USRE28248E - Screwdown system for rolling mill - Google Patents

Screwdown system for rolling mill Download PDF

Info

Publication number
USRE28248E
USRE28248E US23650172A USRE28248E US RE28248 E USRE28248 E US RE28248E US 23650172 A US23650172 A US 23650172A US RE28248 E USRE28248 E US RE28248E
Authority
US
United States
Prior art keywords
signal
roll
rolls
piston
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JONES & LAMSON WATERBURY FARREL CORP A CORP OF DE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US732999A priority Critical patent/US3566638A/en
Priority to GB23818/69A priority patent/GB1275424A/en
Priority to BE733708D priority patent/BE733708A/xx
Priority to DE19691927331 priority patent/DE1927331A1/en
Priority to FR6917572A priority patent/FR2009602A1/fr
Application filed filed Critical
Priority to US23650172 priority patent/USRE28248E/en
Application granted granted Critical
Publication of USRE28248E publication Critical patent/USRE28248E/en
Assigned to JL MACHINE ACQUISITION CORP., C/O GOLDMAN FINANCIAL GROUP INCORPORATED, A CORP. OF DE. reassignment JL MACHINE ACQUISITION CORP., C/O GOLDMAN FINANCIAL GROUP INCORPORATED, A CORP. OF DE. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: JONES & LAMSON MACHINE COMPANY, INC., A DE. CORP.
Assigned to JL MACHINE ACQUISITION CORP., C/O GOLDMAN FINANCIAL GROUP INCORPORATED, BANK OF BOSTON , A CORP. OF DE. reassignment JL MACHINE ACQUISITION CORP., C/O GOLDMAN FINANCIAL GROUP INCORPORATED, BANK OF BOSTON , A CORP. OF DE. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: JONES & LAMSON MACHINES COMPANY, INC.,
Assigned to JONES & LAMSON WATERBURY FARREL CORP., A CORP. OF DE. reassignment JONES & LAMSON WATERBURY FARREL CORP., A CORP. OF DE. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: JL MACHINE ACQUISITION CORP.
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B31/00Rolling stand structures; Mounting, adjusting, or interchanging rolls, roll mountings, or stand frames
    • B21B31/16Adjusting or positioning rolls
    • B21B31/20Adjusting or positioning rolls by moving rolls perpendicularly to roll axis
    • B21B31/32Adjusting or positioning rolls by moving rolls perpendicularly to roll axis by liquid pressure, e.g. hydromechanical adjusting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • B21B37/62Roll-force control; Roll-gap control by control of a hydraulic adjusting device

Definitions

  • ABSTRACT OF THE DISCLOSURE This invention is directed to a new multi-purpose fastresponding hydraulic screwdown system particularly suitable for use on conventional rolling mills and, in particular, those using automatic gage control or predetermined percentage reduction control.
  • This invention provides a screwdown system which incorporates one of two independently movable hydraulic servo valve-controlled double-acting hydraulic cylinders.
  • a hydraulic power unit is provided to supply the one or two servo valves.
  • suitable controlling means are provided which employ stepping motors which are responsive to digital (pulse) signals provided by an automatic gage or manual control system.
  • this invention is usable in conjunction with control systems for rolling mills disclosed in US. Pats. 3,054,311 issued Sept. 18, 1962 and 3,121,354 issued Feb. 18, 1964.
  • the screwdown system as disclosed herein when provided with controlling means as in the aforementioned patents, may be operated in various modes of operation, namely position control, load control, pressure control or elongation control.
  • This invention provides advantages over the prior art in that, by the use of separable doubleacting hydraulic cylinders, rapid, accurate and predictable mill adjustments are achieved on either the independent cylinder or in tandem without the requirement of additional complex mechanical equipment, such as a tie-in clutch.
  • pressure on the rolls of the mill may be either coordinated or adjusted rapidly in accordance with changing load conditions.
  • Another object of this invention is to provide a new and improved mill control system which utilizes double acting hydraulic cylinders and a stepping motor responsive to digital (pulse) signals.
  • a further object of this invention is to provide a new and improved screwdown system which permits the use of a displacement sensor in its linear range of operation.
  • each of these cylinders includes a piston 13 to which are coupled upper and lower rods 14 and 15, respectively.
  • the rods 15 bear upon the chocks 10 so as to press against the roll and move it in one direction to apply pressure against the material passing between roll 11 and another roll (not shown).
  • the system disclosed herein is operable in either a pressure or position mode of operation.
  • displacement transducers 17 are provided, such as sold by Collins or Sanborn Div. of Hewlitt Packard Company.
  • the transducers 17 provide an output signal depending on the position of a central core 18 with respect to an outer transformer coil shown at 19.
  • the core 18 is supported from the top of rod 14, such that it will move either upwardly or downwardly, depending on the position of the chock 10.
  • means must be provided for moving the outer portion 19 with respect to the core 18 in accordance with a control signal.
  • a stepping motor 20 which is responsive to signals provided from a stepping motor power and logic control block shown at 21.
  • the block 21 is responsive to an automatic gage control system block 22 (such as disclosed in the aforementioned US. patents).
  • an automatic gage control system block 22 such as disclosed in the aforementioned US. patents.
  • a block 23 for controlling the motor power logic there is shown a block 23 for controlling the motor power logic.
  • the motor power logic converts (in a well known manner) the digital signals provided by the automatic gage control to digital pulses which will step the motor 20 to control the position of the coil 19.
  • the stepping motor may be mechanically operated by replacing the block 21 with a pulse source which provides a single pulse each time a pushbutton is depressed.
  • the signal from the coil 19 is then applied to an electronic amplifier 27 which controls an electronic servo valve 28.
  • the valve 28 controls the flow of hydraulic fluid from a supply, the inlet pipes being shown at 29, through a magnetically controlled valve 30.
  • the bottom position of valve 30 is used for position control, whereas the top portion of the valve 30 is used for pressure control.
  • electrical switches shown at 31 and 32 are placed in the open position and an electrical switch 33 is placed in the closed position.
  • the switch 33 is opened and the switches 31 and 32 are closed.
  • a pressure transducer 34 is provided, positioned in the topmost portion in hydraulic cylinder 12.
  • the transducer 34 provides a signal which indicates the pressure within that portion of the hydraulic cylinder and indicates the amount of pressure being applied to the piston through the rod 15 and, therefore, directly proportional to mill operating force.
  • Command signals are provided by means of a pressure reference potentiometer, generally shown at 35, which is controlled through the shaft 36 of the stepper motor 20. In this manner, signals are provided through switches 31 and 32 and are combined (added) in the electronic amplifier 27.
  • the valve 30 Under pressure control, as previously noted, the valve 30 is in position such that the pressure to the top portion of the cylinder 12 is controlled through the electronic servo valve 28, whereas fluid from a constant pressure supply 38 is provided to the bottom of the cylinder 12. In the pressure mode of operation, supply pressure is applied which is of a magnitude required to lift the roll when fluid under minimum pressure is applied to the top of the cylinder.
  • a screwdown system for a mill including [a roll] rolls defining a roll gap, means for supporting [a roll] the rolls and means for [causing said roll to move to eflect mill adjustment] controlling the position of one of said rolls to control the roll gap, the improvement comprising a double-acting hydraulic cylinder means having a piston for providing [the] a screwtlown force [to effect mill adjustment] on one of said rolls, servo valve means responsive to a command signal for controlling the flow of hydraulic fluid to position said cylinder, [means providing a rolling pressure reference signal, piston displacement sensing means for providing a signal indicative of piston displacement, and means for combining said reference signal and the displacement signal to derive the command signal] means for predetermining the position and sensing displacement of said one of said rolls, comprising a core and coil movable relative to each other, and effective to emit a signal indicative of the relative positions, means for positioning one of said coil and core to predetermine the roll gap, the other of said coil and core being coupled to said piston for movement therewith, and means
  • a control system for a mill including a roll, means for supporting the roll and holddown means for acting on the roll to effect mill adjustment; the improvement comprising a double acting hydraulic cylinder having a piston for providing the holddown force to elfect mill adjustment, a hydraulic servo valve responsive to a command signal for controlling the flow of fluid to said cylinder to position said piston, means for sensing the pressure of the fluid in said cylinder and providing a signal responsive thereto, means for providing a rolling pressure reference signal and means for combining said pressure signal and said reference signal to provide the command signal to said servo valve.

Abstract

1. IN A SCREWDOWN SYSTEM FOR A MILL INCLUDING (A ROLL) ROLLS DEFINING A ROLL GAP, MEANS FOR SUPPORTING (A ROLL) THE ROLLS AND MEANS FOR (CAUSING SAID ROLL TO MOVE TO EFFECT MILL ADJUSTMENT) CONTROLLING THE POSITION OF ONE OF SAID ROLLS TO CONTROL THE ROLL GAP, THE IMPROVEMENT COMPRISING A DOUBLE-ACTING HYDRAULIC CYLINDER MEANS HAVING A PISTON FOR PROVIDING (THE) A SCREWDOWN FORCE (TO EFFECT MILL ADJUSTMENT) ON ONE OF SAID ROLLS, SERVO VALVE MEANS RESPONSIVE TO A COMMAND SIGNAL FOR CONTROLLING THE FLOW OF HYDRAULIC FLUID TO POSITION SAID CYLINDER, (MEANS PROVIDING A ROLLING PRESSURE REFERENCE SIGNAL, PISTON DISPLACEMENT SENSING MEANS FOR PROVIDING A SIGNAL INDICATIVE OF PISTON DISPLACEMENT, AND MEANS FOR COMBINING SAID REFERENCE SIGNAL AND THE DISPLACEMENT SIGNAL TO DERVICE THE COMMAND SIGNAL) MEANS FOR PREDETERMINING THE POSITION AND SENSING DISPLACMENT OF SAID ONE OF SAID ROLLS, COMPRISING A CORE AND COIL MOVABLE RELATIVE TO EACH OTHER, AND EFFECTIVE TO EMIT A SIGNAL INDICATIVE OF THE RELATIVE POSITIONS, MEANS FOR POSITIONING ONE OF SAID COIL AND CORE TO PREDETERMINE THE ROLL GAP, THE OTHER OF SAID COIL AND CORE BEING COUPLED TO SAID PISTON FOR MOVEMENT THEREWITH, AND MEANS FOR APPLYING THE EMITTED SIGNAL TO SAID SERVO VALVE AS THE COMMAND SIGNAL TO CONTROL THE ROLL GAP.

Description

Nov. 19, 1974 R. HERBST Re. 28, 248
SCREWDOWN SYSTEM FOR ROLLING HILL Original Filed llay 29, 1968 R 5 O E T \T N 6528 3% m s m 3&3 v QEEEE 288% m m A 5528 e Um A W 0604 02m 5&3 e Gm E28 N65: E38,: 1w w oz Emma w mm 03mm 5 050mm N D @N NM Ea m: Emu
m: L: $50 HZSE United States Patent Office Re. 28,248 Reissued Nov. 19, 1974 28,248 SCREWDOWN SYSTEM FOR ROLLING MILL Robert Herbst, Cheshire, ComL, assignor to Textron, Inc., Providence, RI. Original No. 3,566,638, dated Mar. 2, 1971, Ser. No. 732,999, May 29, 1968. Application for reissue Mar. 20, 1972, Ser. No. 236,501
Int. Cl. 1321]) 37/08 US. Cl. 72-8 5 Claims Matter enclosed in heavy brackets II] appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.
ABSTRACT OF THE DISCLOSURE This invention is directed to a new multi-purpose fastresponding hydraulic screwdown system particularly suitable for use on conventional rolling mills and, in particular, those using automatic gage control or predetermined percentage reduction control.
This invention provides a screwdown system which incorporates one of two independently movable hydraulic servo valve-controlled double-acting hydraulic cylinders. A hydraulic power unit is provided to supply the one or two servo valves. In addition, suitable controlling means are provided which employ stepping motors which are responsive to digital (pulse) signals provided by an automatic gage or manual control system. In particular, this invention is usable in conjunction with control systems for rolling mills disclosed in US. Pats. 3,054,311 issued Sept. 18, 1962 and 3,121,354 issued Feb. 18, 1964.
The screwdown system as disclosed herein, when provided with controlling means as in the aforementioned patents, may be operated in various modes of operation, namely position control, load control, pressure control or elongation control. This invention provides advantages over the prior art in that, by the use of separable doubleacting hydraulic cylinders, rapid, accurate and predictable mill adjustments are achieved on either the independent cylinder or in tandem without the requirement of additional complex mechanical equipment, such as a tie-in clutch. In addition, with the use of the system described herein, pressure on the rolls of the mill may be either coordinated or adjusted rapidly in accordance with changing load conditions.
In view of the foregoing, it is an object of this invention to provide a new and improved mill control system.
Another object of this invention is to provide a new and improved mill control system which utilizes double acting hydraulic cylinders and a stepping motor responsive to digital (pulse) signals.
A further object of this invention is to provide a new and improved screwdown system which permits the use of a displacement sensor in its linear range of operation.
Still other objects and advantages of the invention will in part be obvious and will in part be apparent from the specification.
The invention accordingly comprises the features of construction, combination of elements and arrangements of parts which will be exemplified in the constructions hereinafter set forth and the scope of the invention will be indicated in the claims.
For a fuller understanding of the invention, reference is had to the following description, taken in connection with the accompanying drawing, in which there is diagrammatically illustrated the preferred mill hydraulic control system according to this invention.
Referring to the figure, there is shown diagrammatically at 10 roll journals for supporting a roll shown at 11. In the preferred embodiment, there are two double acting hydraulic cylinders provided at 12. Each of these cylinders includes a piston 13 to which are coupled upper and lower rods 14 and 15, respectively. The rods 15 bear upon the chocks 10 so as to press against the roll and move it in one direction to apply pressure against the material passing between roll 11 and another roll (not shown).
As mentioned previously, the system disclosed herein is operable in either a pressure or position mode of operation. For position control, displacement transducers 17 are provided, such as sold by Collins or Sanborn Div. of Hewlitt Packard Company. The transducers 17 provide an output signal depending on the position of a central core 18 with respect to an outer transformer coil shown at 19. As shown, the core 18 is supported from the top of rod 14, such that it will move either upwardly or downwardly, depending on the position of the chock 10. To effectively move the chock 10 and the roll 11, means must be provided for moving the outer portion 19 with respect to the core 18 in accordance with a control signal. In this invention, this is accomplished by the provision of a stepping motor 20 which is responsive to signals provided from a stepping motor power and logic control block shown at 21. The block 21 is responsive to an automatic gage control system block 22 (such as disclosed in the aforementioned US. patents). In addition, there is shown a block 23 for controlling the motor power logic. In essence, the motor power logic converts (in a well known manner) the digital signals provided by the automatic gage control to digital pulses which will step the motor 20 to control the position of the coil 19. It should be understood that the stepping motor may be mechanically operated by replacing the block 21 with a pulse source which provides a single pulse each time a pushbutton is depressed.
The signal from the coil 19 is then applied to an electronic amplifier 27 which controls an electronic servo valve 28. The valve 28 controls the flow of hydraulic fluid from a supply, the inlet pipes being shown at 29, through a magnetically controlled valve 30. The bottom position of valve 30 is used for position control, whereas the top portion of the valve 30 is used for pressure control.
In a case where position control is utilized, electrical switches shown at 31 and 32 are placed in the open position and an electrical switch 33 is placed in the closed position. When the system is operating as a pressure controlled system, the switch 33 is opened and the switches 31 and 32 are closed.
In order to provide pressure control, a pressure transducer 34 is provided, positioned in the topmost portion in hydraulic cylinder 12. The transducer 34 provides a signal which indicates the pressure within that portion of the hydraulic cylinder and indicates the amount of pressure being applied to the piston through the rod 15 and, therefore, directly proportional to mill operating force.
Command signals are provided by means of a pressure reference potentiometer, generally shown at 35, which is controlled through the shaft 36 of the stepper motor 20. In this manner, signals are provided through switches 31 and 32 and are combined (added) in the electronic amplifier 27. Under pressure control, as previously noted, the valve 30 is in position such that the pressure to the top portion of the cylinder 12 is controlled through the electronic servo valve 28, whereas fluid from a constant pressure supply 38 is provided to the bottom of the cylinder 12. In the pressure mode of operation, supply pressure is applied which is of a magnitude required to lift the roll when fluid under minimum pressure is applied to the top of the cylinder.
It will thus be seen that the objects set forth above, among those made apparent from the preceding description are etficiently attained and since certain changes may be made in the above construction without departing from the spirit and scope of the invention, it is intended that all matter contained in the foregoing description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
It should also be understood that the following claims are intended to cover all the generic and specific features of the invention herein described and all statements of the scope of the invention which, as a matter of language, might be said to fall therebetween.
What I claim is:
1. In a screwdown system for a mill including [a roll] rolls defining a roll gap, means for supporting [a roll] the rolls and means for [causing said roll to move to eflect mill adjustment] controlling the position of one of said rolls to control the roll gap, the improvement comprising a double-acting hydraulic cylinder means having a piston for providing [the] a screwtlown force [to effect mill adjustment] on one of said rolls, servo valve means responsive to a command signal for controlling the flow of hydraulic fluid to position said cylinder, [means providing a rolling pressure reference signal, piston displacement sensing means for providing a signal indicative of piston displacement, and means for combining said reference signal and the displacement signal to derive the command signal] means for predetermining the position and sensing displacement of said one of said rolls, comprising a core and coil movable relative to each other, and effective to emit a signal indicative of the relative positions, means for positioning one of said coil and core to predetermine the roll gap, the other of said coil and core being coupled to said piston for movement therewith, and means for applying the emitted signal to said servo valve as the command signal to control the roll gap.
2. The arrangement of claim 1 wherein said core is coupled to said piston [displacement sensing means comprises a movable core positioned within a movable coil, said core and said coil coacting to provide an electrical command signal].
[3. The arrangement of claim 2, in which said core is coupled to said piston and movable therewith, and in which the position of said coil is adjustable with respect to said core] 4. The arrangement of [claim 3] claim 2 in which said [coil is positioned by] means [movable a predetermined step] for positioning said coil is movable in response to a pulse signal.
5. The arrangement of claim 4, in which said positioning means is a stepping motor.
6. In a control system for a mill including a roll, means for supporting the roll and holddown means for acting on the roll to effect mill adjustment; the improvement comprising a double acting hydraulic cylinder having a piston for providing the holddown force to elfect mill adjustment, a hydraulic servo valve responsive to a command signal for controlling the flow of fluid to said cylinder to position said piston, means for sensing the pressure of the fluid in said cylinder and providing a signal responsive thereto, means for providing a rolling pressure reference signal and means for combining said pressure signal and said reference signal to provide the command signal to said servo valve.
References Cited The following references, cited by the Examiner, are of record in the patented file of this patent or the original patent.
UNITED STATES PATENTS 3,157,073 11/1964 Blain 72-245 3,516,273 6/1970 Stone 72-21 3,416,341 12/1968 Dey et al. 72-21 X 3,075,417 1/1963 Blain 72-240 X 3,178,919 4/1965 Varner 72-9 3,285,049 11/1966 Neumann 72-246 3,389,588 6/1968 Reinhardt et a1. 72-8 3,464,245 9/1969 Dowsing et a1 72-16 3,286,495 11/1966 Diolot 72-8 MILTON S. MEHR, Primary Examiner
US23650172 1968-05-29 1972-03-20 Screwdown system for rolling mill Expired USRE28248E (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US732999A US3566638A (en) 1968-05-29 1968-05-29 Screwdown system for a rolling mill
GB23818/69A GB1275424A (en) 1968-05-29 1969-05-09 Pressdown system for rolling mill
BE733708D BE733708A (en) 1968-05-29 1969-05-28
FR6917572A FR2009602A1 (en) 1968-05-29 1969-05-29
DE19691927331 DE1927331A1 (en) 1968-05-29 1969-05-29 Adjustment system for a rolling mill
US23650172 USRE28248E (en) 1968-05-29 1972-03-20 Screwdown system for rolling mill

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US73299968A 1968-05-29 1968-05-29
US23650172 USRE28248E (en) 1968-05-29 1972-03-20 Screwdown system for rolling mill

Publications (1)

Publication Number Publication Date
USRE28248E true USRE28248E (en) 1974-11-19

Family

ID=26929839

Family Applications (2)

Application Number Title Priority Date Filing Date
US732999A Expired - Lifetime US3566638A (en) 1968-05-29 1968-05-29 Screwdown system for a rolling mill
US23650172 Expired USRE28248E (en) 1968-05-29 1972-03-20 Screwdown system for rolling mill

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US732999A Expired - Lifetime US3566638A (en) 1968-05-29 1968-05-29 Screwdown system for a rolling mill

Country Status (5)

Country Link
US (2) US3566638A (en)
BE (1) BE733708A (en)
DE (1) DE1927331A1 (en)
FR (1) FR2009602A1 (en)
GB (1) GB1275424A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5179851A (en) * 1990-12-14 1993-01-19 T. Sendzimir, Inc. Crown adjustment control system for cluster mills
US20040089045A1 (en) * 2001-04-20 2004-05-13 Abbey Nelson D. Compression assembly for forming rolls
US20100018275A1 (en) * 2002-09-20 2010-01-28 Wolfgang Denker Low-friction bending system in a rolling stand comprising several rolls

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3693385A (en) * 1969-09-29 1972-09-26 Ube Industries Fluid control system for selectively self-adjusting mill reduction force or interworking roll distance
DE2051502A1 (en) * 1969-10-22 1971-07-22 Hitachi, Ltd , Tokio Adjustment device for roll stands
SE381830B (en) * 1971-11-17 1975-12-22 Morgaardshammar Ab KIT TO PRE-TENSION A DUOVAL COUPLE FOR HOT OR COLD ROLLING AND DEVICE FOR PERFORMING THE KIT
DE2346543C3 (en) * 1973-09-15 1980-04-03 Hermann Berstorff Maschinenbau Gmbh, 3000 Hannover Five-roll calender for the production of thermoplastic films
US3936258A (en) * 1974-01-30 1976-02-03 Intercole Automation, Inc. Calender
CA1054763A (en) * 1974-10-31 1979-05-22 William J. Bonner Method and apparatus for embossing sheets
US3974672A (en) * 1975-09-19 1976-08-17 Herbst John F Mill hydraulic screw-down
US4006617A (en) * 1975-11-24 1977-02-08 The Boeing Company Method and apparatus for roll forming tapered structural members
GB1521570A (en) * 1976-11-24 1978-08-16 Ch Poli I Im Lenin Komsomol Automatic adjustment of the roll gap in a mill stand
US4283930A (en) * 1977-12-28 1981-08-18 Aichi Steel Works Limited Roller-dies-processing method and apparatus
US4289013A (en) * 1979-08-29 1981-09-15 Textron, Inc. Crown control for rolling mill
US4471639A (en) * 1982-11-01 1984-09-18 E. W. Bliss Company, Inc. Roll orientation control system for straightening machines
DE3420501A1 (en) * 1984-06-01 1985-12-05 Mannesmann AG, 4000 Düsseldorf ROLLER CONTROL INDICATOR
DE3840016A1 (en) * 1988-11-26 1990-05-31 Schloemann Siemag Ag METHOD FOR LEVELING SHEETS, STRIPS, TABLES, PROFILES, CARRIERS ETC.
US5575186A (en) * 1993-10-06 1996-11-19 Peddinghaus Corporation Machine tool stroke control system
DE102004039494A1 (en) * 2003-11-19 2005-06-23 Sms Demag Ag Adjusting cylinders in rolling stands, among others in vertical upsetting frames
US8091817B2 (en) * 2009-12-11 2012-01-10 Flsmidth A/S Milling device
EP3150292A1 (en) 2015-10-02 2017-04-05 Primetals Technologies Austria GmbH Positioning device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5179851A (en) * 1990-12-14 1993-01-19 T. Sendzimir, Inc. Crown adjustment control system for cluster mills
US20040089045A1 (en) * 2001-04-20 2004-05-13 Abbey Nelson D. Compression assembly for forming rolls
US20100018275A1 (en) * 2002-09-20 2010-01-28 Wolfgang Denker Low-friction bending system in a rolling stand comprising several rolls

Also Published As

Publication number Publication date
BE733708A (en) 1969-11-03
DE1927331A1 (en) 1969-12-04
GB1275424A (en) 1972-05-24
FR2009602A1 (en) 1970-02-06
US3566638A (en) 1971-03-02

Similar Documents

Publication Publication Date Title
USRE28248E (en) Screwdown system for rolling mill
US3559432A (en) Roll gap gage control
US3726334A (en) Electrohydraulic ram velocity control circuit
US2523553A (en) Adjusting device for rolling mills
GB1340265A (en) Device for automatic thickness control of rolled strips
CA2163723A1 (en) Looper Control System for a Rolling Mill
GB1270246A (en) Improvements in or relating to rolling
GB1189665A (en) Hydro-Mechanical Gauge Control System for a Rolling Mill
GB1149236A (en) Prestressed rolling mill
JPH06114426A (en) Rolling down device for rolling mill
GB1218572A (en) Rolling mills
GB1316959A (en) Slab rolling
JPS57103723A (en) Controlling method and measuring device for gap between upper and lower work roll chock of rolling mill
JP2771094B2 (en) Roll width adjustment device
US3568484A (en) Rolling mills
JP2510179B2 (en) Folding machine
GB2341816B (en) Roll position control in cluster mills
JPS54133457A (en) Method and apparatus for preventing sheet camber in different-speed rolling
JPS60162513A (en) Hydraulic rolling-reduction device of rolling mill
JPS6240934A (en) Control device for press brake
JPH0631326A (en) Hydraulic rolling-down controller for rolling mill
JPS56168905A (en) Controller for shape and sheet crown in tandem rolling mill
JPS5732816A (en) Controlling method for screw down device of vertical rolling mill
JPS5592217A (en) Method and apparatus for plate crown control in continuous rolling mill
JPS58110112A (en) Roll leveling device for rolling mill

Legal Events

Date Code Title Description
AS Assignment

Owner name: JL MACHINE ACQUISITION CORP., C/O GOLDMAN FINANCIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:JONES & LAMSON MACHINE COMPANY, INC., A DE. CORP.;REEL/FRAME:005031/0442

Effective date: 19880802

AS Assignment

Owner name: JL MACHINE ACQUISITION CORP., C/O GOLDMAN FINANCIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:JONES & LAMSON MACHINES COMPANY, INC.,;REEL/FRAME:005080/0699

Effective date: 19880802

AS Assignment

Owner name: JONES & LAMSON WATERBURY FARREL CORP., A CORP. OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:JL MACHINE ACQUISITION CORP.;REEL/FRAME:005077/0476

Effective date: 19890509