WO1980000494A1 - Method for measuring the concentration by total reflection spectroscopy - Google Patents
Method for measuring the concentration by total reflection spectroscopy Download PDFInfo
- Publication number
- WO1980000494A1 WO1980000494A1 PCT/DE1979/000078 DE7900078W WO8000494A1 WO 1980000494 A1 WO1980000494 A1 WO 1980000494A1 DE 7900078 W DE7900078 W DE 7900078W WO 8000494 A1 WO8000494 A1 WO 8000494A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- intermediate layer
- sample
- substance
- measurement
- liquid
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 238000001055 reflectance spectroscopy Methods 0.000 title 1
- 239000000126 substance Substances 0.000 claims abstract description 30
- 239000007788 liquid Substances 0.000 claims abstract description 28
- 230000003287 optical effect Effects 0.000 claims abstract description 7
- 230000003595 spectral effect Effects 0.000 claims description 20
- 238000005259 measurement Methods 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 11
- 239000011248 coating agent Substances 0.000 claims description 8
- 238000000576 coating method Methods 0.000 claims description 8
- 230000005855 radiation Effects 0.000 claims description 8
- 238000004611 spectroscopical analysis Methods 0.000 claims description 7
- 238000007654 immersion Methods 0.000 claims description 6
- KKEBXNMGHUCPEZ-UHFFFAOYSA-N 4-phenyl-1-(2-sulfanylethyl)imidazolidin-2-one Chemical compound N1C(=O)N(CCS)CC1C1=CC=CC=C1 KKEBXNMGHUCPEZ-UHFFFAOYSA-N 0.000 claims description 4
- 239000010409 thin film Substances 0.000 claims description 3
- 230000001172 regenerating effect Effects 0.000 claims 2
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 238000001210 attenuated total reflectance infrared spectroscopy Methods 0.000 abstract description 4
- 239000007787 solid Substances 0.000 abstract description 3
- 239000012780 transparent material Substances 0.000 abstract 1
- 239000010408 film Substances 0.000 description 6
- -1 polytrifluoroethylene Polymers 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- LYQFWZFBNBDLEO-UHFFFAOYSA-M caesium bromide Chemical compound [Br-].[Cs+] LYQFWZFBNBDLEO-UHFFFAOYSA-M 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- JHJLBTNAGRQEKS-UHFFFAOYSA-M sodium bromide Chemical compound [Na+].[Br-] JHJLBTNAGRQEKS-UHFFFAOYSA-M 0.000 description 2
- 239000011343 solid material Substances 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 229910016036 BaF 2 Inorganic materials 0.000 description 1
- 229910021532 Calcite Inorganic materials 0.000 description 1
- 239000005662 Paraffin oil Substances 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000005102 attenuated total reflection Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- XJHCXCQVJFPJIK-UHFFFAOYSA-M caesium fluoride Inorganic materials [F-].[Cs+] XJHCXCQVJFPJIK-UHFFFAOYSA-M 0.000 description 1
- 239000005387 chalcogenide glass Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Inorganic materials [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- ADZWSOLPGZMUMY-UHFFFAOYSA-M silver bromide Chemical compound [Ag]Br ADZWSOLPGZMUMY-UHFFFAOYSA-M 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- PGAPATLGJSQQBU-UHFFFAOYSA-M thallium(i) bromide Chemical compound [Tl]Br PGAPATLGJSQQBU-UHFFFAOYSA-M 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/55—Specular reflectivity
- G01N21/552—Attenuated total reflection
Definitions
- the invention relates to a method for measuring the concentration by means of the spectroscopy of the total internal reflection.
- a method for measuring the concentration by means of the spectroscopy of the total internal reflection is of great practical interest in particular for determining the concentration of biological substances, since it enables measurements with the smallest possible sample quantities directly in the biological environment.
- This object is achieved according to the invention in that, for the regeneration of an optically clean surface of the reflection element, a transparent, highly refractive substance as an exchangeable intermediate layer between. Reflective element and sample is used.
- the penetration depth of the transversely damped light wave penetrating into the adjacent sample substance during total reflection of the measuring beam path on the surface of the reflection element lies in the visible spectral range, e.g. in the range of fractions of a u and their field strength decreases exponentially with increasing depth of penetration.
- the method according to the present invention enables the production and restoration of clean and reproducible surfaces between the reflection element and sample. This measure is the only way to ensure that the concentration of substances can be measured correctly and at any time by evaluating the absorption spectrum in the ultraviolet (UV), visible ( VIS) and infrared (IR) spectral range.
- the substance for the intermediate layer can be selected to match the measurement problem so that no disturbing adsorption of the sample to be measured occurs and that it forms a non-toxic layer between the sample to be examined and the reflection element.
- the method according to the invention finds particularly advantageous application for determining the concentration of biological substances, since the intermediate layer can always be selected in such a way that no disruptive adsorption occurs and that toxic effects are prevented.
- the intermediate layer In order for the intermediate layer to be as thin as possible and yet to a large extent uniform in its thickness, it is advisable to use a liquid substance for its production.
- This liquid intermediate layer can also be easily removed after the measurement has been completed, for example by wiping or washing off.
- a thin film with an opening is advantageously placed on the reflection element in such a way that the reflection points lie in the region of the opening. The liquid substance is then introduced into this opening and evenly distributed therein.
- a thin slide can also be used as the interchangeable intermediate layer, which consists of a material that refracts for the measuring radiation as strongly as or stronger than the reflection element and is arranged in optical contact with the reflection element by means of a suitable immersion liquid.
- Such an intermediate layer consisting of solid material has the advantage that it forms an even stronger barrier than a liquid between the reflection element and the sample, since diffusion processes in this intermediate layer practically do not take place at the temperatures in question.
- Such a specimen slide can also be provided on its surface facing the sample with a, preferably vapor-deposited or chemically applied, coating made of material that is highly refractive for the measuring radiation. This makes it possible to obtain different interfaces between the sample and the intermediate layer on the one hand and the reflection element or the immersion liquid and the intermediate layer on the other hand, that is to say these interfaces with an overall one-piece intermediate layer with different requirements of the sample on the one hand and of the reflection element on the other hand.
- FIG. 2 shows a first exemplary embodiment of an arrangement for carrying out the method according to the invention with a liquid substance as the intermediate layer;
- OMPI Fig. 4 shows another embodiment with a surface-coated solid substance as an intermediate layer.
- optical refractive indices n relating to the spectral range of the measuring beam for the various media through which the measuring light beam used for the spectroscopy passes from the entry into the reflection element to the exit from it are indicated in the drawing.
- the indices correspond to the reference numbers with which the respective element to which the refractive index provided with this index is assigned.
- This measuring arrangement has a light source 1, which is preferably designed as a laser and which generates a light bundle 2 that is as well collimated as possible.
- This light beam 2 passes through the entrance surface 3 of a reflection element 4 and is then totally reflected with a suitable choice of the angle of incidence ⁇ inside the reflection element 4 at the interface 5 between this reflection element and a sample 6 provided thereon, the number of reflections depending on the geometry of the Reflection element depends and should be adapted to the particular measurement problem.
- the selection of a suitable form of the reflection element 4 is carried out according to criteria known per se, as described, for example, in the book "Internal Reflection Spectros copy” by NJ Harrick, published by the publisher John Wiey & Son Inc., New York 1967 is.
- the transverse attenuated light wave which occurs during the total reflection of the light bundle 2 in the optically thinner medium, ie the sample 6, is influenced by the sample substance.
- the spectral composition of the incident light beam 2 thus changes speaking of the absorption properties of the sample 6, so that a light bundle 7 is obtained when exiting the reflection element 4, the spectral composition of which is characteristic of the sample 6 in comparison to the light bundle 2. This change is determined as the absorption spectrum by means of the spectral apparatus 8 and the detector 9, an amplifier 10 is fed from there and is recorded, for example, by means of a recorder 11.
- the light source 1, the spectral apparatus 8, the detector 9, the amplifier 10 and the recording device 11 have been omitted for the sake of a simplified illustration.
- a liquid intermediate layer 12 is provided between the reflection element 4 and the sample 6.
- a mask 13 which consists of a thin film and a central opening 13 'provided therein, is first placed on the reflection element 4 as an aid.
- a small amount of liquid substance which is highly refractive for the measuring radiation is introduced into the opening 13 *, for example by means of a burette, with a glass rod, by dripping or the like, and the like
- the liquid 12 must be such that it does not mix with the sample substance 6 and, of course, does not enter into an interfering connection with it.
- 12 immersion oils such as Br, (CH) or C, H 7 Br or polymers such as polyvinyl carbazole and also resins are suitable as the high-refractive liquid.
- polytrifluoroethylene oil in particular, can be used as the liquid substance for the intermediate layer 12
- a further liquid substance for the intermediate layer 12 which is suitable for use in the infrared spectral range from 1 to 3.3 JU and 3.9 to 6.5 ⁇ and 7.5 to 40 JU, is paraffin oil, the optical permeability of which is in the wavelength ranges mentioned is essentially above 90% and its refraction
- n ⁇ is between 1.480 to 1.484.
- the film 13 is removed and the liquid intermediate layer 12 is wiped and / or washed off by the reflection element 4. Then in the Wei described above, a new liquid intermediate layer 12 is brought up by means of a new film 13 and in this way the next sample 6 is prepared for a spectroscopic examination.
- FIG 3 shows an exemplary embodiment in which a slide 15 made of solid material is arranged as an intermediate layer between the sample 6 and the reflection element 4.
- An immersion liquid 16 is provided to establish good optical contact between the reflection element 4 and the object carrier 15.
- the slide 15 can be made of the same material as the reflection element.
- the slide 15 can also consist of another suitable material which has a high refractive index in the spectral range of the measurement radiation.
- the slide 15 can be made of glass or a polymer, for example.
- the slide 15 can be made of germanium, silicon or selenium, or also particularly expediently from the material commercially available under the name "chalcogenide glass", which is characterized by a high transmission and a refractive index nft, 5 in the range 4 to 13 JJ and which is resistant to water and weak acids.
- chalcogenide glass which is characterized by a high transmission and a refractive index nft, 5 in the range 4 to 13 JJ and which is resistant to water and weak acids.
- the fixed slide 15 is provided on its surface facing the sample 6 with a coating 17, which is applied to the slide 15, for example, by vapor deposition or by chemical means.
- This coating makes it possible, inter alia, to achieve an even higher refractive index at the interface between the sample 6 and the specimen slide 15 or, if the material of the specimen slide 15 is relatively free to choose, a material which is particularly suitable for the particular type of sample substance 6 currently used to provide the interface between the sample 6 and the slide 15.
- object carrier 15 or coating 17 can also be provided in the IR spectral range as object carrier 15 or coating 17: aN0 3 , calcite, quartz, LiF, MgF ⁇ , CaF, SrF, PbF 2 , T-12, NaF, BaF 2 , KF, CsF, NaCl, NaBr, KCl, NaJ, KBr, CsCL, AgCl, TICl, KRS-6, AgBr, KJ, TIBr, CsBr, KRS-5, CsJ.
- aN0 3 calcite, quartz, LiF, MgF ⁇ , CaF, SrF, PbF 2 , T-12, NaF, BaF 2 , KF, CsF, NaCl, NaBr, KCl, NaJ, KBr, CsCL, AgCl, TICl, KRS-6, AgBr, KJ, TIBr, CsBr, KRS-5, CsJ.
- a copolymer of polyethylene and polypropylene being suitable as a polymer, in particular preferably one with a ratio of 97, for the fingerprint area : 3 between polyethylene and polypropylene.
- the described method enables the prevention of undesired adsorption on the surface of the reflection element and, in addition to the prevention of an undesirable influence of the reflection element on the sample owing to its toxicity and / or water solubility, with a suitable selection of the intermediate layer, the achievement of an increased detection sensitivity by using the intermediate layer material in this way selects that certain substances from the sample are adsorbed on this intermediate layer.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2837769A DE2837769C2 (de) | 1978-08-30 | 1978-08-30 | Vorrichtung zur Bestimmung der Konzentration biologischer Substanzen in Mehrkomponenten-Systemen |
DE2837769 | 1978-08-30 | ||
DE19792928419 DE2928419A1 (de) | 1979-07-13 | 1979-07-13 | Verfahren zur bestimmung der konzentration biologischer substanzen |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1980000494A1 true WO1980000494A1 (en) | 1980-03-20 |
Family
ID=25775581
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE1979/000078 WO1980000494A1 (en) | 1978-08-30 | 1979-08-02 | Method for measuring the concentration by total reflection spectroscopy |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0016166A1 (enrdf_load_stackoverflow) |
JP (1) | JPS55500589A (enrdf_load_stackoverflow) |
WO (1) | WO1980000494A1 (enrdf_load_stackoverflow) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0221011A3 (de) * | 1985-09-26 | 1989-11-02 | Ciba-Geigy Ag | Analysenverfahren, unter Verwendung der abgeschwächten Totalreflexion |
WO2003100497A1 (de) * | 2002-05-23 | 2003-12-04 | Erhard Wendlandt | Beleuchtung für mikroskop |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3436159A (en) * | 1966-02-04 | 1969-04-01 | Bausch & Lomb | Internal reflection element for spectroscopy with film optical cavity to enhance absorption |
US3999855A (en) * | 1974-10-24 | 1976-12-28 | Block Engineering, Inc. | Illumination system |
-
1979
- 1979-08-02 WO PCT/DE1979/000078 patent/WO1980000494A1/de unknown
- 1979-08-02 JP JP50124179A patent/JPS55500589A/ja active Pending
-
1980
- 1980-03-25 EP EP79900918A patent/EP0016166A1/de not_active Ceased
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3436159A (en) * | 1966-02-04 | 1969-04-01 | Bausch & Lomb | Internal reflection element for spectroscopy with film optical cavity to enhance absorption |
US3999855A (en) * | 1974-10-24 | 1976-12-28 | Block Engineering, Inc. | Illumination system |
Non-Patent Citations (2)
Title |
---|
Analytical Chemistry, Band 38, Nr. 1, Januar 1966, herausgegeben 1966, Washington D.C. (US), Seite 160, R. JOHNSON et al.: "Silver membrane filters as a support for infrared analysis by attenuated total reflection", siehe Seite 160. * |
R. MILLER et al.: "Laboratory Methods in Infrared Spectroscopy", Teil 14 A practical approach to internal reflection spectroscopy, Seiten 205 bis 229, herausgegeben von Verlag Heyden, London, 1972, siehe insbesondere Seiten 218 bis 227. * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0221011A3 (de) * | 1985-09-26 | 1989-11-02 | Ciba-Geigy Ag | Analysenverfahren, unter Verwendung der abgeschwächten Totalreflexion |
WO2003100497A1 (de) * | 2002-05-23 | 2003-12-04 | Erhard Wendlandt | Beleuchtung für mikroskop |
Also Published As
Publication number | Publication date |
---|---|
EP0016166A1 (de) | 1980-10-01 |
JPS55500589A (enrdf_load_stackoverflow) | 1980-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69221306T2 (de) | Methode zur photometrischen (in vitro) bestimmung des gehaltes eines analyts in einer probe | |
DE69119750T2 (de) | Messzelle für chemische oder biochemische proben | |
DE69226572T2 (de) | Sensorsystem mit mehreren Oberflächen für evaneszente Wellen | |
DE69619317T2 (de) | Wellenleiter mit wässrigem, flüssigem Kern | |
DE69028728T2 (de) | Diagnostische Vorrichtung unter Verwendung einer metallischen Dünnschicht | |
EP0793090B1 (de) | Messanordnung mit einem für Anregungs- und Messstrahlung transparentem Trägerelement | |
DE3688380T2 (de) | Verfahren zur messung des lichtabsorptionsvermoegens eines fluessigkeitsmediums. | |
DE3344019C2 (de) | Vorrichtung zur optischen Messung der Konzentration einer in einer Probe enthaltenen Komponente | |
DE10392315B4 (de) | Optische Konfiguration und Verfahren für differentielle Brechungskoeffizientenmessungen | |
DE102009028254A1 (de) | Verfahren für Untersuchungen an Flüssigkeiten sowie Vorrichtung hierfür | |
DE10008006A1 (de) | SPR-Sensor und SPR-Sensoranordnung | |
AT512291A4 (de) | Verfahren und vorrichtung zur bestimmung des co2-gehalts in einer flüssigkeit | |
EP0019871A2 (de) | Küvette für optische Untersuchungen von Flüssigkeiten | |
EP1172642A2 (de) | Spektralellipsometer mit einer refraktiven Beleuchtungsoptik | |
DE2937352C2 (de) | Multipass-Anordnung | |
WO2003078978A1 (de) | Probenträger mit integrierter optick | |
DE3213183C2 (enrdf_load_stackoverflow) | ||
WO1980000494A1 (en) | Method for measuring the concentration by total reflection spectroscopy | |
DE102012108620A1 (de) | Verfahren zum Bestimmen der Weglänge einer Probe und Validierung der damit erhaltenen Messung | |
DE2837769C2 (de) | Vorrichtung zur Bestimmung der Konzentration biologischer Substanzen in Mehrkomponenten-Systemen | |
DE2928419A1 (de) | Verfahren zur bestimmung der konzentration biologischer substanzen | |
DE19519975C1 (de) | Verfahren zur Prüfung der Feuchtedurchlässigkeit einer dünnen Schicht | |
EP1805502B1 (de) | Verfahren zur untersuchung biochemischer wechselwirkungen | |
DE3338351A1 (de) | Vorrichtung zur optischen erkennung von individuellen vielparametrischen eigenschaften von teilchen | |
DE9403540U1 (de) | Tauchsonde |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Designated state(s): FR GB SE |