JP4887872B2 - Absorption refrigeration system - Google Patents

Absorption refrigeration system Download PDF

Info

Publication number
JP4887872B2
JP4887872B2 JP2006104002A JP2006104002A JP4887872B2 JP 4887872 B2 JP4887872 B2 JP 4887872B2 JP 2006104002 A JP2006104002 A JP 2006104002A JP 2006104002 A JP2006104002 A JP 2006104002A JP 4887872 B2 JP4887872 B2 JP 4887872B2
Authority
JP
Japan
Prior art keywords
absorber
refrigerant
generator
evaporator
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006104002A
Other languages
Japanese (ja)
Other versions
JP2007278573A (en
Inventor
満嗣 河合
克宏 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2006104002A priority Critical patent/JP4887872B2/en
Publication of JP2007278573A publication Critical patent/JP2007278573A/en
Application granted granted Critical
Publication of JP4887872B2 publication Critical patent/JP4887872B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

本願発明は、吸収式冷凍装置に関するものである。   The present invention relates to an absorption refrigeration apparatus.

LiBr水溶液の濃度変化を利用したLiBr式の吸収式冷凍装置は、従来からよく知られているが、この種の吸収式冷凍装置において、吸収器に入る溶液(濃溶液)を空冷熱交換器にて過冷却し、吸収器では、冷媒蒸気(水蒸気)を溶液に吸収させるだけとする間接空冷(溶液分離冷却)方式を採用しているものが既に提案されている(特許文献1参照)。   LiBr type absorption refrigeration apparatuses that utilize changes in the concentration of LiBr aqueous solution are well known in the past. In this type of absorption refrigeration apparatus, the solution (concentrated solution) that enters the absorber is used as an air-cooled heat exchanger. In the absorber, an indirect air cooling (solution separation cooling) system in which only the refrigerant vapor (water vapor) is absorbed by the solution has been proposed (see Patent Document 1).

特開平7−98163号公報。JP-A-7-98163.

ところで、上記特許文献1に開示されている間接空冷(溶液分離冷却)方式を採用した場合、冷媒蒸気の吸収という物質移動と冷却という熱移動とが分離されているため、吸収器を小型化することが可能であるが、冷媒蒸気の吸収熱を、過冷却された溶液の保有する顕熱だけで処理することとなっているため、吸収器出口における溶液温度が、従来の直接空冷方式の場合よりも高温となるおそれがあり、蒸発器における蒸発温度が上昇し、蒸発器における冷水出口温度(即ち、利用側温度)が低下しにくくなるという不具合が起きる。また、間接空冷(溶液分離冷却)方式を採用した場合、発生器における排熱温度も高くなり、発生器での交換熱量が減少するという不具合が起きる。   By the way, when the indirect air cooling (solution separation cooling) method disclosed in Patent Document 1 is adopted, the mass transfer called absorption of refrigerant vapor and the heat transfer called cooling are separated, so the absorber is downsized. However, since the absorption heat of the refrigerant vapor is processed only by the sensible heat of the supercooled solution, the solution temperature at the absorber outlet is the case of the conventional direct air cooling method. The evaporating temperature in the evaporator rises and the cold water outlet temperature (that is, the use side temperature) in the evaporator becomes difficult to decrease. In addition, when the indirect air cooling (solution separation cooling) method is adopted, the exhaust heat temperature in the generator becomes high, resulting in a problem that the amount of exchange heat in the generator is reduced.

本願発明は、上記の点に鑑みてなされたもので、冷水出口温度(即ち、利用側温度)の低下を可能とするとともに、発生器での排熱温度を低下させ得るようにすることを目的としている。   The present invention has been made in view of the above points, and it is an object of the present invention to make it possible to reduce the temperature of the chilled water outlet (that is, the use side temperature) and to reduce the exhaust heat temperature at the generator. It is said.

本願発明では、上記課題を解決するための第1の手段として、発生器G、該発生器Gから得られた冷媒蒸気Rsを凝縮液化する凝縮器C、該凝縮器Cで凝縮液化された冷媒Rwを蒸発気化させる蒸発器Eおよび該蒸発器Eで蒸発気化された冷媒蒸気Rsを前記発生器Gで得られた濃溶液Lcに吸収して前記発生器Gへ供給される希溶液Ldを生成する吸収器Aを備えた吸収式冷凍装置において、前記蒸発器Eと前記吸収器Aとを水平に並べて一体化してなるユニットU,Uを上下方向に2段積層し且つ前記下段側の吸収器Aの出口からの希溶液Ldの大部分を空冷熱交換器Haにより過冷却した状態で前記上段側の吸収器Aの上部に還流させる還流回路6を付設する一方、前記上段側の蒸発器Eにおける熱交換部7および前記下段側の吸収器Aにおける熱交換部8を循環する冷媒回路9を設け且つ該冷媒回路9をフロン系冷媒が自然循環するように構成するとともに、前記下段側の吸収器Aの出口からの希溶液Ldを第2の空冷熱交換器Ha′で過冷却した状態で前記下段側の吸収器Aの上部に還流する第2の還流回路12を付設している。 In the present invention, as a first means for solving the above problems, the generator G, the condenser C that condenses and liquefies the refrigerant vapor Rs obtained from the generator G, and the liquid condensed and liquefied by the condenser C An evaporator E for evaporating and evaporating the refrigerant Rw, and a refrigerant solution Rc evaporated and evaporated by the evaporator E is absorbed in the concentrated solution Lc obtained by the generator G, and a dilute solution Ld supplied to the generator G is obtained. In the absorption refrigeration apparatus including the absorber A to be generated, the units U and U formed by horizontally arranging and integrating the evaporator E and the absorber A are stacked in two stages in the vertical direction, and the lower side absorption is performed. A reflux circuit 6 is provided for refluxing the upper part of the upper absorber A in a state where most of the dilute solution Ld from the outlet of the vessel A is supercooled by the air-cooling heat exchanger Ha, while the upper evaporator. Absorption on the heat exchanging part 7 and the lower side in E With a refrigerant circuit 9 provided and the refrigerant circuit 9 for circulating a heat-exchange unit 8 in A is fluorocarbon refrigerant configured to natural circulation, a dilute solution Ld from the exit of the absorber A of the lower side second A second recirculation circuit 12 that recirculates in the upper part of the lower-stage absorber A in a state of being supercooled by the air-cooled heat exchanger Ha ′ is attached .

上記のように構成したことにより、下段側の吸収器Aの出口からの希溶液Ldの大部分は、空冷熱交換器Haを経て過冷却状態で上段側の吸収器Aの上部に還流されるが、下段側の吸収器Aの出口からの希溶液Ldの一部は、発生器Gにおいて濃縮されて濃溶液となり、該濃溶液Lcは、上段側の吸収器Aの上部に供給される。従って、ユニットU,Uにおいては、上段側の吸収器Aでは上段側の蒸発器Eで蒸発した冷媒蒸気Rsが濃溶液Ldに吸収され、冷媒蒸気Rsの吸収により希釈された溶液は下段側の吸収器Aに流入する。そのとき発生する吸収熱は、過冷却された溶液が保有する顕熱で取り去られる。一方、下段側の吸収器Aでは下段側の蒸発器Eで蒸発した冷媒蒸気Rsを吸収してさらに希釈され、そのとき発生する吸収熱は、冷媒回路を構成する下段側の吸収器Aの熱交換部8を流れるフロン系冷媒の蒸発潜熱により取り去られる。このことにより、下段側の蒸発器Eにおける蒸発温度を低くすることができるとともに、上段側の蒸発器Eにおける蒸発温度を高くすることができることとなり、下段側での冷凍能力を確保できるとともに、下段側の吸収器Aの出口の溶液の濃度が低下することによって、発生器Gでの加熱媒体(例えば、排温水)Whの温度が低くなって、発生器Gでの加熱量が増加する。しかも、冷媒回路9はフロン系冷媒が自然循環するものとしているので、冷媒循環用の圧送手段が不要となり、コストダウンを図り得る。また、前記下段側の吸収器Aの出口からの希溶液Ldを第2の空冷熱交換器Ha′で過冷却した状態で前記下段側の吸収器Aの上部に還流する第2の還流回路12を付設したことにより、下段側の吸収器Aからの希溶液Ldの一部は、第2の空冷熱交換器Ha′で過冷却された後に下段側の吸収器Aの上部に還流されることとなり、下段側の吸収器Aにおける吸収熱の除去がより一層効果的に行える。 By configuring as described above, most of the diluted solution Ld from the outlet of the lower-side absorber A is refluxed to the upper portion of the upper-side absorber A in the supercooled state via the air-cooled heat exchanger Ha. However, a part of the diluted solution Ld from the outlet of the lower-stage absorber A is concentrated in the generator G to become a concentrated solution, and the concentrated solution Lc is supplied to the upper part of the upper-stage absorber A. Therefore, in the units U and U, in the upper-side absorber A, the refrigerant vapor Rs evaporated by the upper-stage evaporator E is absorbed by the concentrated solution Ld, and the solution diluted by the absorption of the refrigerant vapor Rs is the lower-stage side. It flows into the absorber A. The absorbed heat generated at that time is removed by the sensible heat of the supercooled solution. On the other hand, in the lower-stage absorber A, the refrigerant vapor Rs evaporated in the lower-stage evaporator E is absorbed and further diluted, and the heat generated at that time is the heat of the lower-stage absorber A constituting the refrigerant circuit. It is removed by the latent heat of vaporization of the chlorofluorocarbon refrigerant flowing through the exchange unit 8. As a result, the evaporation temperature in the lower-stage evaporator E can be lowered, the evaporation temperature in the upper-stage evaporator E can be increased, the refrigerating capacity on the lower stage side can be secured, and the lower stage As the concentration of the solution at the outlet of the absorber A on the side decreases, the temperature of the heating medium (for example, waste water) Wh in the generator G decreases, and the amount of heating in the generator G increases. In addition, since the refrigerant circuit 9 naturally circulates the chlorofluorocarbon-based refrigerant, no pressure-feeding means for circulating the refrigerant is required, and the cost can be reduced. The second reflux circuit 12 circulates the dilute solution Ld from the outlet of the lower-stage absorber A to the upper portion of the lower-stage absorber A while being supercooled by the second air-cooled heat exchanger Ha ′. As a result, a part of the dilute solution Ld from the lower absorber A is supercooled by the second air-cooled heat exchanger Ha ′ and then refluxed to the upper portion of the lower absorber A. Thus, the absorption heat in the lower absorber A can be more effectively removed.

本願発明では、上記課題を解決するための第2の手段として、発生器G、該発生器Gから得られた冷媒蒸気Rsを凝縮液化する凝縮器C、該凝縮器Cで凝縮液化された液冷媒Rwを蒸発気化させる蒸発器Eおよび該蒸発器Eで蒸発気化された冷媒蒸気Rsを前記発生器Gで得られた濃溶液Lcに吸収して前記発生器Gへ供給される希溶液Ldを生成する吸収器Aを備えた吸収式冷凍装置において、前記蒸発器Eと前記吸収器Aとを水平に並べて一体化してなるユニットU,Uを上下方向に2段積層し且つ前記下段側の吸収器Aの出口からの希溶液Ldの大部分を空冷熱交換器Haにより過冷却した状態で前記上段側の吸収器Aの上部に還流させる還流回路6を付設する一方、前記上段側の蒸発器Eにおける熱交換部7および前記下段側の吸収器Aにおける熱交換部8を循環する冷媒回路9を設け且つ該冷媒回路9をフロン系冷媒が自然循環するように構成するとともに、前記空冷熱交換器Haを出た希溶液Ldを、前記上段側および下段側の吸収器A,Aの上部にそれぞれ還流させるように構成している。 In the present invention, as the second means for solving the above SL problem, generator G, condenser C to condense and liquefy the refrigerant vapor Rs obtained from the generator G, which is condensed and liquefied by the condenser C The evaporator E that evaporates and vaporizes the liquid refrigerant Rw, and the dilute solution Ld that is supplied to the generator G by absorbing the refrigerant vapor Rs evaporated and evaporated in the evaporator E into the concentrated solution Lc obtained by the generator G. In the absorption refrigeration apparatus provided with the absorber A that produces the above, the units U and U, in which the evaporator E and the absorber A are horizontally aligned and integrated, are stacked in two stages in the vertical direction, and the lower stage side While a reflux circuit 6 is attached to the upper part of the upper absorber A in a state where most of the dilute solution Ld from the outlet of the absorber A is supercooled by the air-cooling heat exchanger Ha, the upper side evaporation is performed. Absorption in the heat exchanging part 7 and the lower stage in the heater E A refrigerant circuit 9 that circulates through the heat exchange section 8 in A is provided, and the refrigerant circuit 9 is configured so that the chlorofluorocarbon refrigerant naturally circulates, and the dilute solution Ld that exits the air-cooled heat exchanger Ha is And it is constituted so that it may recirculate to the upper part of absorbers A and A of the lower stage side, respectively.

上記のように構成したことにより、下段側の吸収器Aの出口からの希溶液Ldの大部分は、空冷熱交換器Haを経て過冷却状態で上段側の吸収器Aの上部に還流されるが、下段側の吸収器Aの出口からの希溶液Ldの一部は、発生器Gにおいて濃縮されて濃溶液となり、該濃溶液Lcは、上段側の吸収器Aの上部に供給される。従って、ユニットU,Uにおいては、上段側の吸収器Aでは上段側の蒸発器Eで蒸発した冷媒蒸気Rsが濃溶液Ldに吸収され、冷媒蒸気Rsの吸収により希釈された溶液は下段側の吸収器Aに流入する。そのとき発生する吸収熱は、過冷却された溶液が保有する顕熱で取り去られる。一方、下段側の吸収器Aでは下段側の蒸発器Eで蒸発した冷媒蒸気Rsを吸収してさらに希釈され、そのとき発生する吸収熱は、冷媒回路を構成する下段側の吸収器Aの熱交換部8を流れるフロン系冷媒の蒸発潜熱により取り去られる。このことにより、下段側の蒸発器Eにおける蒸発温度を低くすることができるとともに、上段側の蒸発器Eにおける蒸発温度を高くすることができることとなり、下段側での冷凍能力を確保できるとともに、下段側の吸収器Aの出口の溶液の濃度が低下することによって、発生器Gでの加熱媒体(例えば、排温水)Whの温度が低くなって、発生器Gでの加熱量が増加する。しかも、冷媒回路9はフロン系冷媒が自然循環するものとしているので、冷媒循環用の圧送手段が不要となり、コストダウンを図り得る。また、前記空冷熱交換器Haを出た希溶液Ldを、前記上段側および下段側の吸収器A,Aの上部にそれぞれ還流させるように構成したことにより、空冷熱交換器Haによって過冷却状態とされた希溶液Ldが上段側および下段側の吸収器A,Aの上部にそれぞれ還流されることとなり、上段側および下段側の吸収器A,Aにおける吸収熱の除去がより一層効果的に行える。By configuring as described above, most of the diluted solution Ld from the outlet of the lower-side absorber A is refluxed to the upper portion of the upper-side absorber A in the supercooled state via the air-cooled heat exchanger Ha. However, a part of the diluted solution Ld from the outlet of the lower-stage absorber A is concentrated in the generator G to become a concentrated solution, and the concentrated solution Lc is supplied to the upper part of the upper-stage absorber A. Therefore, in the units U and U, in the upper-side absorber A, the refrigerant vapor Rs evaporated by the upper-stage evaporator E is absorbed by the concentrated solution Ld, and the solution diluted by the absorption of the refrigerant vapor Rs is the lower-stage side. It flows into the absorber A. The absorbed heat generated at that time is removed by the sensible heat of the supercooled solution. On the other hand, in the lower-stage absorber A, the refrigerant vapor Rs evaporated in the lower-stage evaporator E is absorbed and further diluted, and the heat generated at that time is the heat of the lower-stage absorber A constituting the refrigerant circuit. It is removed by the latent heat of vaporization of the chlorofluorocarbon refrigerant flowing through the exchange unit 8. As a result, the evaporation temperature in the lower-stage evaporator E can be lowered, the evaporation temperature in the upper-stage evaporator E can be increased, the refrigerating capacity on the lower stage side can be secured, and the lower stage As the concentration of the solution at the outlet of the absorber A on the side decreases, the temperature of the heating medium (for example, waste water) Wh in the generator G decreases, and the amount of heating in the generator G increases. In addition, since the refrigerant circuit 9 naturally circulates the chlorofluorocarbon-based refrigerant, no pressure-feeding means for circulating the refrigerant is required, and the cost can be reduced. In addition, the dilute solution Ld exiting the air-cooled heat exchanger Ha is recirculated to the upper portions of the upper and lower absorbers A and A, respectively, so that the air-cooled heat exchanger Ha is in a supercooled state. The diluted solution Ld is refluxed to the upper portions of the upper and lower absorbers A and A, respectively, and the removal of absorbed heat in the upper and lower absorbers A and A is more effectively performed. Yes.

本願発明では、さらに、上記課題を解決するための第の手段として、上記第1又は第2の手段を備えた吸収式冷凍装置において、前記冷媒回路9に、前記下段側の吸収器Aにおける熱交換部8と前記上段側の蒸発器Eにおける熱交換部7との間であって前記上段側の蒸発器Eより上位に位置する冷媒冷却器Hrを介設することもでき、そのように構成した場合、冷媒回路9における下段側の吸収器Aの熱交換部8において吸収熱を吸熱して蒸発したフロン系冷媒が冷媒冷却器Hrにおいて冷却された状態で上段側の蒸発器Eの熱交換部7に供給され、当該熱交換部7において凝縮器Cから供給される冷媒(液冷媒)の蒸発によって凝縮液化とされることとなり、下段側の蒸発器Eでの冷凍能力をより確実に確保できる。 In the present invention, as a third means for solving the above-described problem, in the absorption refrigeration apparatus including the first or second means, the refrigerant circuit 9 is connected to the lower-stage absorber A. A refrigerant cooler Hr positioned between the heat exchanging unit 8 and the heat exchanging unit 7 in the upper-stage evaporator E and higher than the upper-stage evaporator E can also be interposed. When configured, the heat of the evaporator E on the upper stage in a state in which the chlorofluorocarbon refrigerant that has absorbed and evaporated the heat absorbed in the heat exchanging section 8 of the absorber A on the lower stage in the refrigerant circuit 9 is cooled in the refrigerant cooler Hr. The refrigerant (liquid refrigerant) supplied to the exchange unit 7 and evaporated from the condenser C in the heat exchange unit 7 is condensed and liquefied, and the refrigerating capacity in the lower-stage evaporator E is more reliably ensured. It can be secured.

本願発明では、さらに、上記課題を解決するための第の手段として、上記第1、第2又は第の手段を備えた吸収式冷凍装置において、前記発生器Gからの濃溶液Lcと前記下段側の吸収器Aの出口からの希溶液Ldとを、前記空冷熱交換器Haの入口側で合流させるように構成することもでき、そのように構成した場合、下段側の吸収器Aからの溶液の大部分は、発生器Gにおいて冷媒蒸気Rsを発生して濃縮された濃溶液Lcと合流した後に空冷熱交換器Haで過冷却された状態で上段側の吸収器Aの上部へ還流されることとなり、上段側の吸収器Aに還流される溶液温度を低く抑えることができ、吸収熱の除去が容易となる。 In the present invention, as a fourth means for solving the above-described problem, in the absorption refrigeration apparatus including the first , second or third means, the concentrated solution Lc from the generator G and the The dilute solution Ld from the outlet of the lower-side absorber A can also be configured to merge on the inlet side of the air-cooled heat exchanger Ha. In such a case, from the lower-side absorber A, Most of the solution is recirculated to the upper part of the upper absorber A in a state where it is supercooled by the air-cooled heat exchanger Ha after joining the concentrated solution Lc generated by generating the refrigerant vapor Rs in the generator G. As a result, the temperature of the solution refluxed to the absorber A on the upper stage side can be kept low, and the absorption heat can be easily removed.

本願発明では、さらに、上記課題を解決するための第5の手段として、上記第1、第2又は第の手段を備えた吸収式冷凍装置において、前記発生器Gからの濃溶液Lcと前記下段側の吸収器Aの出口からの希溶液Ldとを、前記空冷熱交換器Haの出口側で合流させるように構成することもでき、そのように構成した場合、下段側の吸収器Aからの希溶液Ldの大部分は、空冷熱交換器Haで過冷却された後に発生器Gにおいて冷媒蒸気Rsを発生して濃縮された濃溶液Lcと合流して上段側の吸収器Aの上部へ還流されることとなり、上段側の吸収器Aにおける吸収熱の発生量を抑制でき、吸収熱の除去が容易となる。なお、上段側の吸収器Aへ還流される溶液の温度が少し高くなるが、発生器Gからの濃溶液Lcの量が少ないので問題とはならない。 In the present invention, as a fifth means for solving the above-described problem, in the absorption refrigeration apparatus including the first , second, or third means, the concentrated solution Lc from the generator G and the The dilute solution Ld from the outlet of the lower-side absorber A can also be configured to merge on the outlet side of the air-cooled heat exchanger Ha, and in this case, from the lower-side absorber A Most of the dilute solution Ld is supercooled by the air-cooling heat exchanger Ha and then merged with the concentrated solution Lc generated by generating the refrigerant vapor Rs in the generator G to the upper part of the upper absorber A. As a result, the amount of heat generated in the upper absorber A can be suppressed, and the heat absorbed can be easily removed. Although the temperature of the solution refluxed to the upper absorber A is slightly higher, there is no problem because the amount of the concentrated solution Lc from the generator G is small.

本願発明の第1の手段によれば、発生器G、該発生器Gから得られた冷媒蒸気Rsを凝縮液化する凝縮器C、該凝縮器Cで凝縮液化された冷媒Rwを蒸発気化させる蒸発器Eおよび該蒸発器Eで蒸発気化された冷媒蒸気Rsを前記発生器Gで得られた濃溶液Lcに吸収して前記発生器Gへ供給される希溶液Ldを生成する吸収器Aを備えた吸収式冷凍装置において、前記蒸発器Eと前記吸収器Aとを水平に並べて一体化してなるユニットU,Uを上下方向に2段積層し且つ前記下段側の吸収器Aの出口からの希溶液Ldの大部分を空冷熱交換器Haにより過冷却した状態で前記上段側の吸収器Aの上部に還流させる還流回路6を付設する一方、前記上段側の蒸発器Eにおける熱交換部7および前記下段側の吸収器Aにおける熱交換部8を循環する冷媒回路9を設け且つ該冷媒回路9をフロン系冷媒が自然循環するように構成して、ユニットU,Uにおいては、上段側の吸収器Aでは上段側の蒸発器Eで蒸発した冷媒蒸気Rsが濃溶液Ldに吸収され、冷媒蒸気Rsの吸収により希釈された溶液は下段側の吸収器Aに流入し、そのとき発生する吸収熱は、過冷却された溶液が保有する顕熱で取り去られる一方、下段側の吸収器Aでは下段側の蒸発器Eで蒸発した冷媒蒸気Rsを吸収してさらに希釈され、そのとき発生する吸収熱は、冷媒回路を構成する下段側の吸収器Aの熱交換部8を流れるフロン系冷媒の蒸発潜熱により取り去られるようにしたので、下段側の蒸発器Eにおける蒸発温度を低くすることができるとともに、上段側の蒸発器Eにおける蒸発温度を高くすることができることとなり、下段側での冷凍能力を確保できるとともに、下段側の吸収器Aの出口の溶液の濃度が低下することによって、発生器Gでの加熱媒体(例えば、排温水)Whの温度が低くなって、発生器Gでの加熱量が増加するという効果がある。しかも、冷媒回路9はフロン系冷媒が自然循環するものとしているので、冷媒循環用の圧送手段が不要となり、コストダウンを図り得るという効果もある。また、前記下段側の吸収器Aの出口からの希溶液Ldを第2の空冷熱交換器Ha′で過冷却した状態で前記下段側の吸収器Aの上部に還流する第2の還流回路12を付設して、前記空冷熱交換器Haを出た希溶液Ldを、前記上段側および下段側の吸収器A,Aの上部にそれぞれ還流させるように構成したことにより、空冷熱交換器Haによって過冷却状態とされた希溶液Ldが上段側および下段側の吸収器A,Aの上部にそれぞれ還流されることとなり、上段側および下段側の吸収器A,Aにおける吸収熱の除去がより一層効果的に行えるという効果もある。 According to the first means of the present invention, the generator G, the condenser C that condenses and liquefies the refrigerant vapor Rs obtained from the generator G, and the liquid refrigerant Rw condensed and liquefied by the condenser C is evaporated. An evaporator A and an absorber A that absorbs the refrigerant vapor Rs evaporated by the evaporator E into the concentrated solution Lc obtained by the generator G to generate a diluted solution Ld supplied to the generator G. In the absorption refrigeration apparatus provided, the units U and U, in which the evaporator E and the absorber A are horizontally arranged and integrated, are stacked in two stages in the vertical direction, and from the outlet of the absorber A on the lower stage side. While a reflux circuit 6 is provided for refluxing the upper part of the upper absorber A in a state in which most of the dilute solution Ld is supercooled by the air-cooled heat exchanger Ha, the heat exchanger 7 in the upper evaporator E is provided. And the heat exchanging section 8 in the lower absorber A. The provided and the refrigerant circuit 9 refrigerant circuit 9 fluorocarbon refrigerant configured to natural circulation to the unit U, in the U, the refrigerant vapor evaporated in the evaporator E in the upper side of the absorber A, the upper side Rs is absorbed by the concentrated solution Ld, and the solution diluted by the absorption of the refrigerant vapor Rs flows into the lower absorber A, and the absorbed heat generated at this time is removed by the sensible heat held by the supercooled solution. On the other hand, in the lower-stage absorber A, the refrigerant vapor Rs evaporated in the lower-stage evaporator E is absorbed and further diluted, and the heat generated at this time is absorbed by the lower-stage absorber A constituting the refrigerant circuit. Since it is removed by the latent heat of vaporization of the chlorofluorocarbon refrigerant flowing through the heat exchanging section 8, the evaporation temperature in the lower evaporator E can be lowered and the evaporation temperature in the upper evaporator E can be increased. In Thus, the refrigeration capacity on the lower side can be ensured, and the concentration of the solution at the outlet of the lower-side absorber A decreases, so that the temperature of the heating medium (for example, waste water) Wh in the generator G is reduced. There is an effect that the amount of heating in the generator G increases as the temperature decreases. In addition, since the refrigerant circuit 9 naturally circulates the chlorofluorocarbon refrigerant, there is no need for a pressure circulating means for circulating the refrigerant, and there is an effect that the cost can be reduced. The second reflux circuit 12 circulates the dilute solution Ld from the outlet of the lower-stage absorber A to the upper portion of the lower-stage absorber A while being supercooled by the second air-cooled heat exchanger Ha ′. And the dilute solution Ld discharged from the air-cooled heat exchanger Ha is recirculated to the upper parts of the upper and lower absorbers A and A, respectively, so that the air-cooled heat exchanger Ha The supercooled dilute solution Ld is recirculated to the upper portions of the upper and lower absorbers A and A, respectively, and the absorption heat in the upper and lower absorbers A and A is further removed. There is also an effect that it can be done effectively.

本願発明の第2の手段によれば発生器G、該発生器Gから得られた冷媒蒸気Rsを凝縮液化する凝縮器C、該凝縮器Cで凝縮液化された液冷媒Rwを蒸発気化させる蒸発器Eおよび該蒸発器Eで蒸発気化された冷媒蒸気Rsを前記発生器Gで得られた濃溶液Lcに吸収して前記発生器Gへ供給される希溶液Ldを生成する吸収器Aを備えた吸収式冷凍装置において、前記蒸発器Eと前記吸収器Aとを水平に並べて一体化してなるユニットU,Uを上下方向に2段積層し且つ前記下段側の吸収器Aの出口からの希溶液Ldの大部分を空冷熱交換器Haにより過冷却した状態で前記上段側の吸収器Aの上部に還流させる還流回路6を付設する一方、前記上段側の蒸発器Eにおける熱交換部7および前記下段側の吸収器Aにおける熱交換部8を循環する冷媒回路9を設け且つ該冷媒回路9をフロン系冷媒が自然循環するように構成して、ユニットU,Uにおいては、上段側の吸収器Aでは上段側の蒸発器Eで蒸発した冷媒蒸気Rsが濃溶液Ldに吸収され、冷媒蒸気Rsの吸収により希釈された溶液は下段側の吸収器Aに流入し、そのとき発生する吸収熱は、過冷却された溶液が保有する顕熱で取り去られる一方、下段側の吸収器Aでは下段側の蒸発器Eで蒸発した冷媒蒸気Rsを吸収してさらに希釈され、そのとき発生する吸収熱は、冷媒回路を構成する下段側の吸収器Aの熱交換部8を流れるフロン系冷媒の蒸発潜熱により取り去られるようにしたので、下段側の蒸発器Eにおける蒸発温度を低くすることができるとともに、上段側の蒸発器Eにおける蒸発温度を高くすることができることとなり、下段側での冷凍能力を確保できるとともに、下段側の吸収器Aの出口の溶液の濃度が低下することによって、発生器Gでの加熱媒体(例えば、排温水)Whの温度が低くなって、発生器Gでの加熱量が増加するという効果がある。しかも、冷媒回路9はフロン系冷媒が自然循環するものとしているので、冷媒循環用の圧送手段が不要となり、コストダウンを図り得るという効果もある。また、前記空冷熱交換器Haを出た希溶液Ldを、前記上段側および下段側の吸収器A,Aの上部にそれぞれ還流させるように構成したことにより、空冷熱交換器Haによって過冷却状態とされた希溶液Ldが上段側および下段側の吸収器A,Aの上部にそれぞれ還流されることとなり、上段側および下段側の吸収器A,Aにおける吸収熱の除去がより一層効果的に行えるという効果もある。 According to the second means of the present invention, the generator G, the condenser C that condenses and liquefies the refrigerant vapor Rs obtained from the generator G, and the liquid refrigerant Rw condensed and liquefied by the condenser C is evaporated. An evaporator A and an absorber A that absorbs the refrigerant vapor Rs evaporated by the evaporator E into the concentrated solution Lc obtained by the generator G to generate a diluted solution Ld supplied to the generator G. In the absorption refrigeration apparatus provided, the units U and U, in which the evaporator E and the absorber A are horizontally arranged and integrated, are stacked in two stages in the vertical direction, and from the outlet of the absorber A on the lower stage side. While a reflux circuit 6 is provided for refluxing the upper part of the upper absorber A in a state in which most of the dilute solution Ld is supercooled by the air-cooled heat exchanger Ha, the heat exchanger 7 in the upper evaporator E is provided. And the heat exchanging section 8 in the lower absorber A. In the units U and U, the refrigerant vapor evaporated by the upper evaporator E in the upper absorber A in the units U and U is provided. Rs is absorbed by the concentrated solution Ld, and the solution diluted by the absorption of the refrigerant vapor Rs flows into the lower absorber A, and the absorbed heat generated at this time is removed by the sensible heat held by the supercooled solution. On the other hand, in the lower-stage absorber A, the refrigerant vapor Rs evaporated in the lower-stage evaporator E is absorbed and further diluted, and the heat generated at this time is absorbed by the lower-stage absorber A constituting the refrigerant circuit. Since it is removed by the latent heat of vaporization of the chlorofluorocarbon refrigerant flowing through the heat exchanging section 8, the evaporation temperature in the lower evaporator E can be lowered and the evaporation temperature in the upper evaporator E can be increased. In Thus, the refrigeration capacity on the lower side can be ensured, and the concentration of the solution at the outlet of the lower-side absorber A decreases, so that the temperature of the heating medium (for example, waste water) Wh in the generator G is reduced. There is an effect that the amount of heating in the generator G increases as the temperature decreases. In addition, since the refrigerant circuit 9 naturally circulates the chlorofluorocarbon refrigerant, there is no need for a pressure circulating means for circulating the refrigerant, and there is an effect that the cost can be reduced. In addition, the dilute solution Ld exiting the air-cooled heat exchanger Ha is recirculated to the upper portions of the upper and lower absorbers A and A, respectively, so that the air-cooled heat exchanger Ha is in a supercooled state. The diluted solution Ld is refluxed to the upper portions of the upper and lower absorbers A and A, respectively, and the removal of absorbed heat in the upper and lower absorbers A and A is more effectively performed. There is also an effect that can be done.

本願発明の第の手段におけるように、上記第1又は第2の手段を備えた吸収式冷凍装置において、前記冷媒回路9に、前記下段側の吸収器Aにおける熱交換部8と前記上段側の蒸発器Eにおける熱交換部7との間であって前記上段側の蒸発器Eより上位に位置する冷媒冷却器Hrを介設することもでき、そのように構成した場合、冷媒回路9における下段側の吸収器Aの熱交換部8において吸収熱を吸熱して蒸発したフロン系冷媒が冷媒冷却器Hrにおいて冷却された状態で上段側の蒸発器Eの熱交換部7に供給され、当該熱交換部7において凝縮器Cから供給される冷媒(液冷媒)の蒸発によって凝縮液化とされることとなり、下段側の蒸発器Eでの冷凍能力をより確実に確保できる。 As in the third means of the present invention, in the absorption refrigeration apparatus provided with the first or second means, the refrigerant circuit 9 is connected to the heat exchanging portion 8 and the upper stage side in the lower stage absorber A. A refrigerant cooler Hr located between the upper-stage evaporator E and the heat exchanger 7 in the evaporator E can also be interposed. The fluorocarbon refrigerant that has absorbed and absorbed the heat of absorption in the heat exchanger 8 of the lower-stage absorber A is supplied to the heat exchanger 7 of the upper-stage evaporator E while being cooled in the refrigerant cooler Hr. In the heat exchanging unit 7, the refrigerant (liquid refrigerant) supplied from the condenser C is condensed and liquefied, and the refrigerating capacity in the lower-stage evaporator E can be more reliably ensured.

本願発明の第の手段におけるように、上記第1、第2又は第の手段を備えた吸収式冷凍装置において、前記発生器Gからの濃溶液Lcと前記下段側の吸収器Aの出口からの希溶液Ldとを、前記空冷熱交換器Haの入口側で合流させるように構成することもでき、そのように構成した場合、下段側の吸収器Aからの溶液の大部分は、発生器Gにおいて冷媒蒸気Rsを発生して濃縮された濃溶液Lcと合流した後に空冷熱交換器Haで過冷却された状態で上段側の吸収器Aの上部へ還流されることとなり、上段側の吸収器Aに還流される溶液温度を低く抑えることができ、吸収熱の除去が容易となる。 As in the fourth means of the present invention, in the absorption refrigeration apparatus provided with the first , second or third means, the concentrated solution Lc from the generator G and the outlet of the lower absorber A The dilute solution Ld from the air-cooled heat exchanger Ha can be combined with the diluted solution Ld from the air-cooled heat exchanger Ha. In this case, most of the solution from the lower-stage absorber A is generated. The refrigerant vapor Rs is generated in the condenser G and merged with the concentrated solution Lc, which is then supercooled by the air-cooling heat exchanger Ha, and then returned to the upper part of the upper absorber A. The temperature of the solution refluxed to the absorber A can be kept low, and the absorption heat can be easily removed.

本願発明の第の手段におけるように、上記第1、第2又は第の手段を備えた吸収式冷凍装置において、前記発生器Gからの濃溶液Lcと前記下段側の吸収器Aの出口からの希溶液Ldとを、前記空冷熱交換器Haの出口側で合流させるように構成することもでき、そのように構成した場合、下段側の吸収器Aからの希溶液Ldの大部分は、空冷熱交換器Haで過冷却された後に発生器Gにおいて冷媒蒸気Rsを発生して濃縮された濃溶液Lcと合流して上段側の吸収器Aへ還流されることとなり、上段側の吸収器Aにおける吸収熱の発生量を抑制でき、吸収熱の除去が容易となる。なお、上段側の吸収器Aへ還流される溶液の温度が少し高くなるが、発生器Gからの濃溶液Lcの量が少ないので問題とはならない。 As in the fifth means of the present invention, in the absorption refrigeration apparatus provided with the first , second or third means, the concentrated solution Lc from the generator G and the outlet of the lower absorber A And the dilute solution Ld from the air-cooled heat exchanger Ha can be combined with each other, and in that case, most of the dilute solution Ld from the lower-stage absorber A Then, after being supercooled by the air-cooling heat exchanger Ha, the refrigerant G is generated in the generator G and merged with the concentrated concentrated solution Lc to be returned to the upper-side absorber A, where the upper-side absorption is performed. The amount of absorbed heat generated in the vessel A can be suppressed, and the absorbed heat can be easily removed. Although the temperature of the solution refluxed to the upper absorber A is slightly higher, there is no problem because the amount of the concentrated solution Lc from the generator G is small.

以下、添付の図面を参照して、本願発明の幾つかの好適な実施の形態について説明する。   Hereinafter, several preferred embodiments of the present invention will be described with reference to the accompanying drawings.

第1の実施の形態
図1には、本願発明の第1の実施の形態にかかる吸収式冷凍装置における吸収冷凍サイクルが示されている。
First Embodiment FIG. 1 shows an absorption refrigeration cycle in an absorption refrigeration apparatus according to a first embodiment of the present invention.

この吸収冷凍サイクルは、冷媒(例えば、水)を吸収する能力に優れた吸収剤(例えば、LiBr)の水溶液(以下、単に希溶液という)の冷媒吸収能力が増強するように該溶液を加熱媒体(例えば、排温水)Whで加熱して濃縮するための発生器Gと、該発生器Gにおいて溶液から分離した蒸気(冷媒)Rsを導入してこれを冷却することによって液化させる凝縮器Cと、該凝縮器Cによって液化された冷媒Rwを導入して低圧下で蒸発(気化)させる蒸発器Eと、該蒸発器Eで発生した蒸気(冷媒)Rsを吸収するために前記発生器Gで濃縮された濃溶液Lcを収容する吸収器Aと、該吸収器Aで蒸気(冷媒)Rsを吸収したことによって希釈された溶液(希溶液)Ldを濃縮するために再び発生器Gへ送り込むための溶液ポンプPと、該溶液ポンプPから吐出される希溶液Ldの一部(大部分)を導入してこれを冷却する空冷熱交換器Haとを備えており、下段側の吸収器Aの出口からの希溶液Ldを空冷熱交換器Haにより過冷却した状態で前記上段側の吸収器Aの上部に還流させる還流回路6が付設されている。そして、本実施の形態においては、該還流回路6には、発生器Gからの濃溶液Lcと下段側の吸収器Aの出口からの希溶液Ldとを空冷熱交換器Haの入口側で合流させる合流点10が設けられている。符号Hwは吸収器Aから出た希溶液Ldの一部(発生器Gへ供給される希溶液Ld)と発生器Gから出た濃溶液Lcとを熱交換する溶液熱交換器、F1は凝縮器Cを空冷する冷却ファン、F2は空冷熱交換器Haを空冷する冷却ファンである。 In this absorption refrigeration cycle, the solution is heated so that the refrigerant absorption capability of an aqueous solution (hereinafter simply referred to as a dilute solution) of an absorbent (eg, LiBr) excellent in the capability of absorbing the refrigerant (eg, water) is enhanced. A generator G for heating and concentrating (for example, waste water) Wh, and a condenser C for liquefying by introducing steam (refrigerant) Rs separated from the solution in the generator G and cooling it. , An evaporator E that introduces the liquid refrigerant Rw liquefied by the condenser C and evaporates (vaporizes) it under a low pressure, and the generator G for absorbing the vapor (refrigerant) Rs generated in the evaporator E. The absorber A containing the concentrated solution Lc concentrated in step S3, and the solution (dilute solution) Ld diluted by absorbing the vapor (refrigerant) Rs in the absorber A are sent to the generator G again to concentrate. Solution pump P for An air-cooled heat exchanger Ha that introduces a part (most part) of the dilute solution Ld discharged from the solution pump P and cools the dilute solution Ld is provided, and the dilute solution Ld from the outlet of the lower-stage absorber A is provided. Is attached to the upper part of the upper absorber A in a state of being supercooled by the air-cooling heat exchanger Ha. In the present embodiment, the reflux circuit 6 joins the concentrated solution Lc from the generator G and the diluted solution Ld from the outlet of the lower absorber A at the inlet side of the air-cooled heat exchanger Ha. A joining point 10 is provided. Code Hw is the absorber portion of a dilute solution Ld exiting A (generator dilute solution Ld supplied to G) and generator solution heat exchanger and strong solution Lc exiting from G to heat exchange, F 1 is A cooling fan that cools the condenser C by air, and F 2 is a cooling fan that cools the air-cooling heat exchanger Ha by air.

また、この吸収冷凍サイクルにおいては、前記蒸発器Eおよび吸収器Aは一体化されてユニットUを構成している。   In the absorption refrigeration cycle, the evaporator E and the absorber A are integrated to form a unit U.

上記ユニットUは、図2に示すように、蒸発器Eと吸収器Aとを水平に並べて一体化して構成されており、本実施の形態においては、前記ユニットU,Uは上下方向に2段積層されている。ここで、ユニットU,Uにおける蒸発器E,Eおよび吸収器A,Aはそれぞれ連通可能な構造とされている。   As shown in FIG. 2, the unit U is configured by horizontally integrating an evaporator E and an absorber A, and in the present embodiment, the units U and U have two stages in the vertical direction. Are stacked. Here, the evaporators E and E and the absorbers A and A in the units U and U are configured to communicate with each other.

前記各ユニットUにおいては、左側に蒸発器Eを、右側に吸収器をそれぞれ形成してなるプレート1,1・・を複数枚積層し、前記蒸発器Eにおいては、凝縮器Cから供給された凝縮水(液冷媒)が内部を流れる水と熱交換して蒸発気化するとともに、利用側の熱源として冷水Wcが得られる一方、前記吸収器Aにおいては、発生器Gから供給された濃溶液Lcに蒸発器Eから得られた蒸気(冷媒)Rsが吸収されることにより、溶液濃度が希釈されることとなっている。符号2はユニットUの外郭を構成するケーシング、3は蒸発器Eおよび吸収器Aに供給された冷媒(液冷媒)Rwおよび溶液(希溶液)Ldをそれぞれ均等に散布するための散布トレー、4は冷水通路、5は吸収器Aを構成する多孔部材である。なお、前記各プレート1は、熱良導体(例えば、鋼板、ステンレス鋼等)により製作される。 In each unit U, a plurality of plates 1, 1... Formed by forming an evaporator E on the left side and an absorber A on the right side are stacked, and the evaporator E is supplied from a condenser C. The condensed water (liquid refrigerant) exchanges heat with the water flowing inside to evaporate, and cold water Wc is obtained as a heat source on the use side, while in the absorber A, the concentrated solution supplied from the generator G The vapor (refrigerant) Rs obtained from the evaporator E is absorbed by Lc, so that the solution concentration is diluted. Reference numeral 2 denotes a casing constituting the outer shell of the unit U, 3 denotes a spray tray for spraying the refrigerant (liquid refrigerant) Rw and the solution (dilute solution) Ld supplied to the evaporator E and the absorber A evenly, 4 Is a cold water passage, and 5 is a porous member constituting the absorber A. In addition, each said plate 1 is manufactured with a heat good conductor (for example, a steel plate, stainless steel, etc.).

そして、本実施の形態においては、上段側の蒸発器Eにおける熱交換部7および下段側の吸収器Aにおける熱交換部8を循環する冷媒回路9が付設されており、該冷媒回路9は、フロン系冷媒が自然循環するように構成されている。   And in this Embodiment, the refrigerant circuit 9 which circulates through the heat exchange part 7 in the evaporator E of the upper stage side, and the heat exchange part 8 in the absorber A of the lower stage side is attached, and this refrigerant circuit 9 is attached. The fluorocarbon refrigerant is configured to circulate naturally.

上記のように構成したことにより、下段側の吸収器Aの出口からの希溶液Ldの大部分は、空冷熱交換器Haを経て過冷却状態で上段側の吸収器Aの上部に還流されるが、下段側の吸収器Aの出口からの希溶液Ldの一部は、発生器Gにおいて濃縮されて濃溶液となり、該濃溶液Lcは、上段側の吸収器Aの上部に供給される。従って、ユニットU,Uにおいては、上段側の吸収器Aでは上段側の蒸発器Eで蒸発した冷媒蒸気Rsが濃溶液Ldに吸収され、冷媒蒸気Rsの吸収により希釈された溶液は下段側の吸収器Aに流入し、そのとき発生する吸収熱は、過冷却された溶液が保有する顕熱で取り去られる。一方、下段側の吸収器Aでは下段側の蒸発器Eで蒸発した冷媒蒸気Rsを吸収してさらに希釈され、そのとき発生する吸収熱は、冷媒回路9を構成する下段側の吸収器Aの熱交換部8を流れるフロン系冷媒の蒸発潜熱により取り去られることとなる。その結果、下段側の蒸発器Eにおける蒸発温度を低くすることができるとともに、上段側の蒸発器Eにおける蒸発温度を高くすることができることとなり、下段側での冷凍能力を確保できるとともに、下段側の吸収器Aの出口の溶液の濃度が低下することによって、発生器Gでの加熱媒体(例えば、排温水)Whの温度が低くなって、発生器Gでの加熱量が増加する。しかも、冷媒回路9はフロン系冷媒が自然循環するものとしているので、冷媒循環用の圧送手段が不要となり、コストダウンを図り得る。   By configuring as described above, most of the diluted solution Ld from the outlet of the lower-side absorber A is refluxed to the upper portion of the upper-side absorber A in the supercooled state via the air-cooled heat exchanger Ha. However, a part of the diluted solution Ld from the outlet of the lower-stage absorber A is concentrated in the generator G to become a concentrated solution, and the concentrated solution Lc is supplied to the upper part of the upper-stage absorber A. Therefore, in the units U and U, in the upper-side absorber A, the refrigerant vapor Rs evaporated by the upper-stage evaporator E is absorbed by the concentrated solution Ld, and the solution diluted by the absorption of the refrigerant vapor Rs is the lower-stage side. The absorbed heat that flows into the absorber A and is generated at that time is removed by the sensible heat that the supercooled solution has. On the other hand, in the lower-stage absorber A, the refrigerant vapor Rs evaporated in the lower-stage evaporator E is absorbed and further diluted, and the heat generated at that time is absorbed by the lower-stage absorber A constituting the refrigerant circuit 9. It will be removed by the latent heat of vaporization of the chlorofluorocarbon refrigerant flowing through the heat exchange section 8. As a result, the evaporation temperature in the lower-stage evaporator E can be lowered, the evaporation temperature in the upper-stage evaporator E can be increased, the refrigerating capacity on the lower stage side can be secured, and the lower-stage side As the concentration of the solution at the outlet of the absorber A decreases, the temperature of the heating medium (for example, waste water) Wh in the generator G decreases, and the amount of heating in the generator G increases. In addition, since the refrigerant circuit 9 naturally circulates the chlorofluorocarbon-based refrigerant, no pressure-feeding means for circulating the refrigerant is required, and the cost can be reduced.

また、本実施の形態においては、下段側の吸収器Aからの溶液の大部分は、発生器Gにおいて冷媒蒸気Rsを発生して濃縮された濃溶液Lcと合流した後に空冷熱交換器Haで過冷却された状態で上段側の吸収器Aの上部へ還流されることとなっているので、上段側の吸収器Aに還流される溶液温度を低く抑えることができ、上段側の吸収器Aにおける吸収熱の除去が容易となる。   Further, in the present embodiment, most of the solution from the lower-side absorber A is combined with the concentrated solution Lc generated by generating the refrigerant vapor Rs in the generator G and then the air-cooled heat exchanger Ha. Since the solution is refluxed to the upper portion of the upper absorber A in a supercooled state, the solution temperature returned to the upper absorber A can be kept low, and the upper absorber A can be kept low. It is easy to remove the absorbed heat.

第2の実施の形態
図3には、本願発明の第2の実施の形態にかかる吸収式冷凍装置における吸収冷凍サイクルが示されている。
Second Embodiment FIG. 3 shows an absorption refrigeration cycle in an absorption refrigeration apparatus according to a second embodiment of the present invention.

この場合、還流回路6における空冷熱交換器Haの出口側には、発生器Gからの濃溶液Lcを合流させる合流点11が設けられている。このようにすると、下段側の吸収器Aからの希溶液Ldの大部分は、空冷熱交換器Haで過冷却された後に発生器Gにおいて冷媒蒸気Rsを発生して濃縮された濃溶液Lcと合流して上段側の吸収器Aの上部へ還流されることとなり、上段側の吸収器Aにおける吸収熱の発生量を抑制でき、吸収熱の除去が容易となる。なお、上段側の吸収器Aへ還流される溶液の温度が少し高くなるが、発生器Gからの濃溶液Lcの量が少ないので問題とはならない。   In this case, a junction 11 where the concentrated solution Lc from the generator G is merged is provided on the outlet side of the air-cooled heat exchanger Ha in the reflux circuit 6. In this way, most of the dilute solution Ld from the lower-stage absorber A is concentrated with the concentrated solution Lc generated by generating the refrigerant vapor Rs in the generator G after being supercooled by the air-cooling heat exchanger Ha. It joins and is refluxed to the upper part of the absorber A on the upper stage side, the amount of heat generated in the absorber A on the upper stage side can be suppressed, and the removal of the absorbed heat becomes easy. Although the temperature of the solution refluxed to the upper absorber A is slightly higher, there is no problem because the amount of the concentrated solution Lc from the generator G is small.

その他の構成および作用効果は、第1の実施の形態におけると同様なので説明を省略する。   Since other configurations and operational effects are the same as those in the first embodiment, the description thereof is omitted.

第3の実施の形態
図4には、本願発明の第3の実施の形態にかかる吸収式冷凍装置における吸収冷凍サイクルが示されている。
Third Embodiment FIG. 4 shows an absorption refrigeration cycle in an absorption refrigeration apparatus according to a third embodiment of the present invention.

この場合、空冷熱交換器Haを出た希溶液Ldを、上段側および下段側の吸収器A,Aの上部にそれぞれ還流させるように構成されている。このようにすると、空冷熱交換器Haによって過冷却状態とされた希溶液Ldが上段側および下段側の吸収器A,Aの上部にそれぞれ還流されることとなり、上段側および下段側の吸収器A,Aにおける吸収熱の除去がより一層効果的に行える。   In this case, the dilute solution Ld discharged from the air-cooled heat exchanger Ha is configured to be refluxed to the upper portions of the upper and lower absorbers A and A, respectively. In this way, the dilute solution Ld that has been supercooled by the air-cooling heat exchanger Ha is recirculated to the upper portions of the upper and lower absorbers A and A, respectively, and the upper and lower absorbers. The absorption heat in A and A can be removed more effectively.

その他の構成および作用効果は、第1の実施の形態におけると同様なので説明を省略する。   Since other configurations and operational effects are the same as those in the first embodiment, the description thereof is omitted.

第4の実施の形態
図5には、本願発明の第4の実施の形態にかかる吸収式冷凍装置における吸収冷凍サイクルが示されている。
Fourth Embodiment FIG. 5 shows an absorption refrigeration cycle in an absorption refrigeration apparatus according to a fourth embodiment of the present invention.

この場合、空冷熱交換器Haを出た希溶液Ldを、上段側および下段側の吸収器A,Aの上部にそれぞれ還流させるように構成されている。このようにすると、空冷熱交換器Haによって過冷却状態とされた希溶液Ldが上段側および下段側の吸収器A,Aの上部にそれぞれ還流されることとなり、上段側および下段側の吸収器A,Aにおける吸収熱の除去がより一層効果的に行える。   In this case, the dilute solution Ld discharged from the air-cooled heat exchanger Ha is configured to be refluxed to the upper portions of the upper and lower absorbers A and A, respectively. In this way, the dilute solution Ld that has been supercooled by the air-cooling heat exchanger Ha is recirculated to the upper portions of the upper and lower absorbers A and A, respectively, and the upper and lower absorbers. The absorption heat in A and A can be removed more effectively.

また、還流回路6における空冷熱交換器Haの出口側には、発生器Gからの濃溶液Lcを合流させる合流点11が設けられている。このようにすると、下段側の吸収器Aからの希溶液Ldの大部分は、空冷熱交換器Haで過冷却された後に発生器Gにおいて冷媒蒸気Rsを発生して濃縮された濃溶液Lcと合流して上段側の吸収器Aの上部へ還流されることとなり、上段側の吸収器Aにおける吸収熱の発生量を抑制でき、吸収熱の除去が容易となる。なお、上段側の吸収器Aへ還流される溶液の温度が少し高くなるが、発生器Gからの濃溶液Lcの量が少ないので問題とはならない。   Further, a confluence point 11 where the concentrated solution Lc from the generator G is merged is provided on the outlet side of the air-cooled heat exchanger Ha in the reflux circuit 6. In this way, most of the dilute solution Ld from the lower-stage absorber A is concentrated with the concentrated solution Lc generated by generating the refrigerant vapor Rs in the generator G after being supercooled by the air-cooling heat exchanger Ha. It joins and is refluxed to the upper part of the absorber A on the upper stage side, the amount of heat generated in the absorber A on the upper stage side can be suppressed, and the removal of the absorbed heat becomes easy. Although the temperature of the solution refluxed to the upper absorber A is slightly higher, there is no problem because the amount of the concentrated solution Lc from the generator G is small.

その他の構成および作用効果は、第1の実施の形態におけると同様なので説明を省略する。   Since other configurations and operational effects are the same as those in the first embodiment, the description thereof is omitted.

第5の実施の形態
図6には、本願発明の第5の実施の形態にかかる吸収式冷凍装置における吸収冷凍サイクルが示されている。
Fifth Embodiment FIG. 6 shows an absorption refrigeration cycle in an absorption refrigeration apparatus according to a fifth embodiment of the present invention.

この場合、下段側の吸収器Aの出口からの希溶液Ldを第2の空冷熱交換器Ha′で過冷却した状態で下段側の吸収器Aの上部に還流する第2の還流回路12が付設されている。このようにすると、下段側の吸収器Aからの希溶液Ldの一部は、第2の空冷熱交換器Ha′で過冷却された後に下段側の吸収器Aの上部に還流されることとなり、下段側の吸収器Aにおける吸収熱の除去がより一層効果的に行える。符号F2′は第2の空冷熱交換器Ha′を空冷する冷却ファンである。 In this case, the second recirculation circuit 12 that recirculates the dilute solution Ld from the outlet of the lower-stage absorber A to the upper portion of the lower-stage absorber A while being supercooled by the second air-cooled heat exchanger Ha ′. It is attached. In this way, a part of the dilute solution Ld from the lower-side absorber A is supercooled by the second air-cooled heat exchanger Ha ′ and then refluxed to the upper portion of the lower-stage absorber A. The absorption heat in the lower absorber A can be more effectively removed. Reference numeral F 2 ′ is a cooling fan for air-cooling the second air-cooled heat exchanger Ha ′.

その他の構成および作用効果は、第1の実施の形態におけると同様なので説明を省略する。   Since other configurations and operational effects are the same as those in the first embodiment, the description thereof is omitted.

第6の実施の形態
図7には、本願発明の第6の実施の形態にかかる吸収式冷凍装置における吸収冷凍サイクルが示されている。
Sixth Embodiment FIG. 7 shows an absorption refrigeration cycle in an absorption refrigeration apparatus according to a sixth embodiment of the present invention.

この場合、還流回路6における空冷熱交換器Haの出口側には、発生器Gからの濃溶液Lcを合流させる合流点11が設けられている。このようにすると、下段側の吸収器Aからの希溶液Ldの大部分は、空冷熱交換器Haで過冷却された後に発生器Gにおいて冷媒蒸気Rsを発生して濃縮された濃溶液Lcと合流して上段側の吸収器Aの上部へ還流されることとなり、上段側の吸収器Aにおける吸収熱の発生量を抑制でき、吸収熱の除去が容易となる。なお、上段側の吸収器Aへ還流される溶液の温度が少し高くなるが、発生器Gからの濃溶液Lcの量が少ないので問題とはならない。   In this case, a junction 11 where the concentrated solution Lc from the generator G is merged is provided on the outlet side of the air-cooled heat exchanger Ha in the reflux circuit 6. In this way, most of the dilute solution Ld from the lower-stage absorber A is concentrated with the concentrated solution Lc generated by generating the refrigerant vapor Rs in the generator G after being supercooled by the air-cooling heat exchanger Ha. It joins and is refluxed to the upper part of the absorber A on the upper stage side, the amount of heat generated in the absorber A on the upper stage side can be suppressed, and the removal of the absorbed heat becomes easy. Although the temperature of the solution refluxed to the upper absorber A is slightly higher, there is no problem because the amount of the concentrated solution Lc from the generator G is small.

また、下段側の吸収器Aの出口からの希溶液Ldを第2の空冷熱交換器Ha′で過冷却した状態で下段側の吸収器Aの上部に還流する第2の還流回路12が付設されている。このようにすると、下段側の吸収器Aからの希溶液Ldの一部は、第2の空冷熱交換器Ha′で過冷却された後に下段側の吸収器Aの上部に還流されることとなり、下段側の吸収器Aにおける吸収熱の除去がより一層効果的に行える。符号F2′は第2の空冷熱交換器Ha′を空冷する冷却ファンである。 In addition, a second reflux circuit 12 is provided for refluxing the dilute solution Ld from the outlet of the lower-stage absorber A to the upper portion of the lower-stage absorber A while being supercooled by the second air-cooled heat exchanger Ha ′. Has been. In this way, a part of the dilute solution Ld from the lower-side absorber A is supercooled by the second air-cooled heat exchanger Ha ′ and then refluxed to the upper portion of the lower-stage absorber A. The absorption heat in the lower absorber A can be more effectively removed. Reference numeral F 2 ′ is a cooling fan for air-cooling the second air-cooled heat exchanger Ha ′.

その他の構成および作用効果は、第1の実施の形態におけると同様なので説明を省略する。   Since other configurations and operational effects are the same as those in the first embodiment, the description thereof is omitted.

第7の実施の形態
図8には、本願発明の第7の実施の形態にかかる吸収式冷凍装置における吸収冷凍サイクルが示されている。
Seventh Embodiment FIG. 8 shows an absorption refrigeration cycle in an absorption refrigeration apparatus according to a seventh embodiment of the present invention.

この場合、上記第3の実施の形態と同様に、空冷熱交換器Haを出た希溶液Ldを、上段側および下段側の吸収器A,Aの上部にそれぞれ還流させるように構成されている。このようにすると、空冷熱交換器Haによって過冷却状態とされた希溶液Ldが上段側および下段側の吸収器A,Aの上部にそれぞれ還流されることとなり、上段側および下段側の吸収器A,Aにおける吸収熱の除去がより一層効果的に行える。   In this case, similarly to the third embodiment, the dilute solution Ld discharged from the air-cooling heat exchanger Ha is recirculated to the upper portions of the upper and lower absorbers A and A, respectively. . In this way, the dilute solution Ld that has been supercooled by the air-cooling heat exchanger Ha is recirculated to the upper portions of the upper and lower absorbers A and A, respectively, and the upper and lower absorbers. The absorption heat in A and A can be removed more effectively.

また、本実施の形態においては、冷媒回路9には、下段側の吸収器Aにおける熱交換部8と上段側の蒸発器Eにおける熱交換部7との間であって上段側の蒸発器Eより上位に位置する冷媒冷却器Hrが介設されている。このようにすると、冷媒回路9における下段側の吸収器Aの熱交換部8において吸収熱を吸熱して蒸発したフロン系冷媒が冷媒冷却器Hrにおいて冷却された状態で上段側の蒸発器Eの熱交換部7に供給され、当該熱交換部7において凝縮器Cから供給される冷媒(液冷媒)の蒸発によって凝縮液化とされることとなり、下段側の蒸発器Eでの冷凍能力をより確実に確保できる。符号F3は空冷冷却器Hrを空冷する冷却ファンである。 Further, in the present embodiment, the refrigerant circuit 9 includes the upper evaporator E between the heat exchanger 8 in the lower absorber A and the heat exchanger 7 in the upper evaporator E. A refrigerant cooler Hr located at a higher position is interposed. If it does in this way, in the state which the refrigerant | coolant Hr cooled the refrigerant | coolant freon-type refrigerant | coolant which absorbed the heat of absorption in the heat exchanging part 8 of the absorber A of the lower stage in the refrigerant circuit 9, it cooled in the refrigerant | coolant cooler Hr, The refrigerant (liquid refrigerant) supplied to the heat exchanging unit 7 and evaporated from the condenser C in the heat exchanging unit 7 is condensed and liquefied, and the refrigerating capacity in the lower-stage evaporator E is more reliably ensured. Can be secured. Reference numeral F 3 is a cooling fan for cooling the air-cooled cooler Hr.

その他の構成および作用効果は、第1の実施の形態におけると同様なので説明を省略する。なお、上記第1、第2および第4〜第6の実施の形態にかかる吸収式冷凍装置にも、本実施の形態を適用することは可能である。   Since other configurations and operational effects are the same as those in the first embodiment, the description thereof is omitted. The present embodiment can also be applied to the absorption refrigeration apparatus according to the first, second, and fourth to sixth embodiments.

本願発明は、上記各実施の形態に限定されるものではなく、発明の要旨を逸脱しない範囲において適宜設計変更可能なことは勿論である。   The invention of the present application is not limited to the above-described embodiments, and it goes without saying that the design can be changed as appropriate without departing from the scope of the invention.

本願発明の第1の実施の形態にかかる吸収式冷凍装置における吸収冷凍サイクルを示す系統図である。1 is a system diagram showing an absorption refrigeration cycle in an absorption refrigeration apparatus according to a first embodiment of the present invention. 本願発明の第1の実施の形態にかかる吸収式冷凍装置における蒸発器・吸収器ユニットの正面図である。1 is a front view of an evaporator / absorber unit in an absorption refrigeration apparatus according to a first embodiment of the present invention. 本願発明の第2の実施の形態にかかる吸収式冷凍装置における吸収冷凍サイクルを示す系統図である。It is a systematic diagram which shows the absorption refrigeration cycle in the absorption refrigeration apparatus concerning 2nd Embodiment of this invention. 本願発明の第3の実施の形態にかかる吸収式冷凍装置における吸収冷凍サイクルを示す系統図である。It is a systematic diagram which shows the absorption refrigeration cycle in the absorption refrigeration apparatus concerning 3rd Embodiment of this invention. 本願発明の第4の実施の形態にかかる吸収式冷凍装置における吸収冷凍サイクルを示す系統図である。It is a systematic diagram which shows the absorption refrigerating cycle in the absorption refrigeration apparatus concerning 4th Embodiment of this invention. 本願発明の第5の実施の形態にかかる吸収式冷凍装置における吸収冷凍サイクルを示す系統図である。It is a systematic diagram which shows the absorption refrigeration cycle in the absorption refrigeration apparatus concerning 5th Embodiment of this invention. 本願発明の第6の実施の形態にかかる吸収式冷凍装置における吸収冷凍サイクルを示す系統図である。It is a systematic diagram which shows the absorption refrigeration cycle in the absorption refrigeration apparatus concerning the 6th Embodiment of this invention. 本願発明の第7の実施の形態にかかる吸収式冷凍装置における吸収冷凍サイクルを示す系統図である。It is a systematic diagram which shows the absorption refrigerating cycle in the absorption refrigeration apparatus concerning 7th Embodiment of this invention.

6は還流回路
7は熱交換部
8は熱交換部
9は冷媒回路
10は合流点
11は合流点
12は第2の還流回路
Gは発生器
Cは凝縮器
Eは蒸発器
Aは吸収器
Haは空冷熱交換器
Ha′は第2の空冷熱交換器
Hwは溶液熱交換器
Uはユニット
Lcは濃溶液
Ldは希溶液
Rsは冷媒蒸気(水蒸気)
Rwは液冷媒(凝縮水)
Whは加熱媒体(排温水)
6 is a reflux circuit 7 is a heat exchange unit 8 is a heat exchange unit 9 is a refrigerant circuit 10 is a junction point 11 is a junction point 12 is a second reflux circuit G is a generator C is a condenser E is an evaporator A is an absorber Ha Is air cooling heat exchanger Ha 'is second air cooling heat exchanger Hw is solution heat exchanger U is unit Lc is concentrated solution Ld is dilute solution Rs is refrigerant vapor (water vapor)
Rw is liquid refrigerant (condensed water)
Wh is the heating medium (waste water)

Claims (5)

発生器(G)、該発生器(G)から得られた冷媒蒸気(Rs)を凝縮液化する凝縮器(C)、該凝縮器(C)で凝縮液化された冷媒(Rw)を蒸発気化させる蒸発器(E)および該蒸発器(E)で蒸発気化された冷媒蒸気(Rs)を前記発生器(G)で得られた濃溶液(Lc)に吸収して前記発生器(G)へ供給される希溶液(Ld)を生成する吸収器(A)を備えた吸収式冷凍装置であって、前記蒸発器(E)と前記吸収器(A)とを水平に並べて一体化してなるユニット(U),(U)を上下方向に2段積層し且つ前記下段側の吸収器(A)の出口からの希溶液(Ld)の大部分を空冷熱交換器(Ha)により過冷却した状態で前記上段側の吸収器(A)の上部に還流させる還流回路(6)を付設する一方、前記上段側の蒸発器(E)における熱交換部(7)および前記下段側の吸収器(A)における熱交換部(8)を循環する冷媒回路(9)を設け且つ該冷媒回路(9)をフロン系冷媒が自然循環するように構成するとともに、前記下段側の吸収器(A)の出口からの希溶液(Ld)を第2の空冷熱交換器(Ha′)で過冷却した状態で前記下段側の吸収器(A)の上部に還流する第2の還流回路(12)を付設したことを特徴とする吸収式冷凍装置。 Generator (G), condenser (C) for condensing and liquefying refrigerant vapor (Rs) obtained from generator (G), and vaporizing and condensing liquid refrigerant (Rw) condensed and liquefied by condenser (C) The evaporator (E) to be evaporated and the refrigerant vapor (Rs) evaporated by the evaporator (E) are absorbed by the concentrated solution (Lc) obtained by the generator (G) and supplied to the generator (G). An absorption refrigeration apparatus provided with an absorber (A) for generating a dilute solution (Ld) to be supplied, wherein the evaporator (E) and the absorber (A) are horizontally aligned and integrated. A state where (U) and (U) are stacked in two stages in the vertical direction, and most of the diluted solution (Ld) from the outlet of the lower-side absorber (A) is supercooled by the air-cooled heat exchanger (Ha) A reflux circuit (6) for refluxing is attached to the upper part of the upper absorber (A), while the upper evaporator (E). As the definitive heat exchanger (7) and the lower side of the absorber the refrigerant circuit for circulating the heat exchange portion (8) in (A) (9) the provided and fluorocarbon refrigerant the refrigerant circuit (9) is natural circulation And the lower absorber (A) in a state where the dilute solution (Ld) from the outlet of the lower absorber (A) is supercooled by the second air-cooled heat exchanger (Ha ′). An absorption refrigeration apparatus comprising a second reflux circuit (12) that circulates at the top of the refrigeration unit. 発生器(G)、該発生器(G)から得られた冷媒蒸気(Rs)を凝縮液化する凝縮器(C)、該凝縮器(C)で凝縮液化された液冷媒(Rw)を蒸発気化させる蒸発器(E)および該蒸発器(E)で蒸発気化された冷媒蒸気(Rs)を前記発生器(G)で得られた濃溶液(Lc)に吸収して前記発生器(G)へ供給される希溶液(Ld)を生成する吸収器(A)を備えた吸収式冷凍装置であって、前記蒸発器(E)と前記吸収器(A)とを水平に並べて一体化してなるユニット(U),(U)を上下方向に2段積層し且つ前記下段側の吸収器(A)の出口からの希溶液(Ld)の大部分を空冷熱交換器(Ha)により過冷却した状態で前記上段側の吸収器(A)の上部に還流させる還流回路(6)を付設する一方、前記上段側の蒸発器(E)における熱交換部(7)および前記下段側の吸収器(A)における熱交換部(8)を循環する冷媒回路(9)を設け且つ該冷媒回路(9)をフロン系冷媒が自然循環するように構成するとともに、前記空冷熱交換器(Ha)を出た希溶液(Ld)を、前記上段側および下段側の吸収器(A),(A)の上部にそれぞれ還流させるように構成したことを特徴とする吸収式冷凍装置。 Generator (G), condenser (C) for condensing and liquefying refrigerant vapor (Rs) obtained from generator (G), and vaporizing and condensing liquid refrigerant (Rw) condensed and liquefied by condenser (C) The evaporator (E) to be evaporated and the refrigerant vapor (Rs) evaporated by the evaporator (E) are absorbed by the concentrated solution (Lc) obtained by the generator (G) and supplied to the generator (G). An absorption refrigeration apparatus provided with an absorber (A) for generating a dilute solution (Ld) to be supplied, wherein the evaporator (E) and the absorber (A) are horizontally aligned and integrated. A state where (U) and (U) are stacked in two stages in the vertical direction, and most of the diluted solution (Ld) from the outlet of the lower-side absorber (A) is supercooled by the air-cooled heat exchanger (Ha) A reflux circuit (6) for refluxing is attached to the upper part of the upper absorber (A), while the upper evaporator (E). And a refrigerant circuit (9) that circulates through the heat exchange section (7) and the heat exchange section (8) in the lower-side absorber (A), and the chlorofluorocarbon refrigerant naturally circulates through the refrigerant circuit (9). And the dilute solution (Ld) from the air-cooled heat exchanger (Ha) is recirculated to the upper and lower absorbers (A) and (A), respectively. absorption Osamushiki refrigeration equipment said. 前記冷媒回路(9)には、前記下段側の吸収器(A)における熱交換部(8)と前記上段側の蒸発器(E)における熱交換部(7)との間であって前記上段側の蒸発器(E)より上位に位置する冷媒冷却器(Hr)を介設したことを特徴とする請求項1および2のいずれか一項記載の吸収式冷凍装置。 The refrigerant circuit (9) includes a heat exchange section (8) in the lower-stage absorber (A) and a heat exchange section (7) in the upper-stage evaporator (E). The absorption refrigeration apparatus according to any one of claims 1 and 2, further comprising a refrigerant cooler (Hr) positioned above the side evaporator (E). 前記発生器(G)からの濃溶液(Lc)と前記下段側の吸収器(A)の出口からの希溶液(Ld)とを、前記空冷熱交換器(Ha)の入口側で合流させるように構成したことを特徴とする請求項1、2およびのいずれか一項記載の吸収式冷凍装置。 The concentrated solution (Lc) from the generator (G) and the dilute solution (Ld) from the outlet of the lower absorber (A) are merged at the inlet side of the air-cooled heat exchanger (Ha). claim 1, 2 and 3 absorption refrigerating apparatus according to any one claim of which is characterized by being configured to. 前記発生器(G)からの濃溶液(Lc)と前記下段側の吸収器(A)の出口からの希溶液(Ld)とを、前記空冷熱交換器(Ha)の出口側で合流させるように構成したことを特徴とする請求項1、2およびのいずれか一項記載の吸収式冷凍装置。 The concentrated solution (Lc) from the generator (G) and the dilute solution (Ld) from the outlet of the lower absorber (A) are merged on the outlet side of the air-cooled heat exchanger (Ha). claim 1, 2 and 3 absorption refrigerating apparatus according to any one claim of which is characterized by being configured to.
JP2006104002A 2006-04-05 2006-04-05 Absorption refrigeration system Expired - Fee Related JP4887872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006104002A JP4887872B2 (en) 2006-04-05 2006-04-05 Absorption refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006104002A JP4887872B2 (en) 2006-04-05 2006-04-05 Absorption refrigeration system

Publications (2)

Publication Number Publication Date
JP2007278573A JP2007278573A (en) 2007-10-25
JP4887872B2 true JP4887872B2 (en) 2012-02-29

Family

ID=38680188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006104002A Expired - Fee Related JP4887872B2 (en) 2006-04-05 2006-04-05 Absorption refrigeration system

Country Status (1)

Country Link
JP (1) JP4887872B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE543058T1 (en) * 2008-06-09 2012-02-15 Consejo Superior Investigacion ABSORBER AND ABSORBER EVAPORATOR ARRANGEMENT FOR ABSORPTION MACHINES AND LITHIUM BROMINE WATER ABSORPTION MACHINES WITH THE ABSORBER AND THE ABSORBER EVAPORATOR ARRANGEMENT

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6023264B2 (en) * 1978-03-20 1985-06-06 川崎重工業株式会社 Air-cooled absorption refrigerator that removes absorbed heat using absorption liquid as a heat medium
JP2580275B2 (en) * 1988-02-03 1997-02-12 株式会社竹中工務店 Air conditioning system using absorption refrigerator
JP2544433B2 (en) * 1988-03-31 1996-10-16 三機工業株式会社 Refrigerant natural circulation heat transfer device
JPH02192550A (en) * 1989-01-19 1990-07-30 Osaka Gas Co Ltd Absorptive type cooling device
JP2854402B2 (en) * 1990-08-31 1999-02-03 株式会社日立製作所 Absorption evaporator of absorption refrigerator
JP3002620B2 (en) * 1993-09-30 2000-01-24 株式会社日立製作所 Absorption chiller / heater
JP3013673B2 (en) * 1993-11-12 2000-02-28 株式会社日立製作所 Absorption refrigerator
JPH10300128A (en) * 1997-04-23 1998-11-13 Matsushita Electric Works Ltd Cooling/dehumidifying apparatus of refrigerant natural circulation type air air-conditioning apparatus combinedly provided therewith
JPH1123085A (en) * 1997-06-30 1999-01-26 Daikin Ind Ltd Absorption type refrigerating device
JP3414249B2 (en) * 1998-03-19 2003-06-09 株式会社日立製作所 Absorption refrigerator

Also Published As

Publication number Publication date
JP2007278573A (en) 2007-10-25

Similar Documents

Publication Publication Date Title
JP3193720B2 (en) Triple effect absorption heat exchanger combining a second cycle generator and a first cycle absorber
US20180038660A1 (en) Active/passive cooling system
JP4887871B2 (en) Absorption refrigeration system
JP4715574B2 (en) Absorption refrigeration system
JP4826314B2 (en) Evaporation / absorption unit for absorption refrigerator
JP4887872B2 (en) Absorption refrigeration system
JP6292834B2 (en) Air conditioning equipment in information processing room
JP4572860B2 (en) Absorption refrigeration system
JP5338270B2 (en) Absorption refrigeration system
JPH0446339B2 (en)
JP5217264B2 (en) Waste heat driven absorption refrigeration system
JP5338272B2 (en) Absorption refrigeration system
JP5338271B2 (en) Absorption refrigeration system
JP5233716B2 (en) Absorption refrigeration system
JP5168102B2 (en) Absorption refrigeration system
JP4720558B2 (en) Absorption refrigerator generator
JP3486382B2 (en) Absorption refrigerator
JP2004333019A (en) Absorption type refrigerating machine
JPH1163763A (en) Cooling system
JP3857955B2 (en) Absorption refrigerator
JP3485495B2 (en) Evaporator of ammonia absorption refrigeration system
JP4557468B2 (en) Absorption refrigerator
JP2004011928A (en) Absorption refrigerator
JP2010121900A (en) Absorption-type refrigerating device
JP2007120811A (en) Absorption heat pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees