JP3013673B2 - Absorption refrigerator - Google Patents

Absorption refrigerator

Info

Publication number
JP3013673B2
JP3013673B2 JP5283025A JP28302593A JP3013673B2 JP 3013673 B2 JP3013673 B2 JP 3013673B2 JP 5283025 A JP5283025 A JP 5283025A JP 28302593 A JP28302593 A JP 28302593A JP 3013673 B2 JP3013673 B2 JP 3013673B2
Authority
JP
Japan
Prior art keywords
evaporator
refrigerant
absorber
heat
regenerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5283025A
Other languages
Japanese (ja)
Other versions
JPH07139844A (en
Inventor
富久 大内
章 西口
敏彦 福島
能文 功刀
道彦 相沢
大資 久島
達郎 藤居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5283025A priority Critical patent/JP3013673B2/en
Publication of JPH07139844A publication Critical patent/JPH07139844A/en
Application granted granted Critical
Publication of JP3013673B2 publication Critical patent/JP3013673B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は水冷媒の吸収冷凍機にか
かり、特に冷蔵倉庫や野菜の保存など、0℃〜5℃程度
の低温度利用に適した吸収冷凍機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption refrigerator for water refrigerant, and more particularly to an absorption refrigerator suitable for use at a low temperature of about 0.degree.

【0002】[0002]

【従来の技術】従来、0℃以下の低温を発生させる方法
としてはフロンR22やアンモニアなど沸点が0℃以下
の冷媒を利用した吸収冷凍機がある。しかし、フロンR
22はオゾン層の保護に不都合な冷媒で今後は使用が規
制されるべき冷媒であり、また、アンモニアは有毒な冷
媒である。さらに、再生器の圧力が大気圧よりも高圧で
丈夫な容器を必要とし、取扱いにも十分な注意が必要で
あるために、人口密集の狭い国土の日本では普及してい
ない。
2. Description of the Related Art Conventionally, as a method of generating a low temperature of 0 ° C. or less, there is an absorption refrigerator using a refrigerant having a boiling point of 0 ° C. or less, such as Freon R22 or ammonia. However, Freon R
Reference numeral 22 denotes a refrigerant which is inconvenient for protection of the ozone layer, a refrigerant whose use is to be restricted in the future, and ammonia is a toxic refrigerant. Furthermore, the regenerator requires a container having a pressure higher than the atmospheric pressure and a durable container, and requires sufficient care in handling. Therefore, the regenerator is not widely used in Japan with a narrow population.

【0003】一方、水を冷媒とする吸収冷凍機は再生器
の圧力が真空のために極めて安全であり、ビル空調用熱
源機として広く普及している。その構成は基本的に、再
生器、凝縮器、蒸発器、吸収器、液熱交換器、溶液循環
ポンプなどを動作的に配管接続し、吸収剤には臭化リチ
ウムなどの吸湿性塩を用いている。再生器では吸収剤溶
液を都市ガスの燃焼ガスなどの熱源Hで加熱して沸騰さ
せ、発生した冷媒蒸気(水蒸気)を凝縮器2で冷却水で
冷却して凝縮液化させて液冷媒にする。このようにして
凝縮器で生成した液冷媒を蒸発器4に導き、伝熱管上に
散布して約4〜6℃で蒸発させその蒸発潜熱で管内を流
れる冷水を冷却して7℃程度の冷水を得て、冷房必要個
所に循環している。
On the other hand, an absorption refrigerator using water as a refrigerant is extremely safe because the pressure of a regenerator is vacuum, and is widely used as a heat source device for building air conditioning. Basically, it consists of operatively connecting a regenerator, condenser, evaporator, absorber, liquid heat exchanger, solution circulation pump, etc., with a hygroscopic salt such as lithium bromide as the absorbent. ing. In the regenerator, the absorbent solution is heated and boiled by a heat source H such as a combustion gas of city gas, and the generated refrigerant vapor (water vapor) is cooled by cooling water in the condenser 2 to be condensed and liquefied into a liquid refrigerant. The liquid refrigerant thus generated in the condenser is guided to the evaporator 4 and is sprayed on the heat transfer tube to evaporate at about 4 to 6 ° C. And circulates where cooling is needed.

【0004】なお、この種のものとして関連するものに
は、たとえば特開平5−93555号公報が挙げられ
る。
[0004] Japanese Patent Application Laid-Open No. 5-93555 is a related example of this type.

【0005】[0005]

【発明が解決しようとする課題】上記従来の技術では冷
媒である水が凍結するために0℃程度の低温を必要とす
る冷蔵に利用できなかった。すなわち、0℃以下の蒸発
圧力のもとで冷媒である水を蒸発器4の管群上に散布す
る際に蒸発潜熱を冷媒自身から奪うために冷媒自身が凍
結してしまい、伝熱管上を流下しないためサイクルを構
成できなかった。
In the above-mentioned conventional technology, water as a refrigerant freezes and cannot be used for refrigeration requiring a low temperature of about 0 ° C. That is, when water, which is a refrigerant, is sprayed on the tube group of the evaporator 4 under an evaporation pressure of 0 ° C. or less, the refrigerant itself freezes to take latent heat of evaporation from the refrigerant itself, so that the refrigerant is frozen on the heat transfer tube. The cycle could not be configured because it did not flow down.

【0006】本発明の目的は、0℃程度の低温を必要と
する冷蔵に利用可能な、低圧で安全に作動する吸収冷凍
機を提供することにある。
An object of the present invention is to provide a low-pressure and safely operated absorption refrigerator which can be used for refrigeration requiring a low temperature of about 0 ° C.

【0007】[0007]

【課題を解決するための手段】上記目的は、第1蒸発
器、第2蒸発器、第1吸収器、第2吸収器、再生器、凝
縮器、液熱交換器、溶液循環ポンプ、冷媒スプレ−ポン
プを動作的に接続した配管を備え、塩類水溶液を吸収剤
とする吸収冷凍機において、前記第1蒸発器の液冷媒で
前記第2吸収器を冷却する熱交換関係に配置するととも
に、前記第2蒸発器で蒸発した冷媒蒸気が前記第2吸収
器に導入され、前記第1蒸発器で蒸発した冷媒蒸気が冷
却水で冷却される前記第1吸収器に導入され、前記第1
蒸発器から、前記第2蒸発器に送られる液冷媒流路に吸
収剤混合手段を配置して、前記第2蒸発器の散布冷媒が
混合冷媒で熱媒体と熱交換させ、排熱源より熱回収する
再生器群を少なくとも2個有し、その内の1台は凝縮器
に連通し、該再生器の流出溶液を再加熱する再生器は濃
縮用吸収器群に接続することにより達成される。
The above object is achieved by a first evaporation method.
Vessel, second evaporator, first absorber, second absorber, regenerator,
Contractor, liquid heat exchanger, solution circulation pump, refrigerant spray pump
Equipped with a pipe that operatively connects
In the absorption refrigerator, the liquid refrigerant of the first evaporator is used.
The second absorber may be arranged in a heat exchange relationship for cooling.
The refrigerant vapor evaporated in the second evaporator is used for the second absorption.
Refrigerant vapor introduced into the first evaporator and evaporated in the first evaporator is cooled.
And introduced into the first absorber cooled by the
The evaporator sucks into the liquid refrigerant flow path sent to the second evaporator.
Arranging a sorbent mixing means, the spray refrigerant of the second evaporator is
Exchanging heat with heat medium with mixed refrigerant and recovering heat from waste heat source
Has at least two regenerators, one of which is a condenser
And a regenerator for reheating the effluent solution of the regenerator
This is achieved by connecting to a shrink absorber group .

【0008】また上記目的は、第1蒸発器、第2蒸発
器、第1吸収器、第2吸収器、再生器、凝縮器、液熱交
換器、溶液循環ポンプ、冷媒スプレ−ポンプを動作的に
接続した配管を備え、塩類水溶液を吸収剤とする吸収冷
凍機において、前記第1蒸発器の液冷媒で前記第2吸収
器を冷却する熱交換関係に配置するとともに、前記第2
蒸発器で蒸発した冷媒蒸気が前記第2吸収器に導入さ
れ、前記第1蒸発器で蒸発した冷媒蒸気が冷却水で冷却
される前記第1吸収器に導入され、前記第1蒸発器か
ら、前記第2蒸発器に送られる液冷媒流路に吸収剤混合
手段を配置して、前記第2蒸発器の散布冷媒が混合冷媒
で熱媒体と熱交換させ、排熱源より熱回収する再生器群
が少なくとも2個以上有し、その内の1台は凝縮器に連
通し、該再生器の流出溶液を再加熱する再生器は濃縮用
吸収器群に接続されているとともに、蒸発器に送られる
液冷媒流路に吸収剤混合手段を配置して、該蒸発器の散
布冷媒が混合冷媒で熱媒体と熱交換させることにより達
成される。
[0008] The above object is also achieved by a first evaporator and a second evaporator.
Vessel, first absorber, second absorber, regenerator, condenser, liquid heat exchange
Exchanger, solution circulation pump and refrigerant spray pump
Equipped with connected piping, absorption cooling using saline solution as absorbent
In the refrigerating machine, the second refrigerant is absorbed by the liquid refrigerant of the first evaporator.
The heat exchanger for cooling the vessel,
The refrigerant vapor evaporated in the evaporator is introduced into the second absorber.
And the refrigerant vapor evaporated in the first evaporator is cooled by cooling water.
Introduced into the first absorber, and the first evaporator
Mixes the absorbent into the liquid refrigerant passage sent to the second evaporator.
Means for dispersing the refrigerant in the second evaporator so that the mixed refrigerant
Group of regenerators that exchange heat with the heat medium and recover heat from the exhaust heat source
Have at least two, one of which is connected to the condenser.
The regenerator for reheating the effluent from the regenerator
Connected to the absorber group and sent to the evaporator
An absorbent mixing means is disposed in the liquid refrigerant flow path to disperse the evaporator.
The cloth refrigerant is achieved by exchanging heat with the heat medium with the mixed refrigerant.
Is done.

【0009】更に上記目的は、第1蒸発器、第2蒸発
器、第1吸収器、第2吸収器、再生器、凝縮器、液熱交
換器、溶液循環ポンプ、冷媒スプレ−ポンプを動作的に
接続した配管を備え、塩類水溶液を吸収剤とする吸収冷
凍機において、前記第1蒸発器の液冷媒で前記第2吸収
器を冷却する熱交換関係に配置するとともに、前記第2
蒸発器で蒸発した冷媒蒸気が前記第2吸収器に導入さ
れ、前記第1蒸発器で蒸発した冷媒蒸気が冷却水で冷却
される前記第1吸収器に導入され、前記第1蒸発器か
ら、前記第2蒸発器に送られる液冷媒流路に吸収剤混合
手段を配置して、前記第2蒸発器の散布冷媒が混合冷媒
で熱媒体と熱交換させ、混合冷媒が散布される蒸発器管
群列と吸収器管群列とを交互に配置することにより達成
される。
Further, the above object is achieved by a first evaporator and a second evaporator.
Vessel, first absorber, second absorber, regenerator, condenser, liquid heat exchange
Exchanger, solution circulation pump and refrigerant spray pump
Equipped with connected piping, absorption cooling using saline solution as absorbent
In the refrigerating machine, the second refrigerant is absorbed by the liquid refrigerant of the first evaporator.
The heat exchanger for cooling the vessel,
The refrigerant vapor evaporated in the evaporator is introduced into the second absorber.
And the refrigerant vapor evaporated in the first evaporator is cooled by cooling water.
Introduced into the first absorber, and the first evaporator
Mixes the absorbent into the liquid refrigerant passage sent to the second evaporator.
Means for dispersing the refrigerant in the second evaporator so that the mixed refrigerant
Evaporator tube in which heat exchange with the heat medium is carried out and the mixed refrigerant is sprayed
Achieved by staggering rows and rows of absorber tubes
Is done.

【0010】[0010]

【0011】[0011]

【0012】[0012]

【作用】凝縮器で生成した液冷媒に吸収剤を混合して第
2蒸発器に導入すると、混合冷媒は沸点が上昇するが、
一方、凍結温度も低下するので0℃以下になっても凍結
しない性質になる。それ故、第2蒸発器において伝熱管
群上に散布された混合冷媒は蒸発温度が0℃以下になっ
ても凍結することなく伝熱管群上を流下して伝熱管内を
流れる被冷却媒体、例えば不凍液(ブライン)を冷却し
て約0℃の低温のブラインを供給できる。
When the liquid refrigerant generated in the condenser is mixed with an absorbent and introduced into the second evaporator, the mixed refrigerant has a higher boiling point.
On the other hand, since the freezing temperature is lowered, the material does not freeze even at 0 ° C. or less. Therefore, the mixed refrigerant sprayed on the heat transfer tube group in the second evaporator flows down the heat transfer tube group without freezing even if the evaporation temperature becomes 0 ° C. or less, and the cooling medium flowing through the heat transfer tube, For example, the antifreeze (brine) can be cooled to supply a low-temperature brine of about 0 ° C.

【0013】ここで、蒸発器の冷媒スプレ−ダクトに吸
収剤混合手段を配置したので、該混合冷媒の沸点及び凍
結温度検出手段により混合冷媒の凍結温度低下と沸点上
昇を把握し、被冷却媒体温度センサ−により把握した温
度と比較して、混合冷媒の吸収剤濃度を制御弁を開くこ
とにより薄くして機内圧力平衡温度を低温にするととも
に凍結温度を0℃に近付け、また、制御弁を開くことに
より濃度を濃くコントロ−ルして機内圧力平衡温度を高
温にするとともに凍結温度を0℃より低温側に下げ、混
合冷媒の沸点上昇による熱交換温度差が小さくなること
を制御して、交換熱量が多くなるようにコントロ−ルで
きる。
Here, since the absorbent mixing means is disposed in the refrigerant spray duct of the evaporator, the lowering of the freezing temperature and the higher boiling point of the mixed refrigerant are grasped by the means for detecting the boiling point and the freezing temperature of the mixed refrigerant. By opening the control valve, the absorbent concentration of the mixed refrigerant is reduced by opening the control valve to lower the in-machine pressure equilibrium temperature, the freezing temperature approaches 0 ° C., and the control valve is compared with the temperature detected by the temperature sensor. By controlling the concentration by opening it to increase the internal pressure equilibrium temperature and lower the freezing temperature to below 0 ° C to control the difference in heat exchange temperature due to the rise in the boiling point of the mixed refrigerant, Control can be performed to increase the amount of exchanged heat.

【0014】第1蒸発器で第2吸収器を冷却する熱交換
関係に配置するとともに、第2蒸発器で蒸発した冷媒蒸
気が第2吸収器に導入され、また、第1蒸発器で蒸発し
た冷媒蒸気が冷却水で冷却される第1吸収器に導入され
る構成にし、第2蒸発器に吸収剤混合手段を配置して、
散布冷媒が混合冷媒で熱媒体と熱交換させたたので、第
1吸収器を冷却する冷却水は通常の冷却塔などでえられ
る約32℃の冷却水で冷却できるようになり、また、吸
収剤濃度を結晶線付近まで高濃度に濃縮することなくサ
イクル構成が可能になる。すなわち、本発明の吸収冷凍
サイクルの一例を第3図のデュ−リング線図に表す。図
中の記号はサイクルの動作点で、構成機器に対応してい
る。図から明らかなように、本実施例のように第1蒸発
器の冷媒を純水冷媒にすると蒸発温度を約20℃にで
き、第2吸収器の吸収温度約35℃との熱交換温度差を
約15Kに大きく取れる効果がある。なお、第1蒸発器
の散布冷媒が混合冷媒の場合では第1蒸発器の蒸発温度
が約25℃であり、第2吸収器の吸収温度約35℃とは
約10Kの温度差となる。
The first evaporator cools the second absorber in a heat exchange relationship, and the refrigerant vapor evaporated in the second evaporator is introduced into the second absorber and evaporates in the first evaporator. The refrigerant vapor is introduced into the first absorber cooled by the cooling water, and the second evaporator is provided with absorbent mixing means,
Since the sprayed refrigerant exchanged heat with the heat medium with the mixed refrigerant, the cooling water for cooling the first absorber can be cooled by the cooling water of about 32 ° C. obtained by a normal cooling tower or the like. A cycle configuration is possible without concentrating the agent concentration to a high concentration near the crystal line. That is, an example of the absorption refrigeration cycle of the present invention is shown in the During diagram of FIG. The symbols in the figure are operating points of the cycle and correspond to the constituent devices. As is clear from the figure, when the refrigerant in the first evaporator is a pure water refrigerant as in the present embodiment, the evaporation temperature can be set to about 20 ° C., and the heat exchange temperature difference with the absorption temperature of the second absorber about 35 ° C. Has an effect that can be greatly increased to about 15K. When the sprayed refrigerant of the first evaporator is a mixed refrigerant, the evaporation temperature of the first evaporator is about 25 ° C., which is a temperature difference of about 10 K from the absorption temperature of the second absorber of about 35 ° C.

【0015】[0015]

【実施例】以下、本発明の実施例を図1,図2及び図3
によって説明する。
FIG. 1, FIG. 2 and FIG. 3 show an embodiment of the present invention.
It will be explained by.

【0016】吸収冷凍機は再生器1、凝縮器2、第1蒸
発器3A、第2蒸発器3B、第1吸収器4A、第2吸収
器4B、液熱交換器5、溶液循環ポンプ6などを動作的
に接続した配管を備えている。再生器1では吸収剤溶液
を蒸気や都市ガスの燃焼ガスなどで加熱沸騰させる加熱
手段Hが配置されている。再生器1で発生した冷媒蒸気
(水蒸気)は凝縮器2に導入され凝縮器伝熱管内を流れ
る冷却水CWで冷却され凝縮液化されて液冷媒になる。
凝縮器2で生成された液冷媒は液冷媒導管14を介して
第1蒸発器3Aの第2吸収器4Bの冷却熱交換手段20
上に散布されて蒸発し、冷媒蒸気は第1吸収器4Aに導
かれる。また、該蒸発潜熱により冷却熱交換手段20を
介して第2吸収器4Bが冷却される。第1蒸発器3Aの
未蒸発冷媒は下部の冷媒タンク15Aに保持される。該
冷媒タンク15Aの底部と、冷媒スプレ−ポンプ7の吸
い込み管16とは冷媒導管17で連絡され、第2蒸発器
3Bに液冷媒が送られる。冷媒スプレポンプ7の吐出側
には冷媒スプレ−ダクト18が接続され、また、吸収剤
混合手段9が配置されており、前記冷媒は混合冷媒とな
って第2蒸発器3Bの伝熱管群上には混合冷媒が散布さ
れる。未蒸発混合冷媒は混合冷媒タンク15Bに貯えら
れ、再び冷媒スプレ−ポンプ7により吸引されて第2蒸
発器3Bの伝熱管群上に散布されて冷媒が蒸発し、その
際の蒸発潜熱により第2蒸発器3Bの伝熱管群内を流れ
るブラインを冷却する。該ブラインはポンプ19により
冷蔵倉庫21の空気ブライン熱交換手段22へ送られ
て、冷蔵倉庫21内の空気を冷却し、再び第2蒸発器3
Bの伝熱管群内に流入する。
The absorption refrigerator includes a regenerator 1, a condenser 2, a first evaporator 3A, a second evaporator 3B, a first absorber 4A, a second absorber 4B, a liquid heat exchanger 5, a solution circulation pump 6, and the like. Are operatively connected. In the regenerator 1, a heating means H for heating and boiling the absorbent solution with steam or combustion gas such as city gas is disposed. Refrigerant vapor (water vapor) generated in the regenerator 1 is introduced into the condenser 2 and cooled by the cooling water CW flowing in the condenser heat transfer tube, condensed and liquefied to become a liquid refrigerant.
The liquid refrigerant generated in the condenser 2 is passed through the liquid refrigerant conduit 14 to the cooling heat exchange means 20 of the second absorber 4B of the first evaporator 3A.
The refrigerant vapor is sprayed and evaporated, and the refrigerant vapor is guided to the first absorber 4A. Further, the second absorber 4B is cooled by the latent heat of evaporation via the cooling heat exchange means 20. The unevaporated refrigerant in the first evaporator 3A is held in the lower refrigerant tank 15A. The bottom of the refrigerant tank 15A and the suction pipe 16 of the refrigerant spray pump 7 are connected by a refrigerant conduit 17, and the liquid refrigerant is sent to the second evaporator 3B. A refrigerant spray duct 18 is connected to the discharge side of the refrigerant spray pump 7, and an absorbent mixing means 9 is disposed. The refrigerant becomes a mixed refrigerant on the heat transfer tube group of the second evaporator 3 </ b> B. The mixed refrigerant is sprayed. The unevaporated mixed refrigerant is stored in the mixed refrigerant tank 15B, sucked again by the refrigerant spray pump 7 and sprayed on the heat transfer tube group of the second evaporator 3B to evaporate the refrigerant. The brine flowing in the heat transfer tube group of the evaporator 3B is cooled. The brine is sent to the air brine heat exchanging means 22 of the refrigerated warehouse 21 by the pump 19 to cool the air in the refrigerated warehouse 21, and then the second evaporator 3 is cooled again.
B flows into the heat transfer tube group.

【0017】一方、再生器1で冷媒蒸気を発生して濃縮
された吸収液は溶液熱交換器5で希溶液と熱交換して低
温になり、まず、濃液導管24を経由して第2吸収器4
Bの冷却熱交換手段20上に散布されて第1蒸発器3A
による冷媒の蒸発潜熱により冷却されるとともに第2蒸
発器3Bからの冷媒蒸気を吸収して薄くなる。この薄く
なった吸収液はさらに溶液スプレ−ポンプ8により第1
吸収器4Aに送られ、第1吸収器4Aの伝熱管群上に散
布されて管内を流れる冷却水に冷却されるとともに第1
蒸発器3Aで蒸発した冷媒蒸気を吸収してさらに希釈さ
れて希溶液になり、ポンプサクション管27を経由して
溶液循環ポンプ6により希溶液導管25、溶液熱交換器
5を経由して再生器1に送られる。また、これらの冷凍
負荷情報は、冷凍機制御盤30へ送られ、加熱源の制御
に用いる。すなわち、冷凍負荷が大きく、ブライン温度
が高い時は熱入力を大きくし、ブライン温度が低く、か
つ冷凍負荷が小さい場合は熱入力を制限するように制御
する。
On the other hand, the absorbent that has been concentrated by generating refrigerant vapor in the regenerator 1 exchanges heat with the dilute solution in the solution heat exchanger 5 to become low in temperature. Absorber 4
B on the cooling heat exchanging means 20 and the first evaporator 3A
The refrigerant is cooled by the latent heat of evaporation of the refrigerant and absorbs the refrigerant vapor from the second evaporator 3B and becomes thin. This thinner absorbing solution is further subjected to a first spray by a solution spray pump 8.
The water is sent to the absorber 4A, is sprayed on the heat transfer tube group of the first absorber 4A, and is cooled by the cooling water flowing through the tubes.
The refrigerant vapor evaporated by the evaporator 3A is absorbed and further diluted to become a dilute solution. The dilute solution is supplied by the solution circulation pump 6 via the pump suction pipe 27, the dilute solution conduit 25 via the solution heat exchanger 5, and the regenerator. Sent to 1. These pieces of refrigeration load information are sent to the refrigerator control panel 30 and used for controlling the heating source. That is, when the refrigeration load is large and the brine temperature is high, the heat input is increased, and when the brine temperature is low and the refrigeration load is small, control is performed so as to limit the heat input.

【0018】以上のようにサイクルは構成されている。
◆ここに、前記吸収剤混合手段9は希溶液導管25と冷
媒スプレ−ダクト18とを連絡する溶液導管26と該溶
液導管26に配置した流量制御弁10、また、冷媒スプ
レ−ダクト18と第1吸収器4Aとを連絡する液冷媒ブ
ロ−管28と該液冷媒ブロ−管28に配置したブロ−量
制御弁11,冷媒スプレ−ダクト18に配置した液冷媒
の吸収剤濃度センサ−12、ブライン出口温度センサ−
29、演算制御装置13から構成されている。
The cycle is configured as described above.
Here, the absorbent mixing means 9 comprises a solution conduit 26 connecting the dilute solution conduit 25 and the refrigerant spray duct 18 and a flow control valve 10 disposed in the solution conduit 26; (1) a liquid refrigerant blow pipe 28 communicating with the absorber 4A, a blow amount control valve 11 disposed in the liquid refrigerant blow pipe 28, an absorbent concentration sensor 12 for liquid refrigerant disposed in the refrigerant spray duct 18; Brine outlet temperature sensor
29, an arithmetic and control unit 13.

【0019】また、冷却熱交換手段20は第2吸収器4
Bと第1蒸発器3Aとを熱交換させる手段で、水平なヒ
−トパイプ23から構成され、第2吸収器4B側のヒ−
トパイプ23管内で冷媒が凝縮し、その液冷媒が第1蒸
発器3A側で蒸発してスム−スに熱交換させるものであ
る。
Further, the cooling heat exchanging means 20 includes the second absorber 4
B and a means for exchanging heat between the first evaporator 3A and constituted by a horizontal heat pipe 23, and a heat exchanger on the second absorber 4B side.
The refrigerant is condensed in the top pipe 23, and the liquid refrigerant evaporates on the first evaporator 3A side to smoothly exchange heat.

【0020】次に作用について述べる。凝縮器2で生成
した液冷媒に吸収剤を混合して第2蒸発器3Bに導入す
ると、混合冷媒は沸点が上昇するが、一方、凍結温度も
低下するので0℃以下になっても凍結しない性質にな
る。それ故、第2蒸発器3Bにおいて伝熱管群上に散布
された混合冷媒は蒸発温度が0℃以下になっても凍結す
ることなく伝熱管群上を流下して伝熱管内を流れる被冷
却媒体、例えば不凍液(ブライン)を冷却して約0℃の
低温のブラインを供給できる効果を発揮する。
Next, the operation will be described. When the absorbent is mixed with the liquid refrigerant generated in the condenser 2 and introduced into the second evaporator 3B, the mixed refrigerant has a higher boiling point, but also has a lower freezing temperature, so that it does not freeze even at 0 ° C. or lower. Become nature. Therefore, the mixed refrigerant sprayed on the heat transfer tube group in the second evaporator 3B flows down the heat transfer tube group without freezing even when the evaporation temperature becomes 0 ° C. or less, and flows through the heat transfer tube. For example, it is effective to cool antifreeze (brine) and supply low-temperature brine of about 0 ° C.

【0021】ここで、第2蒸発器3Bの冷媒スプレ−ダ
クト18に吸収剤混合手段9を配置したので、図2に示
すように、該混合冷媒の沸点及び凍結温度検出手段とし
て、吸収剤濃度センサ−12と演算制御手段13とによ
り混合冷媒の凍結温度低下と沸点上昇を把握し、被冷却
媒体温度センサ−29により把握した温度と比較して、
混合冷媒の吸収剤濃度をブロ−量制御弁11を開くこと
により薄くして凍結温度が0℃に近付くものの蒸発器内
圧力平衡温度が低温にでき、また、流量制御弁10を開
くことにより濃度を濃くコントロ−ルして混合冷媒の凍
結温度を低温側に下げるとともに蒸発器内圧力平衡温度
が沸点上昇により熱交換温度差が小さくなることを制御
して、交換熱量が多くなるようにコントロ−ルできる。
Here, since the absorbent mixing means 9 is arranged in the refrigerant spray duct 18 of the second evaporator 3B, as shown in FIG. The freezing temperature drop and the boiling point rise of the mixed refrigerant are grasped by the sensor 12 and the arithmetic control means 13, and compared with the temperature grasped by the cooled medium temperature sensor 29,
Although the concentration of the absorbent in the mixed refrigerant is reduced by opening the blow amount control valve 11 and the freezing temperature approaches 0 ° C., the pressure equilibrium temperature in the evaporator can be lowered, and the concentration can be reduced by opening the flow control valve 10. To control the freezing temperature of the mixed refrigerant to a low temperature side and control the pressure equilibrium temperature in the evaporator to reduce the heat exchange temperature difference due to the rise in the boiling point, so that the amount of heat exchanged is increased. Can be

【0022】本実施例では弁10、弁11は電磁弁を利
用したが、電動弁による比例制御や小形ポンプによるコ
ントロ−ルによっても、混合冷媒の吸収剤濃度をコント
ロ−ルができることは明らかである。
In this embodiment, the valves 10 and 11 use electromagnetic valves. However, it is apparent that the absorbent concentration of the mixed refrigerant can be controlled by proportional control using a motor-operated valve or control using a small pump. is there.

【0023】ここで、第1蒸発器3Aで第2吸収器4B
を冷却する熱交換関係に配置するとともに、第2蒸発器
3Bで蒸発した冷媒蒸気が第2吸収器4Bに導入され、
また、第1蒸発器3Aで蒸発した冷媒蒸気が冷却水で冷
却される第1吸収器4Aに導入される構成にし、第2蒸
発器3Bに吸収剤混合手段9を配置して、散布冷媒が混
合冷媒で熱媒体と熱交換させたたので、第1吸収器4A
を冷却する冷却水は通常の冷却塔などでえられる約32
℃の冷却水で冷却できるようになり、また、吸収剤濃度
を結晶線付近まで高濃度に濃縮することなくサイクル構
成が可能になる。すなわち、本発明の吸収冷凍サイクル
の一例を図3のデュ−リング線図に表す。デュ−リング
線図は縦軸に純冷媒の圧力平衡飽和温度を取り、横軸に
である図中の記号はサイクルの動作点で、構成機器に対
応している。図から明らかなように、本実施例のように
第1蒸発器3Aの冷媒を純水冷媒にすると蒸発温度を約
20℃にでき、第2吸収器4Bの吸収温度約35℃との
熱交換温度差を約15Kに大きく取れる効果がある。な
お、第1蒸発器3Aの散布冷媒が混合冷媒の場合では第
1蒸発器3Aの蒸発温度が約25℃であり、第2吸収器
4Bの吸収温度約35℃とは約10Kの温度差となるこ
とから、純冷媒を第1蒸発器3Aで蒸発させる本実施例
は熱交換器の大きさを小形化する上で極めて効果があ
る。
Here, the first evaporator 3A and the second absorber 4B
Are arranged in a heat exchange relationship for cooling, and refrigerant vapor evaporated in the second evaporator 3B is introduced into the second absorber 4B,
In addition, the refrigerant vapor evaporated in the first evaporator 3A is configured to be introduced into the first absorber 4A cooled by the cooling water, and the absorbent mixing means 9 is disposed in the second evaporator 3B so that the scattered refrigerant can be dispersed. Since the heat exchange with the heat medium was performed by the mixed refrigerant, the first absorber 4A
The cooling water for cooling is about 32
It becomes possible to cool with cooling water of ° C., and a cycle configuration becomes possible without concentrating the absorbent concentration to a high concentration near the crystal line. That is, an example of the absorption refrigeration cycle of the present invention is shown in the During diagram of FIG. In the During diagram, the vertical axis represents the pressure equilibrium saturation temperature of the pure refrigerant, and the symbol on the horizontal axis represents the operating point of the cycle, corresponding to the component equipment. As is clear from the figure, when the refrigerant in the first evaporator 3A is pure water refrigerant as in the present embodiment, the evaporation temperature can be set to about 20 ° C., and heat exchange with the absorption temperature of the second absorber 4B to about 35 ° C. There is an effect that the temperature difference can be as large as about 15K. In the case where the sprayed refrigerant of the first evaporator 3A is a mixed refrigerant, the evaporation temperature of the first evaporator 3A is about 25 ° C., and the temperature difference of about 10K from the absorption temperature of the second absorber 4B of about 35 ° C. Therefore, the present embodiment in which the pure refrigerant is evaporated by the first evaporator 3A is extremely effective in reducing the size of the heat exchanger.

【0024】図4は本発明の他の実施例のサイクル系統
図である。図4において、図1と同じ記号の個所は同じ
機能を有するので説明を省略する。本実施例と図1に示
した実施例との違いは以下のとおりである。
FIG. 4 is a cycle system diagram of another embodiment of the present invention. In FIG. 4, the same reference numerals as those in FIG. 1 have the same functions, and thus description thereof will be omitted. The difference between this embodiment and the embodiment shown in FIG. 1 is as follows.

【0025】吸収冷凍サイクルの冷媒生成と吸収剤濃縮
過程をいわゆるパラレルフロ−2重効用吸収サイクルと
した点である。再生器1が高温再生器31、該高温再生
器31で発生した冷媒蒸気の凝縮潜熱を熱源とする低温
再生器32の2個になり、それぞれに吸収溶液を並列
(パラレル)に供給して加熱し、冷媒蒸気を発生させて
濃縮させている。すなわち、高温再生器31は外部熱源
Hにより吸収溶液を加熱して冷媒蒸気を発生し、低温再
生器32の伝熱管内に導かれて凝縮液化し、凝縮器2に
流入する。低温再生器32は高温再生器31で発生した
冷媒蒸気の凝縮潜熱により吸収溶液を加熱して冷媒蒸気
を発生させ、発生した冷媒蒸気は凝縮器2に導かれて冷
却水で冷却されて凝縮液化し、低温再生器32の伝熱管
内で凝縮した冷媒とともに第1蒸発器3Aに送られる。
また、高温再生器31の出入りの吸収溶液同士を熱交換
させる高温熱交換器33が配置されて高温再生器31へ
の加熱量を節約している。これらの冷媒生成と吸収剤濃
縮過程の改良により、高温再生器31で発生した冷媒と
低温再生器32で発生した冷媒が得られ、この冷媒を蒸
発器で冷凍作用に供することができるので、吸収冷凍機
を動作させるのに必要な熱エネルギ−を節約でき、効率
良く冷媒を生成できる。
The point that the process of generating the refrigerant and the process of concentrating the absorbent in the absorption refrigeration cycle is a so-called parallel flow double effect absorption cycle. The regenerator 1 is composed of a high-temperature regenerator 31 and a low-temperature regenerator 32 that uses the latent heat of condensation of the refrigerant vapor generated in the high-temperature regenerator 31 as a heat source. Then, refrigerant vapor is generated and concentrated. That is, the high-temperature regenerator 31 heats the absorbing solution by the external heat source H to generate refrigerant vapor, is guided into the heat transfer tube of the low-temperature regenerator 32, condenses and liquefies, and flows into the condenser 2. The low-temperature regenerator 32 heats the absorbing solution by the latent heat of condensation of the refrigerant vapor generated in the high-temperature regenerator 31 to generate refrigerant vapor, and the generated refrigerant vapor is guided to the condenser 2 and cooled by cooling water to condense and liquefy. Then, the refrigerant is sent to the first evaporator 3A together with the refrigerant condensed in the heat transfer tube of the low-temperature regenerator 32.
In addition, a high-temperature heat exchanger 33 for exchanging heat between the absorbing solutions entering and exiting the high-temperature regenerator 31 is provided, so that the amount of heating to the high-temperature regenerator 31 is reduced. By improving these refrigerant generation and absorbent concentration processes, a refrigerant generated in the high-temperature regenerator 31 and a refrigerant generated in the low-temperature regenerator 32 can be obtained, and this refrigerant can be subjected to a refrigeration operation in the evaporator. The heat energy required for operating the refrigerator can be saved, and the refrigerant can be efficiently generated.

【0026】第1蒸発器3Aは上部に液冷媒スプレ−装
置34と下部に網状液冷媒跳上り防止板35、36、冷
媒液面スイッチ38、冷媒スプレポンプ7Aが配置さ
れ、前述の凝縮器2からの液冷媒導入管14が接続さ
れ、エリミネ−タ37を介して第1吸収器4Aと接続さ
れている。第1蒸発器3Aの液冷媒タンク15Aの低温
液冷媒は前記冷媒スプレ−ポンプ7Aにより第2吸収器
4Bの伝熱管内を流れて管外の吸収液を冷却して温度が
上昇し、前記液冷媒スプレ−装置34から第1蒸発器3
A内の空間にスプレ−されて液冷媒の一部を蒸発させる
ことにより再び低温液冷媒になる。なお、冷媒液面スイ
ッチ38は冷媒スプレ−ポンプ7Aの液冷媒不足による
空転防止の安全スイッチである。第1蒸発器3Aで蒸発
した冷媒はエリミネ−タ37を介して第1吸収器4Aの
吸収溶液に吸収される。
The first evaporator 3A is provided with a liquid refrigerant spraying device 34 at the upper part and reticulated liquid refrigerant jump-up prevention plates 35 and 36, a refrigerant liquid level switch 38, and a refrigerant spray pump 7A at the lower part. Is connected to the first absorber 4A via the eliminator 37. The low-temperature liquid refrigerant in the liquid refrigerant tank 15A of the first evaporator 3A flows through the heat transfer pipe of the second absorber 4B by the refrigerant spray pump 7A, cools the absorbing liquid outside the pipe, and rises in temperature. From the refrigerant spray device 34 to the first evaporator 3
A part of the liquid refrigerant is sprayed into the space in A and becomes a low-temperature liquid refrigerant again by evaporating a part of the liquid refrigerant. The refrigerant liquid level switch 38 is a safety switch for preventing idling due to a shortage of liquid refrigerant of the refrigerant spray pump 7A. The refrigerant evaporated in the first evaporator 3A is absorbed by the absorption solution in the first absorber 4A via the eliminator 37.

【0027】以上のように第2吸収器4Bを冷却する構
成となっている。なお、冷媒スプレ−ポンプ7Aの冷媒
サクション部に循環冷媒温度センサ−39が配置されて
おり、該温度信号により冷媒スプレ−ポンプ7Aの回転
数を制御して冷媒流量をコントロ−ルすることによって
第2吸収器4Bの冷却をコントロ−ルすることができる
ので、サイクルを安定して運転できる効果がある。
As described above, the second absorber 4B is cooled. A circulating refrigerant temperature sensor 39 is disposed in the refrigerant suction section of the refrigerant spray pump 7A, and the number of revolutions of the refrigerant spray pump 7A is controlled by controlling the rotation speed of the refrigerant spray pump 7A based on the temperature signal. Since the cooling of the two absorbers 4B can be controlled, the cycle can be stably operated.

【0028】第2蒸発器3Bは上部に液散布装置、その
下方に管内に被冷却媒体が流れる伝熱管群、混合冷媒タ
ンク15B、混合冷媒液面検出手段38B、混合冷媒ス
プレ−ポンプ7Bが配置されている。また、第1蒸発器
3Aの液冷媒は冷媒スプレ−ポンプ7Aの吐出管から分
岐した冷媒導管40、冷媒流量制御弁41を介して混合
冷媒スプレ−ポンプ7Bの吸入管部に連絡されている。
混合冷媒液面検出手段38Bの制御信号により前記冷媒
流量制御弁41が開閉されて、第1蒸発器3Aの液冷媒
は第2蒸発器3Bに送られ、混合液冷媒と混合して混合
冷媒スプレ−ポンプ7Bによりスプレ−ダクト18を経
由して液散布装置から伝熱管群に混合冷媒が散布され
る。また、スプレ−ダクト18には吸収剤混合手段9が
配置され、第2蒸発器3Bを循環する混合冷媒の吸収剤
濃度をコントロ−ルしている。
The second evaporator 3B is provided with a liquid spraying device at the upper part, a heat transfer tube group through which a medium to be cooled flows in the pipe, a mixed refrigerant tank 15B, a mixed refrigerant liquid level detecting means 38B, and a mixed refrigerant spray pump 7B below the liquid spraying device. Have been. The liquid refrigerant of the first evaporator 3A is connected to a suction pipe of the mixed refrigerant spray pump 7B via a refrigerant conduit 40 branched from a discharge pipe of the refrigerant spray pump 7A and a refrigerant flow control valve 41.
The refrigerant flow control valve 41 is opened and closed by the control signal of the mixed refrigerant liquid level detecting means 38B, and the liquid refrigerant of the first evaporator 3A is sent to the second evaporator 3B, mixed with the mixed liquid refrigerant and mixed with the mixed refrigerant spray. -The mixed refrigerant is sprayed from the liquid spraying device to the heat transfer tube group via the spray duct 18 by the pump 7B. An absorbent mixing means 9 is disposed in the spray duct 18 to control the absorbent concentration of the mixed refrigerant circulating in the second evaporator 3B.

【0029】以上のように構成したので、まず、第1蒸
発器3Aには伝熱管が不要になり、コスト低減が図れる
効果がある。また、第1蒸発器3Aで生成した低温の液
冷媒を第2吸収器4Bの伝熱管内に流し、管外に流下す
る吸収溶液の冷却を管内強制対流冷却で効率良く冷却で
きるので、伝熱管量を節約するとともに第2吸収器4B
の吸収温度と第1蒸発器3Aの冷媒温度との温度差を小
さくでき、高効率にサイクルを運転できる効果が得られ
る。また、第1蒸発器3Aは純冷媒が蒸発し、第2蒸発
器3Bは混合冷媒が蒸発し、両者が混合しないので、高
効率で運転できる効果がある。
With the above configuration, first, the first evaporator 3A does not require a heat transfer tube, and has an effect of reducing costs. Further, the low-temperature liquid refrigerant generated in the first evaporator 3A is caused to flow into the heat transfer tube of the second absorber 4B, and the absorption solution flowing down outside the tube can be efficiently cooled by forced convection cooling in the tube. The second absorber 4B saves the amount and
, And the temperature difference between the refrigerant temperature of the first evaporator 3A and the refrigerant temperature of the first evaporator 3A can be reduced, so that the cycle can be efficiently operated. In addition, since the first evaporator 3A evaporates the pure refrigerant and the second evaporator 3B evaporates the mixed refrigerant and does not mix the two, there is an effect that the operation can be performed with high efficiency.

【0030】図5は本発明の更に他の実施例のサイクル
系統図である。図5において、図4と同じ記号の個所は
同じ機能を有するので説明を省略する。本実施例と図4
に示した実施例との違いは以下のとおりである。
FIG. 5 is a cycle system diagram of still another embodiment of the present invention. In FIG. 5, the same reference numerals as those in FIG. 4 have the same functions, and thus description thereof will be omitted. This embodiment and FIG.
The difference from the embodiment shown in FIG.

【0031】第1蒸発器3Aの冷媒ポンプ7により第2
吸収器4Bの伝熱管内を流して再度第1蒸発器3Aに循
環するとともに、一部の液冷媒を分岐して流量制御機構
41Bを経由し、さらに、吸収液混合手段9が配置され
た冷媒スプレ−ダクト18を経由して第2蒸発器3Bの
伝熱管群上に散布される。第2蒸発器3Bの伝熱管群上
を流下して管内を流れる被冷却媒体と熱交換して蒸発す
るとともに、残った混合冷媒は第1蒸発器3Aの冷媒ス
プレ−ポンプ7の吸入管へ冷媒導管40を経由して戻
る。なお、第2蒸発器3Bを第1蒸発器3Aよりも高い
位置に配置して冷媒タンク15Bには液冷媒がほとんど
滞留することがない構造にすることにより、冷媒液面を
第1蒸発器3Aの冷媒タンク15Aのみにした。これに
より吸収冷凍サイクルの循環溶液の吸収剤濃度が過濃縮
されて結晶化が心配される場合には第1蒸発器3Aから
冷媒がオ−バ−フロ−して循環溶液を希釈するので吸収
溶液の結晶化を防止でき、安全に運転させることができ
る効果がある。なお、第1蒸発器3Aの冷媒が混合冷媒
であるので吸収剤混合による沸点上昇分だけ熱交換温度
差が小さくなるものの、第2蒸発器3Bの混合冷媒スプ
レ−ポンプが不要になり、システムを簡略化できる効果
がある。また、第2蒸発器3Bからの冷媒オ−バ−フロ
−をオ−バ−フロ−配管(図示せず)の混合冷媒流量を
検出し、前記流量制御機構41Bを絞ることによって混
合冷媒の過度の流出を防止する制御ができ、省エネルギ
−を図れる効果がある。図6は本発明の更に他の実施例
のサイクル系統図である。図6において、図4と同じ記
号の個所は同じ機能を有するので説明を省略する。本実
施例と図4に示した実施例との違いは以下のとおりであ
る。
The second pump is provided by the refrigerant pump 7 of the first evaporator 3A.
The refrigerant flows through the heat transfer tube of the absorber 4B, circulates again to the first evaporator 3A, branches off a part of the liquid refrigerant, passes through the flow control mechanism 41B, and further has the refrigerant in which the absorbing liquid mixing means 9 is disposed. The spray is spread on the heat transfer tube group of the second evaporator 3B via the spray duct 18. The refrigerant exchanges heat with the medium to be cooled flowing down the heat transfer tube group of the second evaporator 3B and evaporates, and the remaining mixed refrigerant flows into the suction pipe of the refrigerant spray pump 7 of the first evaporator 3A. Return via conduit 40. By arranging the second evaporator 3B at a higher position than the first evaporator 3A so that the liquid refrigerant hardly stays in the refrigerant tank 15B, the liquid level of the refrigerant is reduced to the first evaporator 3A. Only the refrigerant tank 15A. As a result, if the concentration of the absorbent in the circulating solution of the absorption refrigeration cycle is excessively concentrated and crystallization is a concern, the refrigerant overflows from the first evaporator 3A to dilute the circulating solution. This has the effect of preventing crystallization of the compound and enabling safe operation. Since the refrigerant in the first evaporator 3A is a mixed refrigerant, the difference in heat exchange temperature is reduced by the rise in boiling point due to the mixing of the absorbent, but the mixed refrigerant spray pump in the second evaporator 3B is not required, and the system is not required. There is an effect that can be simplified. Further, the refrigerant overflow from the second evaporator 3B is detected by detecting the flow rate of the mixed refrigerant in an overflow pipe (not shown), and the flow control mechanism 41B is throttled to reduce the excess of the mixed refrigerant. Can be controlled to prevent the outflow of water, and there is an effect that energy can be saved. FIG. 6 is a cycle system diagram of still another embodiment of the present invention. In FIG. 6, the same reference numerals as those in FIG. 4 have the same functions, and thus description thereof will be omitted. The difference between this embodiment and the embodiment shown in FIG. 4 is as follows.

【0032】吸収冷凍サイクルの冷媒生成と吸収剤濃縮
過程をいわゆるシリ−ズフロ−2重効用吸収サイクルと
し、第2吸収器4Bの希溶液は液熱交換器5、高温熱交
換器33を経由して高温再生器31に流入して外部熱源
Hにより加熱され、濃縮されて高温熱交換器33を経由
して、該高温再生器31で発生した冷媒蒸気の凝縮潜熱
を熱源とする低温再生器32の管群上に散布される。低
温再生器32に散布された溶液は、高温再生器31で発
生した冷媒蒸気の凝縮潜熱で加熱されて冷媒蒸気を発生
し、濃縮されて液熱交換器5を経由して第1吸収器4A
に戻る。
The refrigerant generation and absorbent concentrating process of the absorption refrigeration cycle is referred to as a so-called series flow double effect absorption cycle, and the dilute solution in the second absorber 4B passes through the liquid heat exchanger 5 and the high temperature heat exchanger 33. Into the high-temperature regenerator 31, heated by the external heat source H, concentrated and passed through the high-temperature heat exchanger 33, and the low-temperature regenerator 32 using the latent heat of condensation of the refrigerant vapor generated in the high-temperature regenerator 31 as a heat source Is sprayed on the tube group. The solution sprayed on the low temperature regenerator 32 is heated by the latent heat of condensation of the refrigerant vapor generated in the high temperature regenerator 31, generates refrigerant vapor, is concentrated, passes through the liquid heat exchanger 5, and is passed through the first absorber 4A.
Return to

【0033】以上のように高温再生器31、低温再生器
32と順にシリ−ズに溶液を流す方式である。なお、逆
に低温再生器32、高温再生器31と溶液を循環させる
いわゆるリバ−スフロ−方式もあり、これら2重効用吸
収冷凍サイクルフロ−は前述のパラレルフロ−と同様
に、高温再生器31の外部熱入力の省エネルギ−を図れ
る効果がある。
As described above, this is a method in which the solution is flowed through the series in the order of the high temperature regenerator 31 and the low temperature regenerator 32. Conversely, there is a so-called reverse flow system in which the solution is circulated through the low-temperature regenerator 32 and the high-temperature regenerator 31, and these double-effect absorption refrigeration cycle flows are similar to the above-described parallel flow. This has the effect of saving energy of external heat input.

【0034】第1蒸発器3Aの冷媒ポンプ7により第2
吸収器4Bの伝熱管内を流して再度第1蒸発器3Aに循
環するとともに、一部の液冷媒を分岐して、冷媒散布量
制御弁41を介して吸収液混合手段9が配置された冷媒
スプレ−ダクト18を経由して第2蒸発器3Bの伝熱管
群上に散布される。第2蒸発器3Bの伝熱管群上を流下
して管内を流れる被冷却媒体と熱交換して蒸発するとと
もに、残った混合冷媒は第2吸収器4Bに送られて溶液
に混合され、該溶液は溶液循環ポンプ6により再生器群
に送られる。
The second pump is provided by the refrigerant pump 7 of the first evaporator 3A.
The refrigerant flowing through the heat transfer tube of the absorber 4B and circulating again to the first evaporator 3A, branching off a part of the liquid refrigerant, and having the absorbing liquid mixing means 9 disposed via the refrigerant spray amount control valve 41. The spray is spread on the heat transfer tube group of the second evaporator 3B via the spray duct 18. The second refrigerant evaporates by exchanging heat with the medium to be cooled flowing down the heat transfer tube group of the second evaporator 3B and evaporating, and the remaining mixed refrigerant is sent to the second absorber 4B and mixed with the solution. Is sent to the regenerator group by the solution circulation pump 6.

【0035】ここで、第2蒸発器3Bに散布される冷媒
は被冷却媒体温度センサ−29の信号により吸収剤混合
手段9である流量制御弁10により吸収剤濃度がコント
ロ−ルされて散布される。また、第2蒸発器3Aに散布
される冷媒量は冷凍負荷に応じて冷媒散布流量制御弁4
1によりコントロ−ルされて散布されるので、未蒸発冷
媒を多量に第2吸収器4Bに流出させて熱損失を大きく
することが無い。それ以上に吸収剤混合手段9の制御系
統システムを簡素化できる効果がある。
Here, the refrigerant to be sprayed to the second evaporator 3B is sprayed after the concentration of the absorbent is controlled by the flow control valve 10 which is the absorbent mixing means 9 according to the signal of the cooling medium temperature sensor 29. You. The amount of the refrigerant sprayed to the second evaporator 3A depends on the refrigeration load.
Since it is controlled and sprayed by 1, the large amount of the unevaporated refrigerant does not flow out to the second absorber 4B to increase the heat loss. Furthermore, there is an effect that the control system of the absorbent mixing means 9 can be simplified.

【0036】本実施例では第2蒸発器3Bへの液冷媒供
給は第1蒸発器3Aの液冷媒を冷媒スプレ−ポンプ7の
吐出側から分岐して供給したが、凝縮器2からの液冷媒
を分岐して、冷媒散布流量制御弁41、吸収剤混合手段
9を経由してより簡素化する方法もある。さらに、吸収
剤混合手段9は単なるオリフィスとして、一定量の吸収
剤を冷媒に混合させて、混合冷媒中の吸収剤濃度をほぼ
一定にして対応させることが可能である。
In this embodiment, the liquid refrigerant supplied to the second evaporator 3B is supplied by branching the liquid refrigerant from the first evaporator 3A from the discharge side of the refrigerant spray pump 7. There is also a method of simplifying the flow through the refrigerant spray flow rate control valve 41 and the absorbent mixing means 9 by branching off. Further, the absorbent mixing means 9 can be a simple orifice by mixing a certain amount of the absorbent with the refrigerant so that the concentration of the absorbent in the mixed refrigerant is substantially constant.

【0037】図7は本発明の更に他の実施例の蒸発器吸
収器の構成の1例である。図7において、図4と同じ記
号の個所は同じ機能を有するので説明を省略する。本実
施例と図4に示した実施例との違いは以下のとおりであ
る。
FIG. 7 shows an example of the structure of an evaporator absorber according to still another embodiment of the present invention. In FIG. 7, the same reference numerals as those in FIG. 4 have the same functions, and thus description thereof will be omitted. The difference between this embodiment and the embodiment shown in FIG. 4 is as follows.

【0038】図7において、第2蒸発器3Bは2列の伝
熱管群から構成され対向して2列の伝熱管群から構成さ
れる第2吸収器4Aが配置されている。各列の伝熱管群
上には液滴下装置51が配置され、蒸発器下部には受け
皿52が配置されて、未蒸発冷媒を集めて再び循環滴下
できるように構成している。各2列の吸収器管群の中央
部には扁平管に孔を開けた抽気管53Aが配置され、抽
気管ヘッダ53より抽気吸収器54に導かれ、冷媒また
は低温冷却水で冷却され、気液混合管56を不凝縮ガス
を混合して流下し、気液分離器57で不凝縮ガスと液に
分け、液は立上り部を有する気液混合管58により吸収
器の溶液に戻される。また分離した不凝縮ガスはガス上
昇管59を経由して貯気タンク60に貯気される。ま
た、抽気吸収器54は第2蒸発器3Bの冷媒ポンプ7B
の吐出側から分岐させた液冷媒分岐管55が接続されて
冷却されている。
In FIG. 7, the second evaporator 3B is composed of two rows of heat transfer tube groups, and a second absorber 4A composed of two rows of heat transfer tube groups is opposed to each other. A droplet lowering device 51 is disposed above the heat transfer tube group in each row, and a tray 52 is disposed below the evaporator, so that unevaporated refrigerant can be collected and circulated and dropped again. At the center of each of the two rows of absorber tube groups, a bleed tube 53A having a hole formed in a flat tube is arranged, guided from a bleed tube header 53 to a bleed absorber 54, cooled by a refrigerant or low-temperature cooling water, The non-condensable gas is mixed and flows down the liquid mixing pipe 56, and is separated into liquid and non-condensable gas by the gas-liquid separator 57, and the liquid is returned to the solution of the absorber by the gas-liquid mixing pipe 58 having a rising portion. The separated non-condensable gas is stored in the storage tank 60 via the gas riser 59. Also, the bleed absorber 54 is connected to the refrigerant pump 7B of the second evaporator 3B.
The liquid refrigerant branch pipe 55 branched from the discharge side is connected and cooled.

【0039】以上のように構成したので、蒸発器3から
吸収器4管群への冷媒蒸気流路を大きく確保でき蒸気流
動圧損を小さくでき、性能低下を防止できる効果があ
る。特に低温真空で作動する本吸収器の場合では、該蒸
気流動圧損が冷媒蒸発圧力に占める割合が大きくなり、
管群を大きくすると冷媒蒸気の移動を阻害するのでます
ます圧損が大きくなり、低温を生成する吸収冷凍サイク
ルが構成できない。図7で開示した、蒸発器と吸収器を
接近した配置とすることにより、蒸気流動圧損を小さく
できるので、低温吸収冷凍サイクルを実現できる。
With the above configuration, a large refrigerant vapor flow path from the evaporator 3 to the absorber 4 tube group can be secured, the vapor flow pressure loss can be reduced, and the performance can be prevented from deteriorating. In particular, in the case of the present absorber that operates in a low-temperature vacuum, the ratio of the vapor flow pressure loss to the refrigerant evaporation pressure increases,
When the tube group is enlarged, the movement of the refrigerant vapor is hindered, so that the pressure loss is further increased, and an absorption refrigeration cycle that generates a low temperature cannot be configured. By arranging the evaporator and the absorber close to each other as disclosed in FIG. 7, the steam flow pressure loss can be reduced, so that a low-temperature absorption refrigeration cycle can be realized.

【0040】また、吸収器の不凝縮ガスの存在は冷媒蒸
気吸収を阻害する。極めて低圧の吸収器では効率的な抽
気が不可欠である。本実施例のように、管群内に抽気管
を張り巡らし、抽気吸収器に導くことにより、不凝縮ガ
スを効率的に抽気できるので、低温吸収冷凍サイクルを
実現できる効果がある。
The presence of the non-condensable gas in the absorber hinders the absorption of refrigerant vapor. For very low pressure absorbers, efficient bleeding is essential. As in the present embodiment, a non-condensable gas can be efficiently extracted by stretching an extraction tube in the tube group and guiding it to the extraction absorber, so that there is an effect that a low-temperature absorption refrigeration cycle can be realized.

【0041】なお、図7において気液混合管58を第1
吸収器4Aの溶液ポンプのサクションに接続し、比較的
圧力が高くて、不凝縮ガスの影響を受けにくい第1吸収
器側に送り、第1吸収器で抽気処理することも有効であ
る。これにより、気液分離装置57や貯気タンク60を
省略してシステムを簡略化できる効果がある。
In FIG. 7, the gas-liquid mixing pipe 58 is connected to the first
It is also effective to connect the solution to the suction of the solution pump of the absorber 4A, send it to the first absorber side where the pressure is relatively high and is not easily affected by the non-condensable gas, and perform the bleeding process in the first absorber. Thereby, there is an effect that the system can be simplified by omitting the gas-liquid separation device 57 and the gas storage tank 60.

【0042】図8は本発明の更に他の実施例のサイクル
系統図であり、図9は図8の実施例の吸収冷凍サイクル
のデュ−リング線図である。図8、図9において、図
4、図2と同じ記号の個所は同じ機能を有するので説明
を省略する。
FIG. 8 is a cycle system diagram of still another embodiment of the present invention, and FIG. 9 is a During diagram of the absorption refrigeration cycle of the embodiment of FIG. In FIGS. 8 and 9, the same reference numerals as those in FIGS. 4 and 2 have the same functions, and thus description thereof will be omitted.

【0043】以下、本実施例を説明する。◆再生器1は
垂直管群と該管群に直交するフィンと下部ヘッダ及び上
部ヘッダからなるクロスフィンチュ−ブ熱交換器で構成
され、該再生器1の管群フィン部に高温排ガスが導か
れ、管内の吸収溶液と熱交換し、冷媒蒸気を発生させて
溶液を濃縮し、濃縮された溶液は溶液輸送手段63によ
り再生室61に送られる。再生室61は、垂直管群と該
管群に直交するフィンと下部ヘッダ及び上部ヘッダから
なるクロスフィンチュ−ブ熱交換器で構成される。再生
室61は再生器1の排ガス下流側に配置されている。ま
た、再生室61の気相部は吸収室62と接続されてい
る。ここに、吸収室62は溶液散布装置と伝熱管群から
なり、該伝熱管内に第1吸収器4A、凝縮器2を冷却し
て温度上昇した冷却水が通水される。一方、管外には第
2吸収器4Bから溶液循環ポンプ6により熱交換器5を
経由した希溶液が散布されて冷却され、再生室61で発
生した冷媒蒸気を吸収して再生室61の吸収液をさらに
濃縮する。吸収室62で冷媒蒸気を吸収して薄くなった
溶液は液輸送手段65により再生器1に送られる。ま
た、再生室61で濃縮された吸収液は溶液輸送手段64
により熱交換器5を経由して第1吸収器4Aに流入し、
溶液スプレ−ポンプ8により第1吸収器4A及び第2吸
収器4Bに散布されて冷媒蒸気を吸収する。一方、凝縮
器2で生成された液冷媒は第1蒸発器3Aに導かれ、冷
媒循環ポンプ7Aにより第2吸収器4Bの管内を流れて
第2吸収器4Bを冷却するするとともに、自己蒸発によ
り冷媒蒸気を発生し、第1吸収器4Aの溶液に発生冷媒
蒸気は吸収される。また、第1蒸発器3Aの液冷媒は第
2蒸発器3Bの混合冷媒流路に導かれ、混合冷媒散布ポ
ンプ7Bにより、第2蒸発器3B伝熱管群上に散布され
て管内を流れるブラインと熱交換して蒸発し、発生した
冷媒蒸気は第2吸収器4Bの吸収溶液に吸収される。な
お、第2蒸発器3Bの混合冷媒の吸収剤濃度は、吸収剤
濃度センサ−12の信号により制御される、流量制御弁
10とブロ−量制御弁11とから構成される吸収剤混合
手段9により、最適にコントロ−ルされる。
Hereinafter, this embodiment will be described. The regenerator 1 is composed of a vertical tube group, a fin orthogonal to the tube group, and a cross fin tube heat exchanger composed of a lower header and an upper header. Then, the solution is exchanged with the absorbing solution in the tube, and the solution is concentrated by generating refrigerant vapor. The concentrated solution is sent to the regeneration chamber 61 by the solution transport means 63. The regeneration chamber 61 includes a cross tube heat exchanger including a vertical tube bank, fins orthogonal to the tube bank, a lower header and an upper header. The regeneration chamber 61 is arranged on the exhaust gas downstream side of the regenerator 1. The gas phase of the regeneration chamber 61 is connected to the absorption chamber 62. Here, the absorption chamber 62 includes a solution spraying device and a heat transfer tube group, and cooling water whose temperature has been increased by cooling the first absorber 4A and the condenser 2 flows through the heat transfer tube. On the other hand, the dilute solution from the second absorber 4B through the heat exchanger 5 is sprayed by the solution circulation pump 6 from the second absorber 4B and cooled, and the refrigerant vapor generated in the regeneration chamber 61 is absorbed and absorbed in the regeneration chamber 61. The solution is further concentrated. The solution diluted by absorbing the refrigerant vapor in the absorption chamber 62 is sent to the regenerator 1 by the liquid transport means 65. Further, the absorbing solution concentrated in the regeneration chamber 61 is
Flows into the first absorber 4A via the heat exchanger 5,
The solution spray pump 8 is sprayed to the first absorber 4A and the second absorber 4B to absorb the refrigerant vapor. On the other hand, the liquid refrigerant generated in the condenser 2 is guided to the first evaporator 3A, flows through the pipe of the second absorber 4B by the refrigerant circulation pump 7A, cools the second absorber 4B, and is self-evaporated. The refrigerant vapor is generated, and the generated refrigerant vapor is absorbed by the solution in the first absorber 4A. Further, the liquid refrigerant of the first evaporator 3A is guided to the mixed refrigerant flow path of the second evaporator 3B, and is dispersed by the mixed refrigerant spray pump 7B onto the second evaporator 3B heat transfer tube group, and the brine flows through the tubes. The refrigerant vapor that evaporates due to heat exchange is absorbed by the absorbing solution in the second absorber 4B. Note that the absorbent concentration of the mixed refrigerant in the second evaporator 3B is controlled by a signal from the absorbent concentration sensor 12, and the absorbent mixing means 9 is composed of a flow control valve 10 and a blow amount control valve 11. Is optimally controlled.

【0044】図9は上述の吸収冷凍サイクルを臭化リチ
ウム−水のデュ−リング線図に示したものである。再生
器は約82℃で作動し、再生室61は約62℃で作動し
第1吸収器4Aは42℃で作動し、第2吸収器4Bは2
0℃で作動し吸収室62は45℃で作動している。ま
た、凝縮器2は42℃で作動し、第1蒸発器3Aは約1
0℃で作動し、第2蒸発器は−5℃で作動している。吸
収剤としては、臭化リチウムのほかに塩化リチウムほか
の吸収剤が利用でき、冷媒は2エチルヘキサノ−ル、メ
タノ−ルなどを混合させた水を主体とする冷媒も利用で
きる。
FIG. 9 shows the absorption refrigeration cycle described above in a During diagram of lithium bromide-water. The regenerator operates at about 82 ° C, the regeneration chamber 61 operates at about 62 ° C, the first absorber 4A operates at 42 ° C, and the second absorber 4B operates at 2 ° C.
Operating at 0 ° C., the absorption chamber 62 operates at 45 ° C. The condenser 2 operates at 42 ° C., and the first evaporator 3A
Operating at 0 ° C, the second evaporator is operating at -5 ° C. As the absorbent, in addition to lithium bromide, an absorbent other than lithium chloride can be used, and a refrigerant mainly composed of water mixed with 2-ethylhexanol, methanol, or the like can be used.

【0045】以上のように、排ガスで加熱される再生室
61と吸収室62を配置したので、比較的低温の排ガ
ス、すなわち150℃程度の排ガスから100℃程度ま
で熱回収して、0℃程度の冷凍作用を有する吸収冷凍サ
イクルを提供できる効果がある。なお、熱源としては、
排ガスのほかに廃温水などの廃熱、太陽熱なども利用で
きる。
As described above, since the regeneration chamber 61 and the absorption chamber 62 heated by the exhaust gas are arranged, heat is recovered from the relatively low-temperature exhaust gas, that is, the exhaust gas at about 150 ° C. to about 100 ° C. Thus, there is an effect that an absorption refrigeration cycle having a refrigeration action can be provided. In addition, as a heat source,
In addition to exhaust gas, waste heat such as waste hot water and solar heat can also be used.

【0046】また、吸収室62に冷却管を配置せず、散
布装置だけ配置した場合でも、散布吸収溶液の蒸気圧が
低いところでは、再生器1で発生した冷媒蒸気を吸収さ
せることができるので、前述とは若干異なる吸収冷凍サ
イクルではあるが、冷凍作用を提供できる吸収冷凍サイ
クルを提供できる効果がある。すなわち、吸収室61で
は溶液が低温低圧で流入し、再生室61とほぼ同じ圧力
まで温度上昇するとともに濃度が低下する。この際は、
熱交換器5を省略することもできる。
Further, even when the cooling chamber is not provided in the absorption chamber 62 and only the spraying device is provided, the refrigerant vapor generated in the regenerator 1 can be absorbed where the vapor pressure of the spraying absorption solution is low. Although this is an absorption refrigeration cycle slightly different from that described above, it has an effect of providing an absorption refrigeration cycle capable of providing a refrigeration action. That is, the solution flows into the absorption chamber 61 at a low temperature and a low pressure, and the temperature rises to almost the same pressure as the regeneration chamber 61 and the concentration decreases. In this case,
The heat exchanger 5 can be omitted.

【0047】更に、吸収室62から再生器1に送られる
希溶液と、再生器1から再生室61に送られる濃溶液と
を熱交換させる手段を設けると更に効率が高いサイクル
を実現できる。
Further, by providing means for exchanging heat between the dilute solution sent from the absorption chamber 62 to the regenerator 1 and the concentrated solution sent from the regenerator 1 to the regenerator 61, a cycle with higher efficiency can be realized.

【0048】また、本実施例では再生室61と吸収室6
2との組合せが1段の場合を示したが、2段3段と段数
を増やすに従って、排ガスからの熱回収量を増大させる
ことができ、より低温の排ガスで作動する吸収冷凍サイ
クルを実現できる。例えば、2段にすると120℃程度
の排ガスから70℃程度まで熱回収して、0℃程度の冷
凍作用を有する吸収冷凍サイクルを提供できる効果があ
る。すなわち、本実施例ではより低温の熱源で低温を発
生する装置を提供できる効果がある。
In this embodiment, the regeneration chamber 61 and the absorption chamber 6
Although the case where the combination with 2 is one stage is shown, as the number of stages is increased to two stages and three stages, the amount of heat recovery from exhaust gas can be increased, and an absorption refrigeration cycle operating with lower temperature exhaust gas can be realized. . For example, in the case of two stages, there is an effect that heat can be recovered from exhaust gas of about 120 ° C. to about 70 ° C. to provide an absorption refrigeration cycle having a refrigeration action of about 0 ° C. That is, in the present embodiment, there is an effect that a device that generates a low temperature with a lower temperature heat source can be provided.

【0049】図10は本発明の更に他の実施例のサイク
ル系統図である。図4の実施例と異なり、第1蒸発器3
Aから冷房用の冷水が得られるように第1蒸発器3A内
に熱交換器を配置した点が異なる。更に、第2蒸発器3
Bは真空蓄熱層70となっている点が異なる。すなわ
ち、第1蒸発器3Aには冷水の流れる伝熱管が配置され
て冷水を冷却するとともに、液冷媒は第2吸収器4Bを
冷却し、第1蒸発器3A内で自己蒸発する。第1蒸発器
3Aの液冷媒は冷媒流量制御弁71を介して第2蒸発器
3Bと連絡されている。真空蓄熱層70の上部は自己蒸
発方式の第2蒸発器3Bになり、冷媒ポンプ7Bの吐出
冷媒が該第2蒸発器3Bでスプレ−される。また、下部
には低温熱交換器72が配置され、撹拌器73も配置さ
れている。該低温熱交換器72は第1蒸発器3Aで冷却
された冷水が通水され、負荷に接続されている。
FIG. 10 is a cycle system diagram of still another embodiment of the present invention. Unlike the embodiment of FIG. 4, the first evaporator 3
A difference is that a heat exchanger is arranged in the first evaporator 3A so that cooling water for cooling can be obtained from A. Further, the second evaporator 3
B differs in that it is a vacuum heat storage layer 70. That is, a heat transfer tube through which cold water flows is arranged in the first evaporator 3A to cool the cold water, and the liquid refrigerant cools the second absorber 4B and self-evaporates in the first evaporator 3A. The liquid refrigerant of the first evaporator 3A is connected to the second evaporator 3B via the refrigerant flow control valve 71. The upper part of the vacuum heat storage layer 70 becomes a second evaporator 3B of the self-evaporation type, and the refrigerant discharged from the refrigerant pump 7B is sprayed by the second evaporator 3B. In addition, a low-temperature heat exchanger 72 is arranged at the lower part, and a stirrer 73 is also arranged. The low-temperature heat exchanger 72 is supplied with cold water cooled by the first evaporator 3A, and is connected to a load.

【0050】冷房負荷が軽いときには第2吸収器4Bに
溶液を散布して第2蒸発器3Bの液冷媒を冷却し、更に
負荷が余った場合には真空蓄熱層70の上部に散布され
る液冷媒は自己蒸発により氷結して、槽内に堆積する。
特に、エチレングリコ−ルなどをわずかに添加した水を
冷媒とすると、水分の一部が針状に凍結し、時間ととも
に真空蓄熱層70の上部に堆積する。従って、低温熱交
換器72の個所は0℃程度の低温となっており、冷水は
負荷戻りが12℃でも負荷への供給を従来の7℃からよ
り低温の例えば2℃にして供給でき、行き戻りの温度差
を従来の5Kから2倍の10Kにできるので、冷水循環
ポンプ動力をわずかにできるとともに、冷水配管サイズ
を小形化でき、設備コストを低減できる効果がある。
When the cooling load is light, the solution is sprayed on the second absorber 4B to cool the liquid refrigerant of the second evaporator 3B, and when the load is excessive, the solution sprayed on the vacuum heat storage layer 70 The refrigerant freezes by self-evaporation and accumulates in the tank.
In particular, when water containing a small amount of ethylene glycol or the like is used as the refrigerant, a part of the water is frozen in a needle shape and is deposited on the vacuum heat storage layer 70 with time. Therefore, the location of the low-temperature heat exchanger 72 is at a low temperature of about 0 ° C., and the cold water can be supplied to the load at a lower temperature, for example, 2 ° C. from 7 ° C. even when the load return is 12 ° C. Since the return temperature difference can be doubled from 5K to 10K, the power of the chilled water circulation pump can be reduced, the size of the chilled water piping can be reduced, and the equipment cost can be reduced.

【0051】また、冷房負荷の大きい場合は該真空蓄熱
層の氷の融解熱を利用できる。また、第2吸収器4Bを
作動させないので第1蒸発器3Aは最大能力で運転でき
るので冷房効率が高い。すなわち、負荷の少ない夜間や
早朝の間に吸収冷温水機を運転して氷蓄熱することによ
り、負荷の過大な場合に対応できるシステムであり、設
備コストを低減できる効果がある。
When the cooling load is large, the heat of melting of ice in the vacuum heat storage layer can be used. Further, since the second absorber 4B is not operated, the first evaporator 3A can be operated at the maximum capacity, so that the cooling efficiency is high. That is, by operating the absorption chiller / heater during the night or in the early morning when the load is small and storing ice heat, the system can cope with the case where the load is excessive, and has the effect of reducing equipment costs.

【0052】また、本システムは廃熱利用にも適してい
る。すなわち、時間的に不定な廃熱源を氷の形で蓄熱
し、必要な時間帯に提供できるので従来利用できなかっ
た間けつ的な廃熱の利用ができる効果がある。
The present system is also suitable for utilizing waste heat. That is, a waste heat source whose time is indefinite is stored in the form of ice and can be provided in a required time zone, so that there is an effect that intermittent waste heat that could not be used conventionally can be used.

【0053】[0053]

【発明の効果】蒸発器散布液冷媒に吸収剤を混合するこ
とにより混合冷媒凍結温度を0℃以下にすることが可能
になり、冷蔵倉庫のなどの冷却熱源として吸収冷凍機の
利用範囲が広くなる。
The freezing temperature of the mixed refrigerant can be reduced to 0 ° C. or less by mixing the absorbent with the evaporator spray liquid refrigerant, so that the absorption refrigerator can be widely used as a cooling heat source for refrigerated warehouses and the like. Become.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例のサイクル系統図。FIG. 1 is a cycle system diagram of an embodiment of the present invention.

【図2】図1の実施例の吸収冷凍サイクルのデュ−リン
グ線図。
FIG. 2 is a During diagram of the absorption refrigeration cycle of the embodiment of FIG.

【図3】図1の実施例の吸収剤混合装置の制御系統図。FIG. 3 is a control system diagram of the absorbent mixing device of the embodiment of FIG.

【図4】本発明の他の実施例のサイクル系統図。FIG. 4 is a cycle system diagram of another embodiment of the present invention.

【図5】本発明の更に他の実施例のサイクル系統図。FIG. 5 is a cycle system diagram of still another embodiment of the present invention.

【図6】本発明の更に他の実施例のサイクル系統図。FIG. 6 is a cycle system diagram of still another embodiment of the present invention.

【図7】本発明の実施例の蒸発器と吸収器の伝熱管配置
断面図。
FIG. 7 is a sectional view of a heat transfer tube arrangement of an evaporator and an absorber according to an embodiment of the present invention.

【図8】本発明の更に他の実施例のサイクル系統図。FIG. 8 is a cycle system diagram of still another embodiment of the present invention.

【図9】図8の実施例の吸収冷凍サイクルのデュ−リン
グ線図。
FIG. 9 is a During diagram of the absorption refrigeration cycle of the embodiment of FIG.

【図10】本発明の更に他の実施例のサイクル系統図。FIG. 10 is a cycle system diagram of still another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…再生器、 2…凝縮器、 3…蒸発器、3A…第1蒸発器、3B…第2蒸発器、 4…吸収器、4A…第1吸収器、4B…第2吸収器、 5…溶液熱交換器、 6…溶液循環ポンプ、 7、7A、7B…冷媒スプレ−ポンプ、 8…溶液スプレ−ポンプ、 9…吸収剤混合手段、 10…流量制御弁、 11…ブロ−量制御弁、 12…吸収剤濃度センサ−、 13…演算制御装置 14…冷媒導管 15A…冷媒タンク、15B…混合冷媒タンク 16…吸い込み管 17…冷媒導管 18…冷媒スプレ−ダクト、 19…ポンプ 20…冷却熱交換手段 21…冷蔵倉庫、 22…空気ブライン熱交換器、 23…ヒ−トパイプ 24…濃液導管 25…希溶液導管 26…溶液導管、 27…ポンプサクション管 28…冷媒ブロ−管、 29…ブライン温度センサ−、 30…冷凍機制御盤 31…高温再生器、 32…低温再生器、 33…高温熱交換器、 34…冷媒スプレ−装置、 35…液冷媒跳ね返り防止装置、 36…液表面積拡大手段、 37…エリミネ−タ、 38…冷媒液面スイッチ、 39…循環冷媒温度センサ− 40…冷媒導管 41…冷媒散布流量制御弁、 51…液滴下装置、 52…受け皿、 53…抽気管ヘッダ、53A…抽気管、 54…抽気吸収器、 56…気液混合管、 57…気液分離器、 58…気液混合管、 60…抽気タンク 61…再生室、 62…吸収室、 63、64、65…吸収液輸送手段、 70…真空蓄熱槽、 71…冷媒流量制御弁、 72…低温熱交換器、 73…撹拌器。 DESCRIPTION OF SYMBOLS 1 ... Regenerator, 2 ... Condenser, 3 ... Evaporator, 3A ... 1st evaporator, 3B ... 2nd evaporator, 4 ... Absorber, 4A ... 1st absorber, 4B ... 2nd absorber, 5 ... Solution heat exchanger, 6 ... solution circulation pump, 7, 7A, 7B ... refrigerant spray pump, 8 ... solution spray pump, 9 ... absorbent mixing means, 10 ... flow control valve, 11 ... blow amount control valve, DESCRIPTION OF SYMBOLS 12 ... Absorbent concentration sensor 13 ... Operation control device 14 ... Refrigerant conduit 15A ... Refrigerant tank, 15B ... Mixed refrigerant tank 16 ... Suction pipe 17 ... Refrigerant conduit 18 ... Refrigerant spray duct, 19 ... Pump 20 ... Cooling heat exchange Means 21: Refrigerated warehouse, 22: Air brine heat exchanger, 23: Heat pipe 24 ... Concentrated liquid conduit 25 ... Dilute solution conduit 26 ... Solution conduit, 27 ... Pump suction tube 28 ... Refrigerant blow tube, 29 ... Brine temperature Sensor, 0: Refrigerator control panel 31: High temperature regenerator, 32: Low temperature regenerator, 33: High temperature heat exchanger, 34: Refrigerant spray device, 35: Liquid refrigerant rebound prevention device, 36: Liquid surface area enlarging means, 37: Elimine 38, a refrigerant liquid level switch, 39, a circulating refrigerant temperature sensor, 40, a refrigerant conduit 41, a refrigerant spraying flow rate control valve, 51, a dropping device, 52, a tray, 53, a bleed pipe header, 53A, a bleed pipe, 54 extraction gas absorber 56 gas-liquid mixing pipe 57 gas-liquid separator 58 gas-liquid mixing pipe 60 extraction tank 61 regeneration chamber 62 absorption chamber 63, 64, 65 absorption liquid transport Means: 70: vacuum heat storage tank; 71: refrigerant flow control valve; 72: low temperature heat exchanger; 73: stirrer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 功刀 能文 茨城県土浦市神立町502番地 株式会社 日立製作所 機械研究所内 (72)発明者 相沢 道彦 茨城県土浦市神立町603番地 株式会社 日立製作所 土浦工場内 (72)発明者 久島 大資 茨城県土浦市神立町502番地 株式会社 日立製作所 機械研究所内 (72)発明者 藤居 達郎 茨城県土浦市神立町502番地 株式会社 日立製作所 機械研究所内 (56)参考文献 特開 昭59−18355(JP,A) 特開 平3−95364(JP,A) 特開 平4−64872(JP,A) 特開 昭55−31215(JP,A) 特開 平5−60435(JP,A) 特開 昭55−162565(JP,A) (58)調査した分野(Int.Cl.7,DB名) F25B 15/00 303 F25B 15/00 F25B 15/00 306 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Nobumi Nobuto 502 Kandate-cho, Tsuchiura-shi, Ibaraki Pref. Machinery Research Laboratory, Hitachi, Ltd. In-plant (72) Inventor Taisuke Kushima 502 Kandate-cho, Tsuchiura-city, Ibaraki Pref.Hitachi, Ltd.Mechanical Research Laboratory Co., Ltd. References JP-A-59-18355 (JP, A) JP-A-3-95364 (JP, A) JP-A-4-64872 (JP, A) JP-A-55-31215 (JP, A) JP-A-5 -60435 (JP, A) JP-A-55-162565 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F25B 15/00 303 F25B 15/00 F25B 15/00 306

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】第1蒸発器、第2蒸発器、第1吸収器、第
2吸収器、再生器、凝縮器、液熱交換器、溶液循環ポン
プ、冷媒スプレ−ポンプを動作的に接続した配管を備
え、塩類水溶液を吸収剤とする吸収冷凍機において、 前記第1蒸発器の液冷媒で前記第2吸収器を冷却する熱
交換関係に配置するとともに、前記第2蒸発器で蒸発し
た冷媒蒸気が前記第2吸収器に導入され、前記第1蒸発
器で蒸発した冷媒蒸気が冷却水で冷却される前記第1吸
収器に導入され、前記第1蒸発器から、前記第2蒸発器
に送られる液冷媒流路に吸収剤混合手段を配置して、前
記第2蒸発器の散布冷媒が混合冷媒で熱媒体と熱交換さ
せ、排熱源より熱回収する再生器群を少なくとも2個有
し、その内の1台は凝縮器に連通し、該再生器の流出溶
液を再加熱する再生器は濃縮用吸収器群に接続されてい
ることを特徴とする吸収冷凍機。
1. A first evaporator, a second evaporator, a first absorber, and a first evaporator.
2 absorber, regenerator, condenser, liquid heat exchanger, solution circulation pump
And a pipe operatively connected to a refrigerant spray pump.
In an absorption refrigerator using a saline solution as an absorbent, heat of cooling the second absorber with the liquid refrigerant of the first evaporator is used.
While being arranged in an exchange relation, the second evaporator evaporates.
Refrigerant vapor is introduced into the second absorber, and the first vapor
The first suction in which the refrigerant vapor evaporated in the heater is cooled by cooling water.
A second evaporator introduced from the first evaporator to the second evaporator.
Arrange the absorbent mixing means in the liquid refrigerant flow path sent to the
The sprayed refrigerant of the second evaporator is a mixed refrigerant and exchanges heat with the heat medium.
And at least two regenerators that recover heat from the exhaust heat source
One of them communicates with the condenser and the effluent from the regenerator
The regenerator for reheating the liquid is connected to the concentration absorber group.
An absorption refrigerator.
【請求項2】第1蒸発器、第2蒸発器、第1吸収器、第
2吸収器、再生器、凝縮器、液熱交換器、溶液循環ポン
プ、冷媒スプレ−ポンプを動作的に接続した配管を備
え、塩類水溶液を吸収剤とする吸収冷凍機において、 前記第1蒸発器の液冷媒で前記第2吸収器を冷却する熱
交換関係に配置するとともに、前記第2蒸発器で蒸発し
た冷媒蒸気が前記第2吸収器に導入され、前記第1蒸発
器で蒸発した冷媒蒸気が冷却水で冷却される前記第1吸
収器に導入され、前記第1蒸発器から、前記第2蒸発器
に送られる液冷媒流路に吸収剤混合手段を配置して、前
記第2蒸発器の散布冷媒が混合冷媒で熱媒体と熱交換さ
せ、排熱源より熱回収する再生器群が少なくとも2個以
上有し、その内の1台は凝縮器に連通し、該再生器の流
出溶液を再加熱する再生器は濃縮用吸収器群に接続され
ているとともに、蒸発器に送られる液冷媒流路に吸収剤
混合手段を配置して、該蒸発器の散布冷媒が混合冷媒で
熱媒体と熱交換させることを特徴とする吸収冷凍機。
2. A first evaporator, a second evaporator, a first absorber, and a second evaporator.
2 absorber, regenerator, condenser, liquid heat exchanger, solution circulation pump
And a pipe operatively connected to a refrigerant spray pump.
In an absorption refrigerator using a saline solution as an absorbent, heat of cooling the second absorber with the liquid refrigerant of the first evaporator is used.
While being arranged in an exchange relation, the second evaporator evaporates.
Refrigerant vapor is introduced into the second absorber, and the first vapor
The first suction in which the refrigerant vapor evaporated in the heater is cooled by cooling water.
A second evaporator introduced from the first evaporator to the second evaporator.
Arrange the absorbent mixing means in the liquid refrigerant flow path sent to the
The sprayed refrigerant of the second evaporator is a mixed refrigerant and exchanges heat with the heat medium.
And at least two or more regenerator groups recover heat from the exhaust heat source.
One of which communicates with the condenser and the flow of the regenerator
The regenerator for reheating the discharged solution is connected to the concentration absorber group.
And the absorbent in the liquid refrigerant flow path sent to the evaporator.
Arranging the mixing means, the sprayed refrigerant of the evaporator is a mixed refrigerant
An absorption refrigerator characterized by heat exchange with a heat medium.
【請求項3】第1蒸発器、第2蒸発器、第1吸収器、第
2吸収器、再生器、凝縮器、液熱交 換器、溶液循環ポン
プ、冷媒スプレ−ポンプを動作的に接続した配管を備
え、塩類水溶液を吸収剤とする吸収冷凍機において、 前記第1蒸発器の液冷媒で前記第2吸収器を冷却する熱
交換関係に配置するとともに、前記第2蒸発器で蒸発し
た冷媒蒸気が前記第2吸収器に導入され、前記第1蒸発
器で蒸発した冷媒蒸気が冷却水で冷却される前記第1吸
収器に導入され、前記第1蒸発器から、前記第2蒸発器
に送られる液冷媒流路に吸収剤混合手段を配置して、前
記第2蒸発器の散布冷媒が混合冷媒で熱媒体と熱交換さ
せ、混合冷媒が散布される蒸発器管群列と吸収器管群列
とを交互に配置したことを特徴とする吸収冷凍機。
3. A first evaporator, a second evaporator, a first absorber, and a first evaporator.
2 absorber, a regenerator, a condenser, Ekinetsu交 exchanger, the solution circulation Pont
And a pipe operatively connected to a refrigerant spray pump.
In an absorption refrigerator using a saline solution as an absorbent, heat of cooling the second absorber with the liquid refrigerant of the first evaporator is used.
While being arranged in an exchange relation, the second evaporator evaporates.
Refrigerant vapor is introduced into the second absorber, and the first vapor
The first suction in which the refrigerant vapor evaporated in the heater is cooled by cooling water.
A second evaporator introduced from the first evaporator to the second evaporator.
Arrange the absorbent mixing means in the liquid refrigerant flow path sent to the
The sprayed refrigerant of the second evaporator is a mixed refrigerant and exchanges heat with the heat medium.
The evaporator tube bank and absorber tube bank where the mixed refrigerant is sprayed
Characterized by alternately arranging and.
JP5283025A 1993-11-12 1993-11-12 Absorption refrigerator Expired - Lifetime JP3013673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5283025A JP3013673B2 (en) 1993-11-12 1993-11-12 Absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5283025A JP3013673B2 (en) 1993-11-12 1993-11-12 Absorption refrigerator

Publications (2)

Publication Number Publication Date
JPH07139844A JPH07139844A (en) 1995-06-02
JP3013673B2 true JP3013673B2 (en) 2000-02-28

Family

ID=17660253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5283025A Expired - Lifetime JP3013673B2 (en) 1993-11-12 1993-11-12 Absorption refrigerator

Country Status (1)

Country Link
JP (1) JP3013673B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101972542B1 (en) * 2017-12-08 2019-04-26 한국에너지기술연구원 Absorption refrigeration system

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3414249B2 (en) * 1998-03-19 2003-06-09 株式会社日立製作所 Absorption refrigerator
JP4155797B2 (en) * 2002-11-01 2008-09-24 株式会社荏原製作所 Operation method of absorption refrigerator
JP4572860B2 (en) * 2006-03-31 2010-11-04 ダイキン工業株式会社 Absorption refrigeration system
JP4887872B2 (en) * 2006-04-05 2012-02-29 ダイキン工業株式会社 Absorption refrigeration system
JP4701147B2 (en) * 2006-10-06 2011-06-15 日立アプライアンス株式会社 2-stage absorption refrigerator
JP5055071B2 (en) * 2007-09-18 2012-10-24 日立アプライアンス株式会社 Absorption refrigerator
JP5065921B2 (en) * 2008-01-17 2012-11-07 日立アプライアンス株式会社 Cold water generation system
EP2380940A1 (en) * 2010-04-20 2011-10-26 Evonik Degussa GmbH Absorption heat pump with absorption agent comprising lithium chloride and an organic chloride salt
BR112013007941A2 (en) * 2010-11-08 2016-06-14 Evonik Degussa Gmbh working medium for heat absorption pumps
WO2012114456A1 (en) * 2011-02-22 2012-08-30 株式会社日立製作所 Two-stage absorption refrigerating machine and method for manufacturing same
EP2803923B1 (en) * 2013-05-15 2017-11-29 Ago Ag Energie + Anlagen Absorption process and machine
JP6992234B2 (en) * 2017-07-27 2022-01-13 学校法人八戸工業大学 Liquid composition measuring device and liquid composition measuring method in absorption chiller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101972542B1 (en) * 2017-12-08 2019-04-26 한국에너지기술연구원 Absorption refrigeration system

Also Published As

Publication number Publication date
JPH07139844A (en) 1995-06-02

Similar Documents

Publication Publication Date Title
JP3013673B2 (en) Absorption refrigerator
US6247331B1 (en) Absorption refrigerator and the method of producing the same
JPH05172437A (en) Method and device for cooling fluid, particularly air by two separated absorption cooling system
KR19990022970A (en) Compression and Absorption Hybrid Heat Pump
JP2829080B2 (en) Absorption heat pump
JPH08159594A (en) Multiple effect absorption refrigerator
US5806325A (en) Absorption type refrigerator
KR100981672B1 (en) Two-stage driven hot water absorption chiller
JP3397164B2 (en) Heat pump cycle type absorption refrigeration and heating simultaneous removal machine and method
KR101127521B1 (en) Single-effect, double stage generator, hot water driven absorption chiller
JP2858908B2 (en) Absorption air conditioner
JPH074769A (en) Single and double effect absorption refrigerating device
JP2007333342A (en) Multi-effect absorption refrigerating machine
JP3443100B2 (en) Absorption refrigerator and method of operating the same
JP3889655B2 (en) Absorption refrigerator
JP3832191B2 (en) Absorption refrigerator
JP3859567B2 (en) Hybrid air conditioner
JP3813348B2 (en) Absorption refrigerator
JP2012068019A (en) Absorption refrigerating machine
JP3486382B2 (en) Absorption refrigerator
JP5711680B2 (en) Absorption refrigerator
JP3484142B2 (en) 2-stage double-effect absorption refrigerator
JP3715157B2 (en) 2-stage double-effect absorption refrigerator
WO2002018851A1 (en) Absorption refrigerating machine
JP2004169988A (en) Two-stage/single-stage switchable absorption refrigerator and refrigerating system

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071217

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071217

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071217

Year of fee payment: 8

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071217

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121217

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 14

EXPY Cancellation because of completion of term