-11-07 Evonik Degussa Gmbh Method for absorbing CO2 from a gas mixture
DE102015212749A1 (en) 2015-07-08 2017-01-12 Evonik Degussa Gmbh Method for dehumidifying moist gas mixtures
JP6432462B2 (en) * 2015-07-27 2018-12-05 アイシン精機株式会社 Absorption heat pump device
DE102016210483A1 (en) 2016-06-14 2017-12-14 Evonik Degussa Gmbh Process and absorbent for dehumidifying moist gas mixtures
EP3257843A1 (en) 2016-06-14 2017-12-20 Evonik Degussa GmbH Method of preparing a high purity imidazolium salt
DE102016210481B3 (en) 2016-06-14 2017-06-08 Evonik Degussa Gmbh Process for purifying an ionic liquid
EP3257568B1 (en) 2016-06-14 2019-09-18 Evonik Degussa GmbH Method for the removal of moisture from moist gas mixtures by use of ionic liquids
DE102016210478A1 (en) 2016-06-14 2017-12-14 Evonik Degussa Gmbh Method for dehumidifying moist gas mixtures
DE102016210484A1 (en) 2016-06-14 2017-12-14 Evonik Degussa Gmbh Method for dehumidifying moist gas mixtures

Also Published As

Publication number Publication date
JPH04268176A (en) 1992-09-24

Similar Documents

Publication Publication Date Title
JP2959141B2 (en) Absorption refrigeration equipment
JP4096646B2 (en) Cooling system
JP4717589B2 (en) Hybrid heat pump system
JP3013673B2 (en) Absorption refrigerator
JP4184197B2 (en) Hybrid absorption heat pump system
JP2858908B2 (en) Absorption air conditioner
JP4184196B2 (en) Hybrid absorption heat pump system
JP2678211B2 (en) Heat storage type cold / heat generator
JP2008020094A (en) Absorption type heat pump device
JP2000274860A (en) Heat pump cycle type absorption refrigerating and heating simultaneously taking-out machine and method
JP3387671B2 (en) Absorption type heat pump device
JP4288799B2 (en) Waste heat input type absorption refrigeration system
JPH01234761A (en) Double-effect multi-stage pressure type absorption type refrigerator and system therefor
JP2004169988A (en) Two-stage/single-stage switchable absorption refrigerator and refrigerating system
JPH03282167A (en) Absorptive type freezer
JPH04268170A (en) Absorption type heat pump device
JPH0124521B2 (en)
JPS6122224B2 (en)
JPH10122689A (en) Absorption heat pump and air conditioning system using the same
JPH04369359A (en) Absorption heat pump device
JP2004116800A (en) Hybrid air-conditioning machine
JPH06313650A (en) Absorption type cooler-heater
JP2001082838A (en) Absorption heat pump device
KR0137580Y1 (en) Cooling apparatus of liquid refrigerator absorptive airconditioner
JPH0446342B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees