JPS5815701B2 - Solar heat absorption type air conditioning and water heater - Google Patents

Solar heat absorption type air conditioning and water heater

Info

Publication number
JPS5815701B2
JPS5815701B2 JP54007773A JP777379A JPS5815701B2 JP S5815701 B2 JPS5815701 B2 JP S5815701B2 JP 54007773 A JP54007773 A JP 54007773A JP 777379 A JP777379 A JP 777379A JP S5815701 B2 JPS5815701 B2 JP S5815701B2
Authority
JP
Japan
Prior art keywords
absorber
heating
solar heat
heat
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54007773A
Other languages
Japanese (ja)
Other versions
JPS5599565A (en
Inventor
若松伸彦
竹下功
田中博由
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP54007773A priority Critical patent/JPS5815701B2/en
Publication of JPS5599565A publication Critical patent/JPS5599565A/en
Publication of JPS5815701B2 publication Critical patent/JPS5815701B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Description

【発明の詳細な説明】 本発明は太陽熱を熱源として作動する吸収式冷凍装置を
用いて、暖房給湯を必要とする場合に太陽熱を有効に収
集して室内を暖房しようとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses an absorption refrigeration system that operates using solar heat as a heat source to effectively collect solar heat and heat a room when hot water supply is required.

従来太陽熱を利用する冷暖房装置としては、太陽熱集熱
器に木々どの熱媒体を循環させ、顕熱として熱を取出し
、この熱により冷房期にはその熱を吸収式冷凍機のガス
発生器に借給し、この熱により冷媒を蒸発させて冷房全
行ない一方暖房期には太陽熱集熱器で集められた熱を、
熱媒体させて暖房を行なうものがあった。
Conventional air-conditioning systems that utilize solar heat circulate a heat medium such as trees through a solar heat collector, extract heat as sensible heat, and use this heat to borrow to the gas generator of an absorption chiller during the cooling season. This heat evaporates the refrigerant and performs all cooling operations, while during the heating season, the heat collected by solar collectors is
There were some that used a heat medium to provide heating.

第1図は従来の冷暖房装置の一例を示している。FIG. 1 shows an example of a conventional heating and cooling system.

1は太陽熱集熱器、2は温水循環ポンプ、3は水臭化リ
ジューム系吸収式冷凍機で、4は吸収式冷凍機の加熱温
水入口、5は加熱温水出口であり、6は吸収式冷凍機3
で作られた冷水の出口、7は冷水の帰り口である。
1 is a solar heat collector, 2 is a hot water circulation pump, 3 is a water bromide resume absorption chiller, 4 is a heated hot water inlet of the absorption chiller, 5 is a heated hot water outlet, and 6 is an absorption chiller. Machine 3
7 is the outlet for the cold water created by , and 7 is the return port for the cold water.

また、9,10,11,12゜13.14は弁、8は室
内熱交換器である。
Further, 9, 10, 11, 12°13.14 are valves, and 8 is an indoor heat exchanger.

そして冷房に際しては、弁9,10を閉じ、弁11゜1
2.13,14を開けば、太陽熱により加熱された温水
は、吸収式冷凍機3を作動させて、冷水が出口6より出
て室内熱交換器8に通じここで室内が冷房される。
When cooling, valves 9 and 10 are closed, and valves 11 and 10 are closed.
2. When 13 and 14 are opened, the hot water heated by solar heat operates the absorption refrigerator 3, and the cold water comes out from the outlet 6 and passes through the indoor heat exchanger 8, where the room is cooled.

暖房に際しては、弁11,12,13,14を閉じ、弁
9,10を開けば、太陽熱により加熱された温水は、室
内熱交換器8に導かれて室内を暖房し、温度の低下した
水はポンプ2により太陽熱集熱器1に帰される。
For heating, when valves 11, 12, 13, and 14 are closed and valves 9 and 10 are opened, the hot water heated by solar heat is led to the indoor heat exchanger 8 to heat the room, and the water whose temperature has decreased is is returned to the solar heat collector 1 by the pump 2.

しかしこのような冷暖房装置では、冷房の場合温水を介
して吸収式冷凍機の発生器を加熱するだめ、発生器の要
求する温成よりさらに10℃以上高い加熱温水が必要と
なり、熱損失も増加するばかりでなく、温水循環ポンプ
など補助動力が余分に必要である。
However, in this type of air conditioning system, since the generator of the absorption chiller cannot be heated through hot water for cooling, the heated water needs to be heated at least 10°C higher than the temperature required by the generator, and heat loss also increases. Not only that, but additional auxiliary power such as a hot water circulation pump is required.

この問題を解決する一方法として直接に太陽熱集熱器を
吸収式冷凍機の発生器とすることが考えられている。
One way to solve this problem is to directly use a solar heat collector as a generator for an absorption refrigerator.

第2図はこの原理による吸収式冷凍機を示している。FIG. 2 shows an absorption refrigerator based on this principle.

15は太陽熱集熱器であるが、これは同時に吸収式冷凍
機の発生器である。
15 is a solar heat collector, which is also a generator for an absorption refrigerator.

16は気液分離器、17は凝縮器、18は膨張弁、19
は蒸発器。
16 is a gas-liquid separator, 17 is a condenser, 18 is an expansion valve, 19
is an evaporator.

20は吸収器、21は液循環ポンプ、22は溶液熱交換
器である。
20 is an absorber, 21 is a liquid circulation pump, and 22 is a solution heat exchanger.

その作用を説明すると、発生器15に、冷媒を多量に溶
かした濃溶液が から流入すると、太陽輻射を受けて温
度が上昇し、冷媒ガスを蒸発させ、液は稀溶液となる。
To explain its operation, when a concentrated solution containing a large amount of refrigerant flows into the generator 15, the temperature rises due to solar radiation, evaporates the refrigerant gas, and the liquid becomes a dilute solution.

気液分離器16で冷媒ガスと稀溶液は分離され、冷媒ガ
スは管23を通って凝縮器1Tに至り、水または空気で
冷されて液化し、液化冷媒は室内に導かれて、膨張弁1
8により膨張させられ、冷媒液は蒸発して、その蒸発熱
は蒸発器19において室内空気と熱交換し、室内を冷却
する。
The refrigerant gas and the dilute solution are separated in the gas-liquid separator 16, and the refrigerant gas passes through the pipe 23 and reaches the condenser 1T, where it is cooled with water or air and liquefied.The liquefied refrigerant is led indoors and passes through the expansion valve. 1
8, the refrigerant liquid evaporates, and the heat of evaporation is exchanged with indoor air in the evaporator 19 to cool the room.

そして蒸発した気体冷媒は吸収器20に導かれる。The evaporated gas refrigerant is then led to the absorber 20.

一方気液分離器16において分離された稀溶液は、管2
4を通り溶液熱交換器22に入る。
On the other hand, the dilute solution separated in the gas-liquid separator 16 is transferred to the pipe 2
4 and enters the solution heat exchanger 22.

これは発生器15に送られる冷えた濃溶液と熱い稀溶液
を熱交換させるもので、稀溶液は冷却されて吸収器20
に入る。
This is to exchange heat between the cold concentrated solution sent to the generator 15 and the hot diluted solution, and the diluted solution is cooled and sent to the absorber 20.
to go into.

この稀溶液は上記冷媒ガスを吸収し濃溶液となるが、同
時に発熱するので水または空気により冷却きれるため濃
溶液の温度は水または空気や温度に近い。
This dilute solution absorbs the refrigerant gas and becomes a concentrated solution, but at the same time it generates heat and can be completely cooled with water or air, so the temperature of the concentrated solution is close to that of water or air.

まだ吸収器20内は発生器15内に比べて圧力が低いた
め、この濃溶液を発生器15に送るには、循環ポンプ2
1が必要である。
Since the pressure inside the absorber 20 is still lower than that inside the generator 15, in order to send this concentrated solution to the generator 15, the circulation pump 2 is required.
1 is required.

液循環ポンプ21を出た液は上記溶液熱交換器22にお
いて加熱され発生器15に送られて1つのサイクルが完
成する。
The liquid exiting the liquid circulation pump 21 is heated in the solution heat exchanger 22 and sent to the generator 15, completing one cycle.

この吸収式冷凍機は熱の有効利用がはかられ、補助動力
が液循環ポンプのみでよいというすぐれた利点を持って
いるが、冷房システムであって暖房期に暖房を目的とし
て使用することはでき々いしかし圧縮式冷房装置の凝縮
器と蒸発器を逆にすることによってヒートポンプとして
暖房に使用できるように、上記吸収式の装置においても
同様な使い方が不可能ではない。
This absorption chiller has the advantage of making effective use of heat and requiring only a liquid circulation pump as auxiliary power, but it is a cooling system and cannot be used for heating purposes during the heating season. However, just as a compression type air conditioner can be used as a heat pump for space heating by reversing the condenser and evaporator, it is not impossible to use the absorption type device in the same way.

しり・シ暖房を必要とする季節には太陽熱が弱く気温が
低いため、発生器の温度は十分上らず、一方凝縮器は被
暖房空間に置かれており、凝縮温度は夏に比べて低くは
ないから、満足に動作させることは難しい。
During the season when heating is required, the solar heat is weak and the temperature is low, so the temperature of the generator does not rise sufficiently.On the other hand, the condenser is placed in the space to be heated, so the condensing temperature is lower than in summer. Since there is no such thing, it is difficult to make it work satisfactorily.

本発明はこの点を改善し、太陽熱集熱器に冷媒溶媒混合
溶液を直接循環させる太陽熱吸収冷房装置において、暖
房期には太陽熱を効率よく室内に輸送し、暖房を行わせ
るように改善したものである。
The present invention improves this point and improves the solar heat absorption cooling device that directly circulates a refrigerant solvent mixture solution to a solar heat collector so that solar heat is efficiently transported indoors during the heating season to perform heating. It is.

以下、本発明をその一実施例を不す第3図を参考に説明
する。
Hereinafter, the present invention will be explained with reference to FIG. 3, which does not include one embodiment thereof.

25は太陽熱を集熱する集熱器兼ガで発生器、26は気
液分離器、27は凝縮器、28は膨張弁、29は室内熱
交換器、30は水冷式の吸収器、37はその冷却水入口
、38は同出口であり、31は液送ポンプ、°32は熱
交換器であり、33は冷媒ガス通路39と凝縮器27間
に設けた弁、弁36は室内熱交換器29と吸収器30の
間に設は冬弁であり、弁33と気液分離器260区間か
ら、弁36と吸収器30の区間を結ぶ配管40は途中に
9の通路を開閉する弁34と、流量を調整するスロット
ル弁35を設けた。
25 is a solar heat collector/gas generator, 26 is a gas-liquid separator, 27 is a condenser, 28 is an expansion valve, 29 is an indoor heat exchanger, 30 is a water-cooled absorber, 37 is a 38 is the cooling water inlet, 38 is the same outlet, 31 is the liquid feeding pump, 32 is the heat exchanger, 33 is the valve provided between the refrigerant gas passage 39 and the condenser 27, and the valve 36 is the indoor heat exchanger. A winter valve is installed between the valve 33 and the gas-liquid separator 260, and the pipe 40 that connects the valve 36 and the absorber 30 has a valve 34 that opens and closes the passage 9 in the middle. , a throttle valve 35 is provided to adjust the flow rate.

しかして、冷房時の動作は、第2図に示したと全く同様
で、吸収器30で生じた濃溶液は液送ポンプ31により
熱交換器32を通り集熱器兼ガス発生器25に入9、冷
媒ガスを発生する。
The operation during cooling is exactly the same as shown in FIG. , generates refrigerant gas.

冷媒ガスは気液外離器26、通路39を通るが、冷房時
は弁34を閉じ、弁33を開く結果、冷媒ガスは凝縮器
27に入り液化し、膨張弁28より室内熱交換器29に
入る。
The refrigerant gas passes through the gas-liquid separator 26 and the passage 39. During cooling, the valve 34 is closed and the valve 33 is opened. As a result, the refrigerant gas enters the condenser 27 and is liquefied, and then passes through the expansion valve 28 to the indoor heat exchanger 29. to go into.

そして弁36を開けば、蒸発した冷媒ガスは弁36より
吸収器30に入る。
Then, when the valve 36 is opened, the evaporated refrigerant gas enters the absorber 30 through the valve 36.

一方ガスを放出した稀溶液は、熱交換器32を通り吸収
器30に入ってサイクルが閉じる。
Meanwhile, the dilute solution that has released the gas passes through the heat exchanger 32 and enters the absorber 30 to close the cycle.

暖房あるいは給湯の必要な時には、弁33.36を閉じ
、弁34を開き、弁35を調整して発生器25と吸収器
30の間に、0.5 kg/ca程度の圧力差を生じせ
しめると、発生した冷媒ガスは、集熱器兼ガス発生器2
5から気液分離器26、通路40を経て吸収器30に流
入する。
When heating or hot water supply is required, valves 33 and 36 are closed, valve 34 is opened, and valve 35 is adjusted to create a pressure difference of about 0.5 kg/ca between generator 25 and absorber 30. And the generated refrigerant gas is transferred to the heat collector and gas generator 2.
5, flows into the absorber 30 via the gas-liquid separator 26 and the passage 40.

一方稀溶液は、集熱器兼ガス発生器25と吸収器300
間の圧力差によって吸収器30に流入し、冷媒ガスと混
合し溶解するため、集熱器兼ガス発生器25で冷媒ガス
を蒸発せしめるのに要した熱量にはソ等しし熱量を、溶
解の際に放出するが、吸収器30は香水入口27より冷
却水が流入しているので、こC水が、この溶解熱によっ
て加熱され、温水出口38より温水を得ることができる
On the other hand, for the dilute solution, the heat collector and gas generator 25 and the absorber 300
Due to the pressure difference between the two, the gas flows into the absorber 30, mixes with the refrigerant gas, and dissolves. However, since cooling water flows into the absorber 30 from the perfume inlet 27, this C water is heated by the heat of dissolution, and hot water can be obtained from the hot water outlet 38.

この温水を脩湯もしくは住宅の暖房に供することができ
る。
This hot water can be used for bathing or for heating a house.

冷媒ガスを吸収した濃溶液は液ポンプ31にコつて、集
熱器兼ガス発生器25に熱交換器32后通して送られサ
イクルが閉る。
The concentrated solution that has absorbed the refrigerant gas is sent to the heat collector and gas generator 25 through the heat exchanger 32 via the liquid pump 31, and the cycle is closed.

この場合集熱器謝ガス発生器25と吸収器30の間の圧
力差は小でいので、ポンプの所要動力はごくわづかであ
る。
In this case, the pressure difference between the collector gas generator 25 and the absorber 30 is small, so that the power required for the pump is negligible.

この手段を従来の水の顕熱で熱輸送を行う方汐と比べる
と、従来の手段の場合は、風等で冷却でれ易い屋外を高
温の湯を循環させねばならず、」分な断熱工事を施さな
いかぎり輸送中の損失が男常に大きなものと々る。
Comparing this method with the conventional method of transporting heat using the sensible heat of water, in the case of the conventional method, hot water must be circulated outdoors where it is easily cooled by wind, etc. Unless construction work is carried out, losses during transportation will always be large.

これに反し、この新しい手段によれば、熱の輸送は主と
してガスによって行われ、熱の授受は、冷媒ガスの蒸発
と吸収により行われるもので、少い物質の移動で大きな
熱1が搬ばれるため、輸送中の損失が極めて少い。
On the contrary, according to this new method, heat is mainly transported by gas, and heat is exchanged by evaporation and absorption of refrigerant gas, so a large amount of heat 1 is transferred with a small amount of material movement. Therefore, losses during transportation are extremely low.

これを又、比較的類似の手段である純粋な冷麩物質の蒸
発、凝縮で熱を輸送する手段と比較しても、同一の凝縮
温度又は吸収温度の条件の下で、;蒸発凝縮のサイクル
は、蒸発吸収のサイクルよりはるかにガスの圧力が高く
なるため、配管途中に凝縮器の温度より低い温度の部分
が存在すると、そこで凝縮がおこり、熱を放出してしま
う危険があった。
This can also be compared with a relatively similar means of transporting heat by evaporation and condensation of pure cold wheat substances, under the same condensation or absorption temperature conditions; the evaporation-condensation cycle. In this case, the gas pressure is much higher than in the evaporation-absorption cycle, so if there was a part of the pipe with a temperature lower than that of the condenser, there was a risk that condensation would occur there and heat would be released.

しかし本発明の場合は、途中の管壁温度が吸収器30よ
りはるかに低い温度になら々いかぎり途中での凝縮は生
じないため、あ°まり厳重々断熱をガス配管に施こす必
要がないので実施がきわめて容易である。
However, in the case of the present invention, as long as the temperature of the pipe wall in the middle is much lower than that of the absorber 30, condensation does not occur in the middle, so there is no need to insulate the gas pipe very strictly. Therefore, it is extremely easy to implement.

又液配管が集熱器兼ガス発生器25、熱交換器32と吸
収器300間に存在し、この液配管を通しての熱の移動
もあるが、熱交換器32をできるだけ集熱器兼ガス発生
器に近く設置すれば、熱交換器32と吸収器300間を
結ぶ配管の温度はせいぜい30℃程度であるから断熱は
簡単なものでも熱損失は極めて少い。
In addition, liquid piping exists between the heat collector and gas generator 25, the heat exchanger 32, and the absorber 300, and although some heat is transferred through the liquid piping, the heat exchanger 32 is used as a heat collector and gas generator as much as possible. If the heat exchanger 32 and the absorber 300 are installed close to each other, the temperature of the piping connecting the heat exchanger 32 and the absorber 300 will be about 30° C. at most, so even if the heat insulation is simple, the heat loss will be extremely small.

第1表は本実施例における実験データの一部を示したも
のである。
Table 1 shows some of the experimental data in this example.

この実験は集熱器兼ガス発生器25と吸収器30間の配
管は一切断熱材を巻くこと々く行ったものである。
In this experiment, all piping between the heat collector/gas generator 25 and the absorber 30 was wrapped with heat insulating material.

本実験に用いた集熱器兼ガス発生器の受光面積は約10
rr?であった。
The light receiving area of the heat collector/gas generator used in this experiment is approximately 10
rr? Met.

この集熱器兼ガス発生器の集熱効率は0.5程度である
から、熱輸送に伴う損失がごく少いことが明らかである
Since the heat collection efficiency of this heat collector and gas generator is about 0.5, it is clear that the loss due to heat transport is extremely small.

又本実験に使用したスロットル弁35は手動のものであ
り、始めにある状態に固定しておくと、ガス流量の増大
と共に発生器圧と吸収器圧の差が大きくなるが、一定差
圧であることが望ましい。
Furthermore, the throttle valve 35 used in this experiment is a manual one, and if it is initially fixed in a certain state, the difference between the generator pressure and absorber pressure will increase as the gas flow rate increases, but it will not work at a constant pressure difference. It is desirable that there be.

この圧力差は、発生器25から、吸収器30へ稀溶液が
流れるために必要な圧であワ、必要以上に圧が高くなる
と、それだけ集熱器兼ガス発生器25と吸収器30の温
度差が大きくなり、えられる温水温度に比べて集熱器兼
ガス発生器の温度が高くな9集熱効率の低下をまねくか
らである。
This pressure difference is the pressure necessary for the dilute solution to flow from the generator 25 to the absorber 30. If the pressure becomes higher than necessary, the temperature of the heat collector/gas generator 25 and absorber 30 will increase accordingly. This is because the difference becomes large and the temperature of the heat collector and gas generator becomes higher than the temperature of the hot water that can be obtained, resulting in a decrease in heat collection efficiency.

一定差圧を作る弁としては、例えば=般に用いられてい
るキャピラリー菅笠定圧膨張弁類似の構造が考えられる
As a valve for creating a constant pressure difference, for example, a structure similar to the commonly used capillary Sugakasa constant pressure expansion valve can be considered.

上記実施例より明らかなごとく本発明の太陽熱冷暖房給
湯装置は、直熱型の太陽熱駆動冷房装置、に簡単なバイ
パス管路と3乃至4つの弁を付するだけで任意に冷房と
温水取出しとを切り替えることができるので、例えば夏
の夕方、冷房出力かえられない程度に日射が落ちた時に
簡単な弁操作で温水取出しに切り替えることができる利
点もある。
As is clear from the above embodiments, the solar air-conditioning, heating, and water supply system of the present invention can perform cooling and hot water extraction at will by simply adding a simple bypass pipe and three or four valves to a direct-heat type solar-powered cooling system. Since it can be switched, there is also the advantage that, for example, on summer evenings when the sunlight falls to such an extent that the cooling output cannot be changed, it is possible to switch to hot water extraction with a simple valve operation.

; 本発明の最大の利点は、太陽熱利用技術の中で最も
重要な熱輸送中の熱損失を極めて少くした直熱型の太陽
熱駆動吸収式冷凍装置において、さらに熱損失の問題が
重要な冬期の暖房集熱器として使用した場合に非常に少
い熱損失で熱輸送をしうる系に簡単に切り替えられる点
にあり優れた効果を奏するものである。
; The greatest advantage of the present invention is that it is a direct-heating solar-driven absorption refrigeration system that extremely minimizes heat loss during heat transport, which is the most important of solar heat utilization technologies, and that it can be used in winter, when the problem of heat loss is even more important. When used as a heating heat collector, it has excellent effects in that it can be easily switched to a system that can transport heat with very little heat loss.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の冷暖房装置の説明図、第2図は直熱型太
陽熱吸収式冷房装置の説明図、第3図は本発明の一実施
例を示す太陽熱吸収式冷暖房給湯装置の説明図である。 25・・・・・・集熱器兼ガス発生器、26・・・・・
・気液分離器、27・・・・・・凝縮器、28・・・・
・・膨張弁、29・・・・・・冷房用室内熱交換器(蒸
発器)、30・・・・・・吸収器、31・・・・・・液
送ポンプ、32・・・・・・熱交換器、33.34,3
6・・・・・・弁、35・・・・・・流量調整用弁、3
7・・・・・・冷水入口、3B・・・・・・温水出口、
39.40・・・・・・通路。
Fig. 1 is an explanatory diagram of a conventional air conditioning system, Fig. 2 is an explanatory diagram of a direct heating type solar heat absorption type air conditioner, and Fig. 3 is an explanatory diagram of a solar heat absorption type air conditioning/heating water supply system showing an embodiment of the present invention. be. 25... Heat collector and gas generator, 26...
・Gas-liquid separator, 27... Condenser, 28...
... Expansion valve, 29 ... Indoor heat exchanger for cooling (evaporator), 30 ... Absorber, 31 ... Liquid feed pump, 32 ...・Heat exchanger, 33.34,3
6... Valve, 35... Flow rate adjustment valve, 3
7...Cold water inlet, 3B...Hot water outlet,
39.40...Aisle.

Claims (1)

【特許請求の範囲】 1 太陽熱集熱器に冷媒および溶媒の混合溶液を直接循
環せしめ、太陽熱により冷媒ガスをこの溶液より分離蒸
発せしめる構造ケ有する太陽熱直熱型吸収式冷凍装置を
用い、前記集熱器兼ガス発生器の冷媒蒸気を、凝縮器お
÷9蒸発器をバイパスして直接吸収器に接続する開閉可
能な弁を途中に有する接続管を、発生器出口と吸収器の
間に設は暖房、給湯運転時に上記接続管を開とすると恭
lと凝縮器への通路および蒸発器と吸収器を結ぶ通路に
設けた弁を閉ることによシ、興生冷媒を直接吸収器に送
り、吸収器において吸収せしめ、その吸収熱を暖房給蕩
に用いることを特徴とする太陽熱吸収式冷暖房給湯装置
。 2 上記接続管にスロット弁を設け、発生器と吸収器の
間に圧力差を生じせしめるごとくした特許請求の範囲第
1項記載の太陽熱吸収式冷暖房給湯装置。 3 上記接続管にキャピラリー管を設け、発生器と吸収
器の間に圧力差を生じせしめるごとくした特許請求の範
囲第1項記載の太陽熱吸収式冷暖房給湯装!。 4 上記接続管に弁の前後の圧力差をはソ一定に保つ、
定差圧の流量調整弁を設け、発生器と吸収器の間の圧力
差が動作中はぼ一定となるごとくした特許請求の範囲第
1項記載の太陽熱吸収式冷暖房給湯装置。
[Scope of Claims] 1. A solar direct heat absorption type absorption refrigerating device having a structure in which a mixed solution of a refrigerant and a solvent is directly circulated through a solar heat collector, and a refrigerant gas is separated and evaporated from this solution using solar heat, is used. A connecting pipe with an openable/closable valve in the middle is installed between the generator outlet and the absorber to connect the refrigerant vapor from the heater/gas generator directly to the absorber, bypassing the condenser and evaporator. When the above connection pipe is opened during heating or hot water supply operation, the valves installed in the passage connecting the condenser and the condenser and the passage connecting the evaporator and absorber are closed, allowing the refrigerant to flow directly into the absorber. 1. A solar heat absorption type air-conditioning/heating/water heating system characterized by transmitting heat, absorbing it in an absorber, and using the absorbed heat for heating/heating. 2. The solar heat absorption type air-conditioning/heating water heater according to claim 1, wherein a slot valve is provided in the connecting pipe to create a pressure difference between the generator and the absorber. 3. The solar heat absorption type air-conditioning/heating water supply system according to claim 1, wherein a capillary pipe is provided in the connecting pipe to create a pressure difference between the generator and the absorber! . 4. Keep the pressure difference before and after the valve in the connecting pipe constant.
2. The solar heat absorption type air-conditioning/heating water heater according to claim 1, wherein a flow rate regulating valve with a constant pressure difference is provided so that the pressure difference between the generator and the absorber remains approximately constant during operation.
JP54007773A 1979-01-25 1979-01-25 Solar heat absorption type air conditioning and water heater Expired JPS5815701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54007773A JPS5815701B2 (en) 1979-01-25 1979-01-25 Solar heat absorption type air conditioning and water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54007773A JPS5815701B2 (en) 1979-01-25 1979-01-25 Solar heat absorption type air conditioning and water heater

Publications (2)

Publication Number Publication Date
JPS5599565A JPS5599565A (en) 1980-07-29
JPS5815701B2 true JPS5815701B2 (en) 1983-03-26

Family

ID=11674987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54007773A Expired JPS5815701B2 (en) 1979-01-25 1979-01-25 Solar heat absorption type air conditioning and water heater

Country Status (1)

Country Link
JP (1) JPS5815701B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57117760A (en) * 1981-01-14 1982-07-22 Sanyo Electric Co Solar heat pump absorption refrigerating machine
JPS57175862A (en) * 1981-04-23 1982-10-28 San Plant Kk Solar system
JPS5888576A (en) * 1981-11-24 1983-05-26 松下電器産業株式会社 Air conditioner
JPS58108372A (en) * 1981-12-22 1983-06-28 松下電器産業株式会社 Air-conditioning hot-water supply device
KR100807846B1 (en) * 2006-12-20 2008-02-27 성인식 Semi-cylindrical type of solar collection boiler
JP4993384B2 (en) * 2008-07-18 2012-08-08 東京瓦斯株式会社 Air conditioning system

Also Published As

Publication number Publication date
JPS5599565A (en) 1980-07-29

Similar Documents

Publication Publication Date Title
US4070870A (en) Heat pump assisted solar powered absorption system
RU2125213C1 (en) Generator-tyre absorption heat exchange apparatus for transfer of heat and method of operating it in thermal pump
JPH01137170A (en) Method and device for absorbing heat
JPH05172437A (en) Method and device for cooling fluid, particularly air by two separated absorption cooling system
US5579652A (en) Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump
JPS5815701B2 (en) Solar heat absorption type air conditioning and water heater
US5782097A (en) Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump
CN111609578B (en) Small-sized multi-mode solar-assisted household air conditioning system
US4509336A (en) Air conditioning apparatus
JPH0253702B2 (en)
JPH061139B2 (en) Cold / hot water production facility
JPS5816110B2 (en) solar heating and cooling equipment
JPH045904B2 (en)
JPH0471142B2 (en)
JP2779422B2 (en) Absorption chiller / heater
JPS6028933Y2 (en) Heat pump room air conditioner
JPS5829818Y2 (en) absorption refrigerator
JPH0754209B2 (en) Absorption cold / hot water device and its operating method
JPS6055729B2 (en) solar cooling device
JPH0364787B2 (en)
JP2003021420A (en) Absorption refrigerating plant and its operating method
JPS5866741A (en) Space cooling and heating system utilizing solar heat or waste heat
JPS5834731B2 (en) Control device for single and double effect absorption chiller
JPH0355739B2 (en)
JPH02192547A (en) Absorptive type cooler