US9271414B2 - Housing with extended creep and air-stretch - Google Patents

Housing with extended creep and air-stretch Download PDF

Info

Publication number
US9271414B2
US9271414B2 US14/250,598 US201414250598A US9271414B2 US 9271414 B2 US9271414 B2 US 9271414B2 US 201414250598 A US201414250598 A US 201414250598A US 9271414 B2 US9271414 B2 US 9271414B2
Authority
US
United States
Prior art keywords
housing
opening
adjacent
electric
lid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US14/250,598
Other languages
English (en)
Other versions
US20140306785A1 (en
Inventor
Herbert Maier
Thomas Steininger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumida Components and Modules GmbH
Original Assignee
Sumida Components and Modules GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumida Components and Modules GmbH filed Critical Sumida Components and Modules GmbH
Assigned to SUMIDA Components & Modules GmbH reassignment SUMIDA Components & Modules GmbH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MAIER, HERBERT, STEININGER, THOMAS
Publication of US20140306785A1 publication Critical patent/US20140306785A1/en
Application granted granted Critical
Publication of US9271414B2 publication Critical patent/US9271414B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/0247Electrical details of casings, e.g. terminals, passages for cables or wiring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • H01F27/292Surface mounted devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/324Insulation between coil and core, between different winding sections, around the coil; Other insulation structures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/03Covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/06Mounting, supporting or suspending transformers, reactors or choke coils not being of the signal type
    • H01F2027/065Mounting on printed circuit boards
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances

Definitions

  • the present invention relates to a housing for receiving an electric component, and in particular to a compact housing which complies with the safety standards for high voltages, as well as to an electric component used by said housing.
  • the present invention relates to a housing for receiving an electric component according to the introductory part of claim 1 , and in particular to a compact housing which complies with the safety standards for high voltages, as well as to an electric component used by said housing.
  • a difference has to be made between the air gap and the creepage distance.
  • the air gap is defined as the shortest distance in the air between two conductive parts.
  • the creepage distance is defined as the shortest distance along the surface of an insulating material between two conductive parts. In general, the creepage distance for a certain voltage value has to be clearly longer than the air gap.
  • the minimum requirements for the required air gaps, respectively, creepage distances depend on the used insulating materials, on the contamination category and the occurring voltages. The required values for the minimum air gap and the minimum creepage distance are specified, for instance, in DIN EN 60 558-2-15.
  • FIG. 1 shows an example of a transformer housing.
  • FIG. 1 a shows a perspective view from the top
  • FIG. 1 b shows a perspective view from the bottom
  • FIG. 1 c shows a transparent lateral view of the housing, with a view to the coil 360 in the interior.
  • the dashed line in FIG. 1 c indicates the thickness of the housing wall of the hollow housing.
  • the housing is a substantially cylindrical hollow body open on one side.
  • the open side defines the bottom surface OBF.
  • the closed lid GD is positioned opposite the open bottom surface OBF.
  • Contact pins 320 a , 320 b , 320 c and 320 d are embedded in the housing, at the edge of the open bottom surface OBF, and project vertically out of the bottom surface.
  • the coil form 360 is inserted into the hollow space of the housing through the open bottom surface OBF, and the connecting wires 361 and 362 of the coil are electrically connected to the contact pins 320 a - 320 d .
  • the hollow space between the coil form and the open bottom surface OBF is filled, at least partially, with an electrically insulating filling compound 370 .
  • the air gap realized for the housing 300 in FIG. 1 is the distance between two contact pins, e.g. between pin 320 a and in 320 d .
  • the creepage distance additionally includes two times the distance A between the filling material 370 and the attachment 380 of the connecting wire 361 to the contact pin 320 a .
  • the arrangement shown in FIG. 1 c has a creepage distance that is longer by about 25% than the air gap.
  • the electric strength is substantially determined by the creepage distance.
  • this may be achieved by increasing the creepage distance.
  • FIG. 2 a shows a perspective view of the housing from the top
  • FIG. 2 b shows a partial cutaway lateral view of the housing, with a view to the coil 260 .
  • the housing body 210 is open towards the top, with an open lid surface ODF.
  • Electric contact pins 220 a , 220 b are embedded in the closed bottom GB.
  • the connecting wires 261 and 262 of the coil 260 are passed through the open lid surface ODF over the upper edge of the housing and along the outside of the housing to the contact pins 220 a and 220 b .
  • FIG. 2 a shows a perspective view of the housing from the top
  • FIG. 2 b shows a partial cutaway lateral view of the housing, with a view to the coil 260 .
  • the housing body 210 is open towards the top, with an open lid surface ODF.
  • Electric contact pins 220 a , 220 b are embedded in the closed bottom GB.
  • FIG. 2 b shows two possible embodiments for laying the connecting leads 261 and 262 .
  • Connecting lead 261 is guided inside the housing wall.
  • Connecting lead 262 is guided outside the housing.
  • the dashed lines 260 a and 262 a in FIG. 2 b show the covered parts of the coil 260 and of the connecting wire 262 .
  • the creepage distance in FIG. 2 b is increased by double the height of the housing.
  • the hollow space in the housing of FIG. 2 between the coil 260 and the open lid surface ODF is filled, at least partially, with an insulating filling material (not shown in FIG. 2 b ).
  • the overall height of the housing of FIG. 2 has to be relatively high in order to provide the room for the filling material for closing the open lid.
  • a housing would be desirable that has a low design and an extended creepage distance and air gap.
  • the object is achieved by a housing comprising the features of the present invention.
  • the object is also achieved by an electric component comprising the features of other embodiments of the present invention. Preferred embodiments are defined in the dependent patent claims.
  • a housing comprising a hollow housing body with an opening on one side, wherein the opening defines a front side of the housing.
  • the housing is characterized in that the housing bottom includes a bottom underneath the opening, a lid above the opening, and two side walls adjacent to the opening.
  • at least two electric contacts provided on the bottom of the housing body on opposite housing sides, are located on the housing, wherein a first contact is situated in the region of the opening.
  • This arrangement allows a reduction of the overall height and, at the same time, an extension of the creepage distances and air gaps in comparison with the prior art according to FIGS. 1 and 2 .
  • the electric contacts may project laterally out of the bottom and extend substantially parallel to the bottom.
  • the housing according to the invention further includes a guiding device on at least one of the adjacent side walls so as to allow a lead to be fixed to the adjacent side wall from the opening towards the housing side situated opposite the opening.
  • a guiding device on at least one of the adjacent side walls so as to allow a lead to be fixed to the adjacent side wall from the opening towards the housing side situated opposite the opening.
  • the housing side situated opposite the opening will also be referred to as the rear side of the housing.
  • the housing wall on the rear side of the housing is curved to follow the curvature of a coil, e.g. a toroidal coil with or without a toroidal core, which can be inserted into the housing.
  • a coil e.g. a toroidal coil with or without a toroidal core
  • the guiding device is realized in the form of two projections running in parallel so as to define an enclosure for the lead from the opening to the rear side of the housing.
  • the extension of the creepage distance can be maximized if the guiding device is arranged, at least partially, at an adjacent region of the opening, facing the lid, on the adjacent side wall.
  • the two projections running in parallel extend from the opening, parallel to the lid, at least to the center, preferably up to three quarters of the adjacent side wall, and the guiding device further comprises a shoulder which extends from the end of the projection, facing away from the opening, ramp-like in the direction of the rear side of the housing and the bottom so as to extend the guiding device up to a second contact of the electric contacts in a region of the rear side of the housing.
  • the projections running in parallel and the shoulder allow a lead to be reproducibly fixed to the outside of the housing.
  • the shoulder leaves enough play for the lead so that it can be easily soldered to the contact pin.
  • the housing described above is suited for an SMD configuration where the contact pins are potted with the housing in an SMD grid dimension.
  • the housing body is a single-piece molded part manufactured, for instance, in an injection molding process.
  • the above-defined object is also achieved by an electric component used by the above-described housing according to the invention, in which at least one coil is incorporated.
  • a first connecting lead of the coil is electrically connected through the opening to the first contact in the region of the opening, and a second connecting lead of the coil is electrically connected through the opening to a second contact in the region of the rear side of the housing.
  • two coils are installed in the housing, e.g. on a common toroidal core, so as to realize, for instance, a transformer or a component for the galvanic isolation.
  • respectively one connecting lead of each coil is passed through the opening of the housing, out of the housing, and electrically connected to an electric contact in the bottom region at the opening of the housing.
  • the respective other connecting lead of each coil is passed through the opening of the housing, out of the housing, and is guided by corresponding guiding devices on both sides of the opening along the adjacent side walls to the rear side of the housing, and electrically connected to a corresponding electric contact in the region of the rear side of the housing.
  • the component may be realized for an operating voltage of more than 1 kV. If the distance between two electric terminals for a coil is 9.5 mm, the component can be used for a test voltage of up to 9.5 kV, wherein the test voltage is higher than the operating voltage and is specified, in a rule, by a safety standard, e.g. VDE, EN, IEC or UL. If the height of the coil is, for instance, about 5.2 mm the component height may be limited to 8.2 mm.
  • an extension of the air gap is obtained on the one hand, and by guiding the other connecting lead back on the outside of the housing to the opposite side an extension of the creepage distance is obtained on the other hand.
  • the covering with a sealing resin is accomplished on the sides.
  • the at least one coil is wound onto a toroidal core so that it can be retained in the housing without play if the rear wall of the housing is curved.
  • the reproducibility and scattering of components are thus improved.
  • the coil may also be wound onto a frame core or E-core, with the curvature of the rear wall being designed correspondingly.
  • a hollow space of the housing body between the at least one coil and the opening is filled, at least partially, with a filling compound, subject to the standards with regard to overvoltage and contamination categories.
  • a filling compound subject to the standards with regard to overvoltage and contamination categories.
  • FIG. 1 a shows a perspective top view of a housing for an electric component according to the prior art
  • FIG. 1 b shows a perspective bottom view of the housing of FIG. 1 a;
  • FIG. 1 c shows a transparent lateral view of the housing according to FIGS. 1 a and 1 b;
  • FIG. 2 a shows a perspective top view of another housing according to the prior art
  • FIG. 2 b shows a partial cutaway lateral view of the housing according to FIG. 2 a;
  • FIG. 3 a shows a perspective view of a housing according to the present invention
  • FIG. 3 b shows another perspective view of a housing according to the present invention
  • FIG. 4 shows a partial cutaway lateral view of a housing according to the present invention.
  • FIG. 5 shows a modification of the embodiment of FIG. 4 .
  • FIGS. 3 a and 3 b show perspective views from different directions of an example of a housing according to the present invention.
  • FIG. 4 shows a partial cutaway lateral view of an electric component according to the present invention.
  • the electric component comprises the housing according to FIG. 3 , in which a component 160 is installed, e.g. a wound core which is also referred to as a coil form.
  • reference number 110 designates the housing body
  • reference numbers 120 a - 120 g designate electric contacts
  • reference numbers 150 and 151 designate guiding devices for fixing connecting leads.
  • the housing body 110 is a body that is open on one side and closed on the other sides.
  • reference number OS designates the opening of the housing body
  • reference number D designates the lid of the housing
  • B designates the bottom of the housing
  • GS designates the closed rear wall of the housing opposite the opening
  • AS 1 and AS 2 designate the side walls adjacent to the opening and arranged vertically to the bottom, respectively, to the lid.
  • the opening defines a front side of the housing, and the side opposite the opening defines a rear side of the housing.
  • the terms rear side of the housing and rear wall of the housing are not used as synonyms.
  • the term rear wall of the housing designates a structural element of the housing, while the term rear side of the housing designates a position.
  • Rear wall of the housing implies a flat structure which extends across the entire width of the housing.
  • the rear wall of the housing on the rear side of the housing is curved, so that the changeover from the rear wall of the housing to the adjacent side wall does not have an acute delimitation. Therefore, a part of the rear wall of the housing GS may also be understood as a part of the adjacent side wall ASW 1 and ASW 2 .
  • conically tapered adjacent side walls ASW 1 and ASW 2 are conceivable. In this case, there is no clearly delimited rear housing wall, while the rear side of the housing is still the side opposite the opening.
  • FIGS. 3 a and 3 b each show a guiding device 150 , respectively, 151 on each adjacent side walls AS 1 and AS 2 by means of which a connecting lead can be fixed from the opening OS to the electric contacts 120 b , 120 d , 120 g , 120 h in the region of the rear wall of the housing GS.
  • Each guiding device is substantially formed of three parts: an upper projection 150 b , respectively 151 b , a lower projection 150 a , respectively, 151 a , and a shoulder 150 c , respectively, 151 c .
  • the upper projection 150 b , respectively, 151 b extends each on an adjacent side wall AS 1 , respectively, AS 2 from the opening OS up to about three quarters along the closed lid D.
  • the lower projection 150 a extends underneath thereof, parallel to the upper projection 150 b , respectively, 151 b , and has substantially the same length.
  • the distance between the upper projection 150 b , respectively, 151 b and the lower projection 150 a , respectively, 151 a is chosen in such a manner that a connecting lead can be received with as little play as possible.
  • the distance may be 1 mm for a connecting lead having a diameter of 1 mm.
  • a shoulder 150 c , respectively, 151 c extends from the end of the lower projection 150 a , respectively, 151 a , facing away from the opening, towards the electric contacts 120 b , 120 d , 120 g and 120 h in the region of the rear housing wall GS of the housing.
  • the shoulder 150 c , respectively, 151 c extends from this end of the lower projection 150 a , respectively, 151 a in a ramp-like shape downwardly inclined to the contacts in the region of the rear side of the housing.
  • the rear housing wall GS is semicircular or curved, so that the shoulder 150 c , respectively, 151 c widens in the direction of the electric contacts.
  • the bottom B of the housing has such a thickness that allows the electric contacts 120 a to 120 h to be potted therein.
  • the bottom B may have a thickness of 1.5 mm.
  • the electric contacts 120 a to 120 h are mounted laterally in the bottom B on the opening OS and on the rear wall of the housing GS or, in more general words, on the rear side of the housing.
  • FIGS. 3 a and 3 b four contacts are respectively provided on the opening OS and the rear wall of the housing GS. It is also possible, however, to mount more than four contacts on each side, or fewer contacts, e.g. two contacts, on each side.
  • the rear wall of the housing GS is flat on the outside and curved on the inside, allowing the inside to follow the curvature of the coil form.
  • the projections may extend up to the center of the housing, or up to the rear side of the housing.
  • the projections 150 a , 150 b , 151 a , 151 b , respectively, the above-mentioned recess may run parallel to the lid D, or run from the lid D to the bottom B downwardly inclined. If the projections/recess run(s) in parallel they may run in the center, in the proximity of the lid or in the proximity of the bottom of the adjacent side walls AS 1 , respectively, AS 2 . If they run in the proximity of the lid this will result in the longest creepage distances, however.
  • FIGS. 3 a and 3 b has the advantage that the creepage distance is slightly longer, as compared to an embodiment where the projections/recess run(s) in the center, in the proximity of the bottom or from the lid D to the bottom B downwardly inclined.
  • FIG. 4 shows a partial cutaway lateral view of the housing of FIGS. 3 a and 3 b .
  • the cutaway portion reveals the incorporated coil 160 .
  • a connecting wire 161 of the coil is connected through the opening OS to the terminal 120 a
  • a second connecting lead 162 is passed through the opening OS between the upper projection 150 b and the lower projection 150 a over the shoulder 150 c to the terminal 120 b on the rear side of the housing.
  • the coil 160 may be wound onto a toroidal core. At least the inside of the opposite side wall GS may be curved to follow the curvature of the toroidal core, so that the coil 160 rests in the interior of the housing with as little play as possible.
  • windings of coil 160 are provided on the toroidal core, for instance, with a first winding being connected to the contacts 120 a and 120 b , and a second winding being connected to the contacts 120 c and 120 d .
  • additional auxiliary windings are provided, which may be connected to additional contacts on the housing, e.g. the contacts 120 e , 120 f , 120 g and 120 h.
  • the hollow space between the coil 160 and the opening OS can be filled, at least partially, with a filling compound so as to fix the coil 160 in the housing and protect it from environmental influences.
  • the connecting lead 162 which is passed on the outside of the housing to the rear side of the housing, may likewise be fixed by a filing compound or, for instance, a silicone adhesive.
  • FIG. 5 shows a modification of the embodiment according to FIG. 4 , in which the electric contacts 120 a and 120 b are configured as THD contacts (THD: Through Hole Device).
  • THD contacts THD: Through Hole Device
  • the bottom B of the housing has such a thickness that the electric contacts 120 a and 120 h can be potted therein.
  • the electric contacts 120 a and 120 b are arranged laterally in the bottom B at the opening OS and on the rear wall of the housing GS or, in more general words, on the rear side of the housing, so that they project laterally out of the bottom and extend substantially parallel to the bottom surface.
  • the THD contacts projecting laterally out of the bottom are kinked by an angle of about 90° so that they extend vertically to the bottom surface downstream of the kink.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Connector Housings Or Holding Contact Members (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Details Of Connecting Devices For Male And Female Coupling (AREA)
US14/250,598 2013-04-11 2014-04-11 Housing with extended creep and air-stretch Active US9271414B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102013206453 2013-04-11
DE102013206453.5A DE102013206453B4 (de) 2013-04-11 2013-04-11 Gehäuse mit verlängerten Kriech- und Luftstrecken und elektrisches Bauelement mit derartigem Gehäuse
DE102013206453.5 2013-04-11

Publications (2)

Publication Number Publication Date
US20140306785A1 US20140306785A1 (en) 2014-10-16
US9271414B2 true US9271414B2 (en) 2016-02-23

Family

ID=50844871

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/250,598 Active US9271414B2 (en) 2013-04-11 2014-04-11 Housing with extended creep and air-stretch

Country Status (4)

Country Link
US (1) US9271414B2 (enrdf_load_stackoverflow)
DE (1) DE102013206453B4 (enrdf_load_stackoverflow)
FR (1) FR3004579B1 (enrdf_load_stackoverflow)
GB (1) GB2514909B (enrdf_load_stackoverflow)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11646145B2 (en) 2018-11-01 2023-05-09 Bourns, Inc. Low-profile housing for electronic components

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014216767A1 (de) * 2014-08-22 2016-02-25 Zf Friedrichshafen Ag Anordnung zur Kontaktierung einer Leiterplatte
DE102015213499B4 (de) 2015-07-17 2024-07-04 SUMIDA Components & Modules GmbH Spulenkörper
GB2555832A (en) * 2016-11-11 2018-05-16 Murata Manufacturing Co Housing for mounting a transformer to a substrate
DE102018202669B3 (de) 2018-02-22 2019-07-04 SUMIDA Components & Modules GmbH Induktives Bauelement und Verfahren zur Herstellung eines induktiven Bauelements
DE202018101697U1 (de) * 2018-03-27 2018-07-05 Tridonic Gmbh & Co. Kg Niederspannungsversorgungstransformator für Schutzkleinspannungsanwendungen

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2648031A (en) * 1951-07-17 1953-08-04 Gen Electric Intermediate frequency transformer assembly
DE2301519A1 (de) 1972-04-01 1973-10-18 Hata Radio Co Netztransformator
US4047061A (en) * 1973-03-16 1977-09-06 P. R. Mallory & Co., Inc. Coil protector for permanent magnet synchronous motor
WO1993013533A1 (en) 1991-12-23 1993-07-08 Ford Motor Company Limited Ignition coil assembly and method of manufacture thereof
US5307040A (en) * 1991-05-29 1994-04-26 Measurement Technology Limited Transformer with closed conductive loop
DE9415560U1 (de) 1994-09-26 1995-03-02 Siemens AG, 80333 München Doppellochkernspule für SMT-Flachbaugruppen
JPH11297548A (ja) 1998-04-14 1999-10-29 Toyo Denso Co Ltd 高圧トランス
US6005463A (en) 1997-01-30 1999-12-21 Pulse Engineering Through-hole interconnect device with isolated wire-leads and component barriers
DE10013143A1 (de) 2000-03-17 2001-10-04 Aeg Niederspannungstech Gmbh Messwandler
DE10128279A1 (de) 2000-06-14 2001-12-20 Denso Corp Transformatorvorrichtung, Hochspannungsgenerator mit der Transformatorvorrichtung und Beleuchtungssystem mit der Tranformatvorrichtung
US6456180B1 (en) 1999-04-29 2002-09-24 Bel-Fuse, Inc. Line interface transformer
US6753749B1 (en) 2003-06-05 2004-06-22 Artesyn Technologies, Inc. Toroidal transformer enclosure
WO2005119709A1 (ja) 2004-06-04 2005-12-15 Sumida Corporation インダクタ
WO2006045127A1 (de) 2004-10-25 2006-05-04 Moeller Gebäudeautomation KG Gehäuse
US20070238359A1 (en) 2006-04-05 2007-10-11 Gutierrez Aurelio J Modular electronic header assembly and methods of manufacture
US20070294880A1 (en) 2006-06-21 2007-12-27 Tai-Tech Advanced Electronics Co., Ltd. Method for making surface mount inductor
US20090009276A1 (en) * 2007-07-04 2009-01-08 Tamura Corporation Transformer mounted on circuit board with main body surrounded by insulating cover
WO2010139550A1 (en) 2009-06-05 2010-12-09 Tyco Electronics France Sas An interface device for a bundle of electrical connector conductors
US20110043315A1 (en) 2009-08-24 2011-02-24 Tdk Corporation Transformer
US20110115593A1 (en) * 2009-11-18 2011-05-19 Delta Electronics, Inc. Transformer and method of making the same
CN102074340A (zh) 2009-11-23 2011-05-25 台达电子工业股份有限公司 变压器结构及其制造方法
US20120001886A1 (en) 2010-07-02 2012-01-05 Samsung Electro-Mechanics Co., Ltd. Transformer and flat panel display device including the same
US20120119864A1 (en) * 2010-11-15 2012-05-17 James Douglas Lint Advanced electronic header apparatus and methods
US20120161911A1 (en) 2010-12-24 2012-06-28 Kabushiki Kaisha Toyota Jidoshokki Induction device
US20120320504A1 (en) 2011-06-14 2012-12-20 Samsung Electronic-Mechanics Co., Ltd. Transformer and display device using the same
US20130092411A1 (en) * 2011-10-17 2013-04-18 Lien-Hsing Chen Receptacle for transformer
US20130200972A1 (en) 2011-08-25 2013-08-08 Taiyo Yuden Co., Ltd. Electronic component and method of manufacturing the same
US20140159852A1 (en) 2011-08-24 2014-06-12 Murata Manufacturing Co., Ltd. Transformer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8072308B2 (en) * 2007-02-26 2011-12-06 General Electric Company High voltage transformer and a novel arrangement/method for hid automotive headlamps
JP2008258250A (ja) * 2007-04-02 2008-10-23 Hitachi Ferrite Electronics Ltd ケース付きトランス

Patent Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2648031A (en) * 1951-07-17 1953-08-04 Gen Electric Intermediate frequency transformer assembly
DE2301519A1 (de) 1972-04-01 1973-10-18 Hata Radio Co Netztransformator
US4047061A (en) * 1973-03-16 1977-09-06 P. R. Mallory & Co., Inc. Coil protector for permanent magnet synchronous motor
US5307040A (en) * 1991-05-29 1994-04-26 Measurement Technology Limited Transformer with closed conductive loop
WO1993013533A1 (en) 1991-12-23 1993-07-08 Ford Motor Company Limited Ignition coil assembly and method of manufacture thereof
DE9415560U1 (de) 1994-09-26 1995-03-02 Siemens AG, 80333 München Doppellochkernspule für SMT-Flachbaugruppen
US6005463A (en) 1997-01-30 1999-12-21 Pulse Engineering Through-hole interconnect device with isolated wire-leads and component barriers
JPH11297548A (ja) 1998-04-14 1999-10-29 Toyo Denso Co Ltd 高圧トランス
US6456180B1 (en) 1999-04-29 2002-09-24 Bel-Fuse, Inc. Line interface transformer
DE10013143A1 (de) 2000-03-17 2001-10-04 Aeg Niederspannungstech Gmbh Messwandler
US20020047616A1 (en) 2000-06-14 2002-04-25 Hironao Yamaguchi Transformer device, high voltage generating apparatus having the same, and lighting system having them
DE10128279A1 (de) 2000-06-14 2001-12-20 Denso Corp Transformatorvorrichtung, Hochspannungsgenerator mit der Transformatorvorrichtung und Beleuchtungssystem mit der Tranformatvorrichtung
US6492891B2 (en) 2000-06-14 2002-12-10 Denso Corporation Transformer device, high voltage generating apparatus having the same, and lighting system having them
US6753749B1 (en) 2003-06-05 2004-06-22 Artesyn Technologies, Inc. Toroidal transformer enclosure
WO2005119709A1 (ja) 2004-06-04 2005-12-15 Sumida Corporation インダクタ
US7411477B2 (en) 2004-06-04 2008-08-12 Sumida Corporation Inductor
WO2006045127A1 (de) 2004-10-25 2006-05-04 Moeller Gebäudeautomation KG Gehäuse
US20070238359A1 (en) 2006-04-05 2007-10-11 Gutierrez Aurelio J Modular electronic header assembly and methods of manufacture
US20070294880A1 (en) 2006-06-21 2007-12-27 Tai-Tech Advanced Electronics Co., Ltd. Method for making surface mount inductor
US20090009276A1 (en) * 2007-07-04 2009-01-08 Tamura Corporation Transformer mounted on circuit board with main body surrounded by insulating cover
WO2010139550A1 (en) 2009-06-05 2010-12-09 Tyco Electronics France Sas An interface device for a bundle of electrical connector conductors
US20110043315A1 (en) 2009-08-24 2011-02-24 Tdk Corporation Transformer
US20110115593A1 (en) * 2009-11-18 2011-05-19 Delta Electronics, Inc. Transformer and method of making the same
CN102074340A (zh) 2009-11-23 2011-05-25 台达电子工业股份有限公司 变压器结构及其制造方法
US20120001886A1 (en) 2010-07-02 2012-01-05 Samsung Electro-Mechanics Co., Ltd. Transformer and flat panel display device including the same
US20140125442A1 (en) 2010-07-02 2014-05-08 Samsung Electro-Mechanics Co., Ltd. Transformer and flat panel display device including the same
US20120119864A1 (en) * 2010-11-15 2012-05-17 James Douglas Lint Advanced electronic header apparatus and methods
WO2012067923A1 (en) 2010-11-15 2012-05-24 Pulse Electronics, Inc. Advanced electronic header apparatus and methods
US20120161911A1 (en) 2010-12-24 2012-06-28 Kabushiki Kaisha Toyota Jidoshokki Induction device
US20120320504A1 (en) 2011-06-14 2012-12-20 Samsung Electronic-Mechanics Co., Ltd. Transformer and display device using the same
US20140159852A1 (en) 2011-08-24 2014-06-12 Murata Manufacturing Co., Ltd. Transformer
US20130200972A1 (en) 2011-08-25 2013-08-08 Taiyo Yuden Co., Ltd. Electronic component and method of manufacturing the same
US20130092411A1 (en) * 2011-10-17 2013-04-18 Lien-Hsing Chen Receptacle for transformer

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Rouzier, Examination Report, Aug. 20, 2014, in corresponding French national reg. No. 795391.
Schneider, Examination Report, Apr. 7, 2014, in corresponding German Application No. 10 2013 206 453.5.
Watt, Search Report, Oct. 6, 2014, in corresponding UK Application No. GB1406555.1.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11646145B2 (en) 2018-11-01 2023-05-09 Bourns, Inc. Low-profile housing for electronic components

Also Published As

Publication number Publication date
GB201406555D0 (en) 2014-05-28
FR3004579A1 (enrdf_load_stackoverflow) 2014-10-17
GB2514909B (en) 2016-04-27
US20140306785A1 (en) 2014-10-16
DE102013206453A1 (de) 2014-10-16
GB2514909A (en) 2014-12-10
DE102013206453B4 (de) 2015-02-12
FR3004579B1 (fr) 2017-10-06

Similar Documents

Publication Publication Date Title
US9271414B2 (en) Housing with extended creep and air-stretch
US8587399B2 (en) Split-core current transformer
US8736411B2 (en) Transformer structure
US7969271B2 (en) Current transformer
US7199694B2 (en) Isolated dual-channel transformer
US20070126542A1 (en) Transformer
US8922318B1 (en) Transformer structure
KR20160041837A (ko) 보호 코일 및 그를 이용하는 변압기
US11646145B2 (en) Low-profile housing for electronic components
CN102376439A (zh) 变压器和使用该变压器的显示装置
CN102568782A (zh) 变压器和包括该变压器的平板显示装置
KR20150050025A (ko) 코일 부품
KR102114060B1 (ko) 유도형 부품 및 유도형 부품의 제조 방법
CN111383827B (zh) 线圈装置
KR20170008072A (ko) 코일 부품
JP7266690B2 (ja) 誘導性構成要素
JP7320632B2 (ja) 誘導性部品
CN202206288U (zh) 用于总线兼容的安装设备的换流器模块及总线兼容的安装设备
CN202758705U (zh) 线圈组件及具有该线圈组件的电子装置
KR200450740Y1 (ko) 공진트랜스
CN219248161U (zh) 电隔离组件、电路板和电气设备
EP2667389B1 (en) Current Transformer Unit
JP7336401B2 (ja) クランプ型電流センサ
KR101661322B1 (ko) 코일 부품 및 이를 구비하는 전자 기기
CN102064009B (zh) 电流变压器结构

Legal Events

Date Code Title Description
AS Assignment

Owner name: SUMIDA COMPONENTS & MODULES GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MAIER, HERBERT;STEININGER, THOMAS;REEL/FRAME:033186/0617

Effective date: 20140417

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8