JP2008249165A - Interior humidistat - Google Patents

Interior humidistat Download PDF

Info

Publication number
JP2008249165A
JP2008249165A JP2007087411A JP2007087411A JP2008249165A JP 2008249165 A JP2008249165 A JP 2008249165A JP 2007087411 A JP2007087411 A JP 2007087411A JP 2007087411 A JP2007087411 A JP 2007087411A JP 2008249165 A JP2008249165 A JP 2008249165A
Authority
JP
Japan
Prior art keywords
heat
hygroscopic
air
cooling
dehumidifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007087411A
Other languages
Japanese (ja)
Inventor
Katsuzo Konakawa
勝蔵 粉川
Hideo Tomita
英夫 富田
Norio Yotsuya
規夫 肆矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007087411A priority Critical patent/JP2008249165A/en
Publication of JP2008249165A publication Critical patent/JP2008249165A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem wherein although the running cost of an interior humidistat utilizing solar energy can be reduced using the solar energy, a desiccant absorbing moisture has inconvenience that it can be used only during daytime when the sun shines, because it repeats a cycle of regeneration with heating the solar energy and again absorbing moisture, and a large gas quantity is required, resulting in difficulty in installation and lowering of performance. <P>SOLUTION: In this interior humidistat, a refrigerant circulating passage 18 circulating through a solar energy heat collector 10 and moisture absorbing parts 13, 14, and circulating air passages 28A, 28B, 28C, 28D for circulating the interior air are constructed to improve the usability and attain high-efficiency dehumidifying performance, so that the usability can be improved. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、太陽熱を利用した室内調湿機に関するものである。   The present invention relates to an indoor humidity controller using solar heat.

従来、一般家庭を中心とした冷房空調は、電気を用いたヒートポンプ式エアコンが主流であり、冷房、暖房、除湿等を行っている。   Conventionally, a cooling air-conditioning system mainly for general households is a heat pump type air conditioner using electricity, and performs cooling, heating, dehumidification and the like.

この種のエアコンは除湿時、冷房動作で送風量を極端に低下させ、コンデンサを低温にした状態をつくり、空気中の水分を結露させて除湿していた。   When this type of air conditioner is dehumidified, the amount of air flow is drastically reduced by the cooling operation, the condenser is made into a low temperature state, and moisture in the air is condensed to dehumidify.

そのため、除湿だけを行おうとすると、コンデンサにより室温が低くなりすぎ不快感を生じるものである。   Therefore, if only dehumidification is performed, the room temperature becomes too low due to the capacitor, causing discomfort.

そこで、室内に供給する空気に含まれる水分を乾燥剤(除湿剤)に吸着させる、所謂、デシカント除湿空調方式が考えられている。一般的にデシカント式除湿は、円板状のハニカム体にシリカゲル、ゼオライト等の乾燥剤を担持させて回転し、乾燥部と再生部に区分するものであった。   Therefore, a so-called desiccant dehumidifying air-conditioning system in which moisture contained in the air supplied to the room is adsorbed by a desiccant (dehumidifying agent) has been considered. In general, desiccant-type dehumidification involves rotating a disc-shaped honeycomb body with a desiccant such as silica gel or zeolite, and rotating the desiccant to separate a drying section and a regeneration section.

すなわち、室内空気は乾燥剤中を流れるとき除湿されて再度室内に戻り、また、乾燥材の外気が流れる部位ではヒータ等で加熱してそれまで吸着した水分を脱湿させて外部に放出するようにしていた。つまり、乾燥材の再生が行われるものである。   That is, the room air is dehumidified when it flows in the desiccant and returns to the room again. Also, at the part where the outside air of the desiccant flows, it is heated by a heater or the like so that the moisture adsorbed so far is dehumidified and released to the outside. I was doing. That is, the drying material is regenerated.

このように乾燥剤は回転しながら前記動作を繰り返すことにより除湿を連続して行うものである。   As described above, the desiccant continuously performs dehumidification by repeating the above operation while rotating.

一方、前記乾燥剤の脱湿のための加熱に太陽熱を利用し、ランニングコストを低減する提案もされている。   On the other hand, proposals have also been made to use solar heat to heat the desiccant for dehumidification, thereby reducing running costs.

この種の除湿空調機としては、図5に示すように、空調対象空間101内に供給する空気の中に含まれる水分を乾燥剤102に吸着させて、その後、乾燥空気を熱交換手段103で冷却して空調対象空間101に送るようにしていた。   As this type of dehumidifying air conditioner, as shown in FIG. 5, moisture contained in the air supplied into the air-conditioning target space 101 is adsorbed by the desiccant 102, and then the dried air is converted by the heat exchange means 103. It was cooled and sent to the air-conditioning target space 101.

そして、水分を吸着した乾燥剤102は、建物104の外壁面105や、屋根面106に太陽熱集熱パネル107で加熱された空気で乾燥再生させるようにしていた(例えば、特許文献1参照)。
特開2000−205598号公報
And the desiccant 102 which adsorb | sucked the water was made to dry-regenerate with the air heated by the solar thermal collection panel 107 on the outer wall surface 105 of the building 104, or the roof surface 106 (for example, refer patent document 1).
JP 2000-205598 A

しかしながら、前記太陽熱を利用した調湿機では、当然のことながら太陽の当っている昼間しか使用できない不便性を有していた。   However, the humidity controller using solar heat has, as a matter of course, inconvenient that can be used only in the daytime when the sun hits it.

本発明は、上記従来の課題を解決するもので、高効率な脱湿性能をもつ太陽熱利用の調湿機を提供することを目的とする。   The present invention solves the above-described conventional problems, and an object thereof is to provide a solar-controlled humidity controller having a highly efficient dehumidifying performance.

前記従来の課題を解決するために、本発明の調湿機は、複数系列の室内空気循環路と、
それぞれ吸湿剤を内蔵し、前記各室内空気循環路の途中に接続された吸湿部と、これら吸湿部の吸湿剤を冷却する冷却手段と、太陽熱集熱器で加熱された熱媒体の熱を加熱源として前記吸湿剤の脱湿を行う脱湿手段とを具備したものである。
In order to solve the conventional problem, the humidity controller of the present invention includes a plurality of series of indoor air circulation paths,
Each has a built-in hygroscopic agent, a hygroscopic part connected in the middle of each indoor air circulation path, a cooling means for cooling the hygroscopic agent of these hygroscopic parts, and heat of the heat medium heated by the solar heat collector And a dehumidifying means for dehumidifying the hygroscopic agent as a source.

本発明の調湿機は、太陽が出ない時でも空気の吸湿ができ大いに使い勝手を向上できるものであり、また、太陽熱を用いるため、環境に優しく、ランニングコストを低減することができる。   The humidity controller of the present invention can absorb air even when the sun does not come out and can greatly improve the usability, and since it uses solar heat, it is environmentally friendly and can reduce running costs.

本発明は、複数系列の室内空気循環路と、それぞれ吸湿剤を内蔵し、前記各室内空気循環路の途中に接続された吸湿部と、これら吸湿部の吸湿剤を冷却する冷却手段と、太陽熱集熱器で加熱された熱媒体の熱を加熱源として前記吸湿剤の脱湿を行う脱湿手段とを具備したものである。   The present invention includes a plurality of series of indoor air circulation paths, a hygroscopic agent built in each of the indoor air circulation paths, connected to the middle of each indoor air circulation path, a cooling means for cooling the hygroscopic agent in these hygroscopic sections, and solar heat Dehumidifying means for dehumidifying the hygroscopic agent using the heat of the heat medium heated by the heat collector as a heating source.

したがって、吸湿部の吸湿動作と脱湿動作を分離でき、太陽が出ないときにも室内空気の吸湿ができて、使用性能の向上が図れ、加えて、熱媒体を使用しているところから、高性能のものとすることができる。   Therefore, the moisture absorption operation and the dehumidification operation of the moisture absorption part can be separated, and even when the sun does not come out, the indoor air can be absorbed, and the use performance can be improved.In addition, since the heat medium is used, It can be of high performance.

脱湿手段としては、吸湿部の吸湿剤に熱媒体が流れる熱交換器を配備したものとか、熱媒体が流れる熱交換器で外部空気を加熱して、吸湿部の吸湿剤に送給するものが考えられる。   As the dehumidifying means, a heat exchanger in which a heat medium flows in the hygroscopic agent in the hygroscopic part or a heat exchanger in which the heat medium flows is heated by external air and sent to the hygroscopic agent in the hygroscopic part Can be considered.

一方、冷却手段としては、送風機を介して外部空気を吸湿部の吸湿剤に流動させるようにする。   On the other hand, as the cooling means, external air is caused to flow to the hygroscopic agent in the hygroscopic part via the blower.

また、吸湿部の吸湿剤に外部空気を流動させる送風機を配備し、太陽熱集熱器で加熱された熱媒体が流れる熱交換器を吸湿部よりも上流側の前記送風機の風路に配置して、この熱交換器への熱媒体の流動発停制御により冷却手段と脱湿手段とを兼用させることも可能である。   Also, a blower that allows external air to flow through the hygroscopic agent of the hygroscopic part is arranged, and a heat exchanger through which the heat medium heated by the solar heat collector flows is arranged in the air path of the blower upstream of the hygroscopic part. The cooling means and the dehumidifying means can be used together by controlling the flow of the heat medium to the heat exchanger.

具体的な調整としては、複数系列の室内空気循環路を開閉制御可能に構成するとともに、開路状態にある室内空気循環路側吸湿部の冷却手段および脱湿手段を停止し、閉路状態にある室内空気循環路側吸湿部の冷却手段および脱湿手段を駆動させるように設定する。   Specifically, a plurality of series of indoor air circulation paths can be controlled to be opened and closed, and the cooling means and the dehumidifying means of the indoor air circulation path side moisture absorption portion in the open circuit state are stopped, and the indoor air in the closed circuit condition is stopped. It sets so that the cooling means and dehumidification means of a circulation path side moisture absorption part may be driven.

そして、冷却手段の駆動を任意に停止して太陽熱集熱器で加熱された熱媒体の熱を暖房用に活用することも可能で、この場合、望ましくは、室内空気循環路の脱湿手段よりも下流側に加湿装置を配置しておく。   It is also possible to arbitrarily stop the driving of the cooling means and use the heat of the heat medium heated by the solar heat collector for heating. In this case, preferably, the dehumidifying means of the indoor air circulation path Also, a humidifier is arranged on the downstream side.

吸湿部に電気ヒータのような補助加熱手段を配備しておけば、さらに太陽依存性を低下できるものである。   If auxiliary heating means such as an electric heater is provided in the hygroscopic part, the solar dependence can be further reduced.

以下本発明の実施の形態を図面を参照して説明する。なお、実施の形態によって本発明が限定されるものではない。   Embodiments of the present invention will be described below with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1において、調湿対象の室1からは途中に複数の吸湿部2,3を接続した室内空気循環路4が屋外に対して設けられており、室1から吸湿部2,3に至る経路が往路5、吸湿部2,3から室1に至る経路が復路6にそれぞれ設定されている。
(Embodiment 1)
In FIG. 1, an indoor air circulation path 4 in which a plurality of moisture absorbing portions 2 and 3 are connected midway from the humidity control target chamber 1 is provided to the outdoors, and a route from the chamber 1 to the moisture absorbing portions 2 and 3. The forward path 5 and the paths from the hygroscopic parts 2 and 3 to the chamber 1 are respectively set as the return path 6.

吸湿部2,3の内部には、シリカゲル、ゼオライト、活性炭、活性アルミナ、無機塩などの材料をボール状、或いはハニカム状等に成型することで通気性をもたせるとともに、表面積を可及的に大きくした吸湿剤7,8が内設してある。   Inside the hygroscopic parts 2 and 3, materials such as silica gel, zeolite, activated carbon, activated alumina, and inorganic salt are molded into a ball shape or a honeycomb shape to provide air permeability and increase the surface area as much as possible. The hygroscopic agents 7 and 8 are provided.

複数の吸湿部2,3と対応して室内空気循環路4の往路5と復路6も途中で分岐されて分岐往路5a,5b、および分岐復路6a,6bを構成しており、これら分岐往路5a,5b、または分岐復路6a,6bの一方に循環路切換弁9a,9bが配備されている(本例の場合には分岐復路6a,6bに配備)。   Corresponding to the plurality of moisture absorbing portions 2 and 3, the forward path 5 and the return path 6 of the indoor air circulation path 4 are also branched in the middle to constitute branch forward paths 5a and 5b and branch return paths 6a and 6b. These branch forward paths 5a , 5b, or one of the branch return paths 6a and 6b, the circulation path switching valves 9a and 9b are provided (in the case of this example, provided in the branch return paths 6a and 6b).

したがって、復路6に設けた循環用送風機10を駆動させて、両切換弁9a,9bが開放状態にある場合、室1の空気は、分岐復路6aから吸湿部2へ、分岐復路6bから吸湿部3へそれぞれ流れた後、分岐復路6a,6bを介して室1に戻り、また、両切換弁9a,9bのいずれか一方を閉、他方を開とすると、開状態側の吸湿部のみに室1の空気が循環することとなる。   Therefore, when the circulation blower 10 provided in the return path 6 is driven and both the switching valves 9a and 9b are in the open state, the air in the chamber 1 is transferred from the branch return path 6a to the moisture absorption section 2 and from the branch return path 6b to the moisture absorption section. 3 and then returns to the chamber 1 via the branch return paths 6a and 6b, and when one of the switching valves 9a and 9b is closed and the other is opened, only the moisture absorption section on the open state side has the chamber. 1 air circulates.

冷却手段としての冷却用送風機11は、前記吸湿部2,3の下部に導かれた2つの送風路12a,12bを有し、またそれと対応して前記吸湿部2,3の上部には排気口13a,13bが形成してある。   The cooling blower 11 as a cooling means has two air passages 12a and 12b led to the lower portions of the moisture absorbing portions 2 and 3, and correspondingly, an exhaust port is provided at the upper portion of the moisture absorbing portions 2 and 3. 13a and 13b are formed.

前記2つの送風路12a,12bにもそれぞれ風路切換弁14a,14bが配備され、吸湿部2,3の両方、或いは一方に冷却用空気を送ることができるようにしてある。   The two air passages 12a and 12b are also provided with air passage switching valves 14a and 14b, respectively, so that the cooling air can be sent to both or one of the moisture absorption parts 2 and 3.

複数の放物線型の反射板15の焦点に集熱管16を直列配置した太陽熱集熱器17は、例えば家屋の屋根に据付けられており、前記集熱管16を含む熱媒体循環路18には循環ポンプ19と、前記吸湿部2,3に内設され、脱湿手段となる熱交換器20,21が接続されている。   A solar heat collector 17 in which a heat collecting tube 16 is arranged in series at the focal point of a plurality of parabolic reflectors 15 is installed, for example, on the roof of a house, and a circulation pump is provided in the heat medium circulation path 18 including the heat collecting tube 16. 19 and heat exchangers 20 and 21 which are installed in the moisture absorption parts 2 and 3 and serve as dehumidifying means are connected.

前記熱交換器20,21への熱媒体は制御弁22,23を開閉操作することで制御されるもので、すなわち熱交換器20,21の両方か、いずれか一方へ熱媒体が流動させたり、または、両方とも熱媒体の流動を停止できるようになっている。   The heat medium to the heat exchangers 20 and 21 is controlled by opening and closing the control valves 22 and 23, that is, the heat medium flows to either one of the heat exchangers 20 or 21. Or both can stop the flow of the heat medium.

反射鏡15は集熱管16への太陽光の反射率を向上させるために、鏡面に構成されている。   The reflecting mirror 15 has a mirror surface in order to improve the reflectance of sunlight to the heat collecting tube 16.

因みに、その鏡面仕上げは、反射鏡15を構成する材料によりめっき、蒸着、研磨、塗装などの方法が適宜選択されるものである。   Incidentally, for the mirror finish, a method such as plating, vapor deposition, polishing, or coating is appropriately selected depending on the material constituting the reflecting mirror 15.

反射鏡15の加工方法としては、例えば、フェノール樹脂、フッ素樹脂、ポリイミド樹脂などの耐熱性樹脂の成型、ステンレス板のプレス加工、アルミダイカスト成型などが挙げられる。その他、アルミの鏡面仕上げ板を折り曲げる方法もある。   Examples of the processing method of the reflecting mirror 15 include molding of a heat-resistant resin such as phenol resin, fluorine resin, and polyimide resin, press processing of a stainless steel plate, and aluminum die casting. In addition, there is a method of bending an aluminum mirror finish plate.

例えば、反射鏡15を耐熱樹脂で成型した場合は、鏡面をアルミめっき(蒸着)や塗装で仕上げて反射面を形成する。鏡面をアルミめっきする時は、ポリイミド樹脂やポリフェニレンサルファイド樹脂またはポリステル樹脂、ポリアミド樹脂などを使用する。   For example, when the reflecting mirror 15 is molded from a heat resistant resin, the reflecting surface is formed by finishing the mirror surface by aluminum plating (evaporation) or painting. When the mirror surface is plated with aluminum, polyimide resin, polyphenylene sulfide resin, polyester resin, polyamide resin, or the like is used.

また、ステンレス板のプレス加工の場合は、アルミ電解研磨やバフ研磨などで鏡面を形成する。さらに、アルミダイカストの成型でも、めっきなどにより鏡面仕上げを行ったり、アルミダイカスト材料の研磨後の酸化皮膜による反射率の低下を防止することもある。   In the case of press working of a stainless steel plate, a mirror surface is formed by aluminum electrolytic polishing or buff polishing. Furthermore, even in the molding of aluminum die casting, mirror finish may be performed by plating or the like, and a decrease in reflectance due to an oxide film after polishing of the aluminum die casting material may be prevented.

集熱管16は銅管やステンレス管や黄銅管やアルミ管などで形成され、表面に赤外線を
吸収する選択吸収膜を塗装している。
The heat collecting tube 16 is formed of a copper tube, a stainless tube, a brass tube, an aluminum tube, or the like, and a selective absorption film that absorbs infrared rays is coated on the surface.

吸湿部2,3には電気ヒータのような補助加熱手段24が併設されている。   Auxiliary heating means 24 such as an electric heater is provided in the moisture absorption parts 2 and 3.

以上のように構成された室内調湿機について、以下その動作、作用を説明する。   About the indoor humidity controller comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

本実施の形態にあっては、室内調湿動作時に、吸湿部2,3の一方が室1の調湿に使用され、他方が再生されるようにしてある。   In the present embodiment, during the indoor humidity control operation, one of the moisture absorbing units 2 and 3 is used for humidity control of the chamber 1 and the other is regenerated.

今、吸湿部2が調湿に、吸湿部3が再生に使用されているとした仮定した場合、循環路切換弁9aが開、循環路切換弁9bが閉状態とされて、吸湿部2に室1の空気が循環し、吸湿部3への室1の空気循環が停止されている。   If it is assumed that the moisture absorption part 2 is used for humidity control and the moisture absorption part 3 is used for regeneration, the circulation path switching valve 9a is opened and the circulation path switching valve 9b is closed. The air in the chamber 1 circulates, and the air circulation in the chamber 1 to the moisture absorption unit 3 is stopped.

また、冷却用送風機11の送風路12aに配置された風路切換弁14aは閉状態に設定されていて吸湿部2への冷却空気供給が停止され、一方、送風路12bに配置された風路切換弁14bは開状態とされ、吸湿部3への冷却空気供給が行われている。   Further, the air passage switching valve 14a disposed in the air passage 12a of the cooling blower 11 is set in a closed state, and the cooling air supply to the moisture absorption unit 2 is stopped, while the air passage disposed in the air passage 12b. The switching valve 14b is opened, and cooling air is supplied to the hygroscopic unit 3.

さらに、熱媒体循環路18の一方の制御弁22が閉成、他方の制御弁23が開成されて、吸湿部2の側の熱交換器20への熱媒体の流動は停止され、吸湿部3側の熱交換器21へは熱媒体が流動している。   Furthermore, one control valve 22 of the heat medium circulation path 18 is closed and the other control valve 23 is opened, so that the flow of the heat medium to the heat exchanger 20 on the moisture absorption section 2 side is stopped, and the moisture absorption section 3. The heat medium flows to the heat exchanger 21 on the side.

しかるに、室1の空気は分岐往路5aから吸湿部2に流れて含有する湿気が吸湿剤7に吸着されて乾燥空気として分岐復路6aを介して室1に戻ることとなる。したがって、室1を快適空間に維持できることとなる。   However, the air in the chamber 1 flows from the branch forward path 5a to the hygroscopic portion 2 and the contained moisture is adsorbed by the hygroscopic agent 7 and returns to the chamber 1 via the branch return path 6a as dry air. Therefore, the room 1 can be maintained in a comfortable space.

太陽熱集熱器17で高温となった熱媒体は熱媒体循環路18の往路を流動して吸湿部3側の熱交換器21に流れる。そのため、それまでの作用で吸湿剤8に吸着されている湿気が蒸発され、送風路12bを介して送給されている冷却用送風機11の送風作用で排気口13bから排出される。   The heat medium that has reached a high temperature in the solar heat collector 17 flows in the forward path of the heat medium circulation path 18 and flows to the heat exchanger 21 on the moisture absorption section 3 side. Therefore, the moisture adsorbed by the hygroscopic agent 8 is evaporated by the action so far, and is discharged from the exhaust port 13b by the blowing action of the cooling blower 11 fed through the blowing path 12b.

冷却用送風機11の駆動は熱交換器21による吸湿剤8の加熱脱湿完了後も継続されて同吸湿剤8を冷却するものである。   The driving of the cooling blower 11 is continued after the heat exchanger 21 completes heating and dehumidification of the moisture absorbent 8 to cool the moisture absorbent 8.

一方の吸湿部2を室1の空気の除湿に用いているとき、他方の吸湿部3を脱湿再生してするようにして、次の室内空気の除湿用に待機させているので、太陽がでない、例えば雨天時においても室内調湿が行えるものである。   When one moisture absorption part 2 is used for dehumidification of the air in the chamber 1, the other moisture absorption part 3 is dehumidified and regenerated so that the next indoor air is dehumidified. For example, indoor humidity can be adjusted even in rainy weather.

勿論、循環路切換弁9a,9b、風路切換弁14a,14b、制御弁22,23の切換によって吸湿部2を再生、吸湿部3を除湿に役割交代できるのはいうまでもない。   Of course, it is needless to say that the hygroscopic portion 2 can be regenerated and the hygroscopic portion 3 can be dehumidified by switching the circulation path switching valves 9a and 9b, the air path switching valves 14a and 14b, and the control valves 22 and 23.

電気ヒータなどの補助加熱手段24は、太陽の熱量が十分に得られないときで、かつ、除湿剤7,8の脱湿動作が場合に作動させるようにしてある。   The auxiliary heating means 24 such as an electric heater is operated when the amount of heat of the sun cannot be sufficiently obtained and when the dehumidifying operation of the dehumidifying agents 7 and 8 is performed.

図2に乾燥剤の脱湿特性、図3に乾燥剤の吸湿特性を示す。   FIG. 2 shows the dehumidification characteristics of the desiccant, and FIG. 3 shows the moisture absorption characteristics of the desiccant.

先ず、図2において、高温になるに従って平衡吸着率は低下する。すなわち、ゼオライトの場合、平衡吸着率は、100℃で20w%であるが、120℃を超えると急激に低下し6w%となる。   First, in FIG. 2, the equilibrium adsorption rate decreases as the temperature increases. That is, in the case of zeolite, the equilibrium adsorption rate is 20 w% at 100 ° C., but when it exceeds 120 ° C., it rapidly decreases to 6 w%.

つまり、平衡吸着率20w%の状態では、乾燥剤1kgとすると水を0.2kg保持してお
り、この状態で120℃にすると平衡吸着率の差である14%、0.14kgの水が乾燥剤から出て行くこととなる。
In other words, in the state where the equilibrium adsorption rate is 20 w%, 0.2 kg of water is retained when 1 kg of desiccant is used, and when the temperature is 120 ° C. in this state, the difference in equilibrium adsorption rate is 14% and 0.14 kg of water is dried. You will get out of the agent.

平衡吸着率をできるだけ低くなるようにすると、次の水分の吸着量を大きくなり、除湿能力の増大を測れる。   If the equilibrium adsorption rate is made as low as possible, the amount of moisture adsorbed next can be increased, and the increase in dehumidifying capacity can be measured.

また、図3において、空気の湿度と平衡吸着率を表しており、湿度が下がると平衡吸着率が低下する。   Further, FIG. 3 shows the humidity of air and the equilibrium adsorption rate. When the humidity decreases, the equilibrium adsorption rate decreases.

すなわち、空気の除湿する時、吸湿側では平衡吸着率が小さくなり除湿能力が低下する。除湿の性能は初期の乾燥剤の水分吸着率を平衡吸着率から引いた分である。   That is, when the air is dehumidified, the equilibrium adsorption rate is reduced on the moisture absorption side, and the dehumidifying ability is reduced. The dehumidification performance is the amount obtained by subtracting the moisture adsorption rate of the initial desiccant from the equilibrium adsorption rate.

そのため、吸湿剤を高温にして十分に水分を取り吸着率を下げると、単位乾燥剤あたりの能力が向上し、高効率とコンパクトが可能となる。   Therefore, if the moisture absorbent is heated to a sufficient temperature to sufficiently absorb moisture and reduce the adsorption rate, the capacity per unit desiccant is improved, and high efficiency and compactness are possible.

本実施の形態では前記のように一方の吸湿部を室内空気の除湿に用いているとき、他方の吸湿部を脱湿再生してするようにしたが、両方を室内空気の除湿用と脱湿再生とに切換ることもかのうである。   In the present embodiment, as described above, when one hygroscopic part is used for dehumidifying indoor air, the other hygroscopic part is regenerated by dehumidification, but both are used for dehumidifying indoor air and dehumidifying. It is also possible to switch to playback.

すなわち、太陽熱を利用できる所定時間だけ循環路切換弁9a,9bを閉、風路切換弁14a,14bを開、熱媒体循環路18の制御弁22a,22bを共に開とすれば、両吸湿剤7,8の同時脱湿再生ができ、また、循環路切換弁9a,9bを開、風路切換弁14a,14bを閉、熱媒体循環路18の制御弁22a,22bを共に閉とすれば、両吸湿剤7,8を使用した室内空気の調湿が行えるものである。   That is, if the circulation path switching valves 9a and 9b are closed, the air path switching valves 14a and 14b are opened, and the control valves 22a and 22b of the heat medium circulation path 18 are both opened for a predetermined time during which solar heat can be used. 7 and 8 can be simultaneously dehumidified, and the circulation path switching valves 9a and 9b are opened, the air path switching valves 14a and 14b are closed, and the control valves 22a and 22b of the heat medium circulation path 18 are both closed. The humidity of the room air using both the hygroscopic agents 7 and 8 can be adjusted.

また、循環路切換弁9a,9bを開、風路切換弁14a,14bを閉、熱媒体循環路18の制御弁22a,22bを共に開とすれば、太陽熱で加熱された熱媒体が流れる熱交換器20,21で室内空気が暖められ、暖房に供することもできるものである。   Further, if the circulation path switching valves 9a and 9b are opened, the air path switching valves 14a and 14b are closed, and the control valves 22a and 22b of the heat medium circulation path 18 are both opened, the heat flowing through the heat medium heated by solar heat flows. The room air is warmed by the exchangers 20 and 21 and can be used for heating.

そして、太陽熱集熱器17は、平行光を集光する反射鏡15と、この反射鏡15の集光点に設けた集熱管16で構成したことにより、熱媒体の温度をより高温化することが可能となり、除湿剤7,8の性能向上が可能となる。   And the solar-heat collector 17 is comprised with the reflective mirror 15 which condenses parallel light, and the heat collecting tube 16 provided in the condensing point of this reflective mirror 15, and raises the temperature of a heat medium more. Therefore, the performance of the dehumidifying agents 7 and 8 can be improved.

すなわち、太陽光を反射鏡15で集光し、この集光点に集熱管16を設けることにより同集熱管16の温度は大幅に上昇できる。反射鏡15がない場合に対して3倍に集光すると理論的には単位あたりの太陽熱が3倍になり、同じ条件では、3倍の温度上昇が期待できる。   That is, the temperature of the heat collecting tube 16 can be significantly increased by collecting sunlight with the reflecting mirror 15 and providing the heat collecting tube 16 at the condensing point. If the light is condensed three times as compared with the case without the reflecting mirror 15, the solar heat per unit theoretically triples, and under the same conditions, a threefold temperature increase can be expected.

また、集熱管16は表面に赤外線を吸収する選択吸収膜を設けたことにより、それからの赤外線放射を防止して温度を高温に維持して、熱媒体にその熱を効率良く伝えることができる。そのため、太陽熱からの熱量が増加でき、これに応じて除湿能力が大きくできるため、同じ除湿性能では、装置を小型化、軽量化、低コストとなる。   Further, the heat collecting tube 16 is provided with a selective absorption film that absorbs infrared rays on the surface thereof, thereby preventing infrared radiation therefrom and maintaining the temperature at a high temperature, and efficiently transferring the heat to the heat medium. Therefore, the amount of heat from the solar heat can be increased, and the dehumidifying capacity can be increased accordingly. Therefore, the same dehumidifying performance can reduce the size, weight, and cost of the apparatus.

(実施の形態2)
図4は実施の形態2を示し、図1と動作用を行うものには同一符号を付し、詳細な説明は実子の形態1のものを援用する。
(Embodiment 2)
FIG. 4 shows the second embodiment, and the same reference numerals are assigned to the components that perform the same operations as those in FIG.

実施の形態1と異なるところは、冷却装置16は大気を吸引して冷却後大気に排出する空冷として、冷媒循環通路18の冷媒が流れる熱交換器36を冷却装置16と吸湿部13、14の間に設けてある。冷却装置16の冷却ファン21の先に冷媒循環通路18と連通
した熱交換器36と熱交換する様に接続し、さらにその先に吸湿部13、14を接続し、冷却入口22、23から乾燥剤15の表面を通り冷却出口24、25から外部に出る。
The difference from the first embodiment is that the cooling device 16 sucks the air, cools it, and discharges it to the air after cooling. The heat exchanger 36 in which the refrigerant in the refrigerant circulation passage 18 flows is connected to the cooling device 16 and the moisture absorption parts 13, 14. It is in between. A heat exchanger 36 connected to the refrigerant circulation passage 18 is connected to the tip of the cooling fan 21 of the cooling device 16 so as to exchange heat, and further, moisture absorbing portions 13 and 14 are connected to the tip of the heat exchanger 36 and dried from the cooling inlets 22 and 23. It passes through the surface of the agent 15 and exits from the cooling outlets 24 and 25.

このため、冷却装置16の冷却ファン21を動作しながら熱交換器36に冷媒を流せば吸湿部13、14を加熱できる。そして、吸湿部13、14の乾燥剤15から分離した水蒸気は送風ファン21の送風により冷却出口24、25から外部に排出できる。つぎに、冷媒循環機17を停止すれば冷媒循環通路を流れる高温冷媒は停止し、熱交換器36は低温となり、この低温の空気が吸湿部13、14の冷却入口22、23から乾燥剤15の表面を通り冷却出口24、25へと流れ、吸湿部13、14の冷却ができる。このため、吸湿部13、14を複数設けても、熱交換器36と冷却装置16は単数で動作でき、システムが簡単となり、低コスト、コンパクトな装置を実現でき、信頼性も向上する。   For this reason, the moisture absorption parts 13 and 14 can be heated if a refrigerant | coolant is poured into the heat exchanger 36, operating the cooling fan 21 of the cooling device 16. FIG. And the water vapor | steam isolate | separated from the desiccant 15 of the moisture absorption parts 13 and 14 can be discharged | emitted from the cooling outlets 24 and 25 by the ventilation of the ventilation fan 21 outside. Next, if the refrigerant circulator 17 is stopped, the high-temperature refrigerant flowing through the refrigerant circulation passage is stopped, the heat exchanger 36 becomes low temperature, and this low-temperature air is supplied from the cooling inlets 22 and 23 of the moisture absorption sections 13 and 14 to the desiccant 15. It flows to the cooling outlets 24 and 25 through the surface, and the moisture absorption parts 13 and 14 can be cooled. For this reason, even if a plurality of the moisture absorbing parts 13 and 14 are provided, the heat exchanger 36 and the cooling device 16 can be operated singly, the system is simplified, a low-cost and compact device can be realized, and the reliability is improved.

また、吸湿部13、14と室内26の空気を循環させる循環空気通路28A、28B、28C、28D途中に、水添加装置37を構成してある。水添加装置37は、給水管38に接続した水量制御装置39と気化装置40からなり、給水管38から水量制御装置39に供給された水を、水量制御装置39で適量に調節して気化装置40に送り、気化装置40では、循環空気通路28B、28Dを流れる空気に水分を蒸発させる。水量制御装置39での水調節量は、循環空気通路28B、28Dを流れる空気の量と室内の温度等から空気の飽和水蒸気量以下に設定する。また、気化装置40は、循環空気通路28B、28Dを流れる空気と水ができるだけ接触面積を増大させる構成とし、浸透圧を利用した灯心型繊維に沁み込ませる方法やノズルから微粒子として水を噴霧する方法などを用いると、気化遅れが無くなる。   Further, a water addition device 37 is configured in the middle of the circulation air passages 28A, 28B, 28C, and 28D for circulating the air in the moisture absorption sections 13 and 14 and the room 26. The water addition device 37 is composed of a water amount control device 39 and a vaporization device 40 connected to a water supply pipe 38. The water supply device 37 adjusts the water supplied from the water supply pipe 38 to the water amount control device 39 to an appropriate amount by the water amount control device 39. 40, the vaporizer 40 evaporates moisture into the air flowing through the circulating air passages 28B and 28D. The water adjustment amount in the water amount control device 39 is set to be equal to or less than the saturated water vapor amount of air based on the amount of air flowing through the circulation air passages 28B and 28D, the indoor temperature, and the like. Further, the vaporizer 40 is configured to increase the contact area between the air flowing through the circulating air passages 28B and 28D and the water as much as possible, and sprays water as fine particles from a method of swallowing into a wick type fiber using osmotic pressure or a nozzle. If the method is used, the vaporization delay is eliminated.

水が蒸発する時、空気から気化熱を奪う為、空気の温度が低下し、冷たい空気が室内入口30から室内26に噴出し冷房運転が可能となる。すなわち、吸湿した室内からの空気は、吸湿部13、14で水分を取り除かれて湿度が低く乾燥する。この乾燥した空気を室内に送る循環空気通路28B、28D途中に設けた水添加装置37にて水を加えると、空気は乾燥している為、水は蒸発して空気に入る。このとき、水の蒸発に伴う気化熱を周りの空気から奪い、空気は低温となる。この動作を繰り返すことにより、室内に冷たい空気が循環し冷房が行える。   When the water evaporates, the heat of vaporization is taken from the air, so that the temperature of the air is lowered, and cold air is ejected from the indoor inlet 30 into the indoor 26 to enable the cooling operation. That is, the moisture from the room that has absorbed moisture is removed by the moisture absorption sections 13 and 14 and dried with low humidity. When water is added by the water adding device 37 provided in the middle of the circulating air passages 28B and 28D for sending the dried air into the room, the air is dried, so that the water evaporates and enters the air. At this time, the heat of vaporization accompanying the evaporation of water is taken away from the surrounding air, and the air becomes a low temperature. By repeating this operation, cold air circulates in the room and can be cooled.

以上のように、本発明にかかる太陽熱利用の室内調湿機は、太陽熱を用いランニングコストを低減すると共に、冷媒循環通路と循環空気通路を構成することにより、太陽が出なときでも室内空気の吸湿ができ、高効率化を可能となり、住宅の除湿のための室内調湿機に適用することができる。   As described above, the indoor humidity controller using solar heat according to the present invention reduces the running cost by using solar heat and configures the refrigerant circulation passage and the circulation air passage so that the indoor air can be adjusted even when the sun is not emitted. Moisture absorption is possible, high efficiency is possible, and it can be applied to an indoor humidity controller for dehumidifying a house.

本発明の実施の形態1における太陽熱利用の室内調湿機の断面図Sectional drawing of the indoor humidity controller using solar heat in Embodiment 1 of the present invention 本発明の実施の形態1における乾燥剤の脱湿特性図Dehumidification characteristic diagram of desiccant in Embodiment 1 of the present invention 本発明の実施の形態1における乾燥剤の吸湿特性図Moisture absorption characteristic diagram of desiccant in Embodiment 1 of the present invention 本発明の実施の形態2における太陽熱利用の室内調湿機の断面図Sectional drawing of the indoor humidity controller using solar heat in Embodiment 2 of this invention 従来例における太陽熱利用の室内調湿機の断面図Sectional view of indoor humidity controller using solar heat in conventional example

符号の説明Explanation of symbols

10 太陽熱集熱器
16 冷却装置
13、14 吸湿部
17 冷媒循環機
18 冷媒循環通路
19、20 熱交換器
27 送風機
28A、28B、28C、28D 循環空気通路
DESCRIPTION OF SYMBOLS 10 Solar collector 16 Cooling device 13, 14 Moisture absorption part 17 Refrigerant circulation machine 18 Refrigerant circulation passage 19, 20 Heat exchanger 27 Blower 28A, 28B, 28C, 28D Circulation air passage

Claims (9)

複数系列の室内空気循環路と、それぞれ吸湿剤を内蔵し、前記各室内空気循環路の途中に接続された吸湿部と、これら吸湿部の吸湿剤を冷却する冷却手段と、太陽熱集熱器で加熱された熱媒体の熱を加熱源として前記吸湿剤の脱湿を行う脱湿手段とを具備した室内調湿機。 A plurality of series of indoor air circulation paths, a hygroscopic agent built in each, a hygroscopic part connected in the middle of each indoor air circulation path, a cooling means for cooling the hygroscopic agent in these hygroscopic parts, and a solar heat collector An indoor humidity controller comprising dehumidifying means for dehumidifying the moisture absorbent using heat of the heated heat medium as a heat source. 吸湿部の吸湿剤に、熱媒体が流れる熱交換器を配備して脱湿手段とした請求項1記載の室内調湿機。 The indoor humidity controller according to claim 1, wherein a heat exchanger through which a heat medium flows is provided as a dehumidifying means in the hygroscopic agent of the hygroscopic part. 熱媒体が流れる熱交換器で外部空気を加熱して吸湿部の吸湿剤に送給するようにして脱湿手段を構成した請求項1記載の室内調湿機。 The indoor humidity controller according to claim 1, wherein the dehumidifying means is configured such that the external air is heated by a heat exchanger through which the heat medium flows and is supplied to the hygroscopic agent in the hygroscopic section. 冷却手段は、送風機を介して外部空気を吸湿部の吸湿剤に流動させるように構成した請求項1記載の室内調湿機。 The indoor humidity controller according to claim 1, wherein the cooling means is configured to flow external air to the hygroscopic agent of the hygroscopic part via the blower. 吸湿部の吸湿剤に外部空気を流動させる送風機を配備し、太陽熱集熱器で加熱された熱媒体が流れる熱交換器を吸湿部よりも上流側の前記送風機の風路に配置して、この熱交換器への熱媒体の流動発停制御により冷却手段と脱湿手段とを兼用させるようにした請求項1記載の室内調湿機。 A blower that allows external air to flow through the hygroscopic agent of the hygroscopic part, a heat exchanger through which the heat medium heated by the solar heat collector flows is arranged in the air path of the blower upstream of the hygroscopic part, and this The indoor humidity controller according to claim 1, wherein both the cooling means and the dehumidifying means are used by controlling the flow of the heat medium to the heat exchanger. 複数系列の室内空気循環路を開閉制御可能に構成するとともに、開路状態にある室内空気循環路側吸湿部の冷却手段および脱湿手段を停止し、閉路状態にある室内空気循環路側吸湿部の冷却手段および脱湿手段を駆動させるように設定した請求項5記載の室内調湿機。 A plurality of series of indoor air circulation paths can be controlled to be opened and closed, and the cooling means and the dehumidification means of the indoor air circulation path side moisture absorption part in the open state are stopped, and the cooling means of the indoor air circulation path side moisture absorption part in the closed state is stopped. The indoor humidity controller according to claim 5, which is set to drive the dehumidifying means. 冷却手段の駆動を任意に停止して太陽熱集熱器で加熱された熱媒体の熱を暖房用に活用するように設定した請求項1記載の室内調湿機。 The indoor humidity controller according to claim 1, wherein driving of the cooling means is arbitrarily stopped and the heat of the heat medium heated by the solar heat collector is used for heating. 室内空気循環路の脱湿手段よりも下流側に加湿装置を配置した請求項7記載の室内調湿機。 The indoor humidity controller according to claim 7, wherein a humidifier is disposed downstream of the dehumidifying means of the indoor air circulation path. 吸湿部には電気ヒータのような補助加熱手段を配備した請求項1記載の太陽熱利用の室内調湿機。   The indoor heat conditioner using solar heat according to claim 1, wherein an auxiliary heating means such as an electric heater is provided in the moisture absorption part.
JP2007087411A 2007-03-29 2007-03-29 Interior humidistat Pending JP2008249165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007087411A JP2008249165A (en) 2007-03-29 2007-03-29 Interior humidistat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007087411A JP2008249165A (en) 2007-03-29 2007-03-29 Interior humidistat

Publications (1)

Publication Number Publication Date
JP2008249165A true JP2008249165A (en) 2008-10-16

Family

ID=39974322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007087411A Pending JP2008249165A (en) 2007-03-29 2007-03-29 Interior humidistat

Country Status (1)

Country Link
JP (1) JP2008249165A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010096457A (en) * 2008-10-17 2010-04-30 Nippon Light Metal Co Ltd Air conditioning device
JP2011112343A (en) * 2009-11-30 2011-06-09 Mitsubishi Electric Corp Air conditioner and air conditioning system
CN104833027A (en) * 2015-05-14 2015-08-12 安徽中家智锐科技有限公司 Household direct current variable-frequency air-conditioning system comprehensively utilizing solar photo-thermal energy and photoelectric technique
CN104896773A (en) * 2015-07-02 2015-09-09 青岛科瑞新型环保材料有限公司 Solar phase change heat storage system
CN105299783A (en) * 2015-11-02 2016-02-03 西安交通大学 Solar-driven solution membrane concentration and solution dehumidification device and dehumidification method
KR101862238B1 (en) 2017-01-19 2018-05-30 송영배 Cooling-heating-dehumidifier having the same using solar energy

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010096457A (en) * 2008-10-17 2010-04-30 Nippon Light Metal Co Ltd Air conditioning device
JP2011112343A (en) * 2009-11-30 2011-06-09 Mitsubishi Electric Corp Air conditioner and air conditioning system
CN104833027A (en) * 2015-05-14 2015-08-12 安徽中家智锐科技有限公司 Household direct current variable-frequency air-conditioning system comprehensively utilizing solar photo-thermal energy and photoelectric technique
CN104833027B (en) * 2015-05-14 2017-06-13 安徽中家智锐科技有限公司 The household DC frequency-conversion air-conditioning system of comprehensive utilization solar energy optical-thermal and photoelectric technology
CN104896773A (en) * 2015-07-02 2015-09-09 青岛科瑞新型环保材料有限公司 Solar phase change heat storage system
CN105299783A (en) * 2015-11-02 2016-02-03 西安交通大学 Solar-driven solution membrane concentration and solution dehumidification device and dehumidification method
KR101862238B1 (en) 2017-01-19 2018-05-30 송영배 Cooling-heating-dehumidifier having the same using solar energy

Similar Documents

Publication Publication Date Title
JP6842490B2 (en) Ceiling liquid desiccant air conditioning system
US7260945B2 (en) Desiccant-assisted air conditioning system and process
US4222244A (en) Air conditioning apparatus utilizing solar energy and method
US5943874A (en) Desiccant assisted air conditioning apparatus
JP4169747B2 (en) Air conditioner
KR100512040B1 (en) Cold and heat device for combined dehumidify
KR101229676B1 (en) Hybrid type cooling equipment
KR101071350B1 (en) Hybrid desiccant cooling oac system for cleanroom
JP2008249165A (en) Interior humidistat
KR100611645B1 (en) Desiccant cooling system using desiccant rotor and heat pipe
US10274210B2 (en) Heat pump humidifier and dehumidifier system and method
CN107003078B (en) Dehumidification system and dehumidification method
CN102721133B (en) Self-cooling type solid desiccant cooling dehumidification air-conditioning system
KR101445378B1 (en) Apparatus for dehumidifying and cooling air
KR102287900B1 (en) Air conditioner
CN105805868A (en) Regenerative and recuperative dehumidifying heat pump system and running method thereof
JPH11132593A (en) Air conditioner
JP4341848B2 (en) Air-collecting solar dehumidification cooler system
CN100575799C (en) Humidity conditioner
JPH1144439A (en) Air conditioner
JP4784340B2 (en) Dehumidifier
CN105823171A (en) Novel air conditioner system with reinforced dehumidifying function
JP4784341B2 (en) Dehumidifier
CN215001975U (en) Fresh air conditioning system
KR102289482B1 (en) Air conditioning system