US9002193B2 - Camera, lens unit, and image-pickup system - Google Patents
Camera, lens unit, and image-pickup system Download PDFInfo
- Publication number
- US9002193B2 US9002193B2 US14/248,789 US201414248789A US9002193B2 US 9002193 B2 US9002193 B2 US 9002193B2 US 201414248789 A US201414248789 A US 201414248789A US 9002193 B2 US9002193 B2 US 9002193B2
- Authority
- US
- United States
- Prior art keywords
- communication
- camera
- lens
- unit
- lens unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004891 communication Methods 0.000 claims abstract description 280
- 238000000034 method Methods 0.000 claims abstract description 20
- 230000008859 change Effects 0.000 claims abstract description 14
- 230000003287 optical effect Effects 0.000 claims description 33
- 230000004075 alteration Effects 0.000 claims description 29
- 230000001360 synchronised effect Effects 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 2
- 230000005540 biological transmission Effects 0.000 description 14
- 230000006870 function Effects 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 230000006641 stabilisation Effects 0.000 description 6
- 238000011105 stabilization Methods 0.000 description 6
- 238000001514 detection method Methods 0.000 description 5
- 101000908706 Homo sapiens Dynein light chain 2, cytoplasmic Proteins 0.000 description 4
- 101000647991 Homo sapiens StAR-related lipid transfer protein 13 Proteins 0.000 description 4
- 102100025252 StAR-related lipid transfer protein 13 Human genes 0.000 description 4
- 230000005855 radiation Effects 0.000 description 3
- 239000004606 Fillers/Extenders Substances 0.000 description 2
- 101001053992 Homo sapiens Deleted in lung and esophageal cancer protein 1 Proteins 0.000 description 2
- 101000966403 Homo sapiens Dynein light chain 1, cytoplasmic Proteins 0.000 description 2
- 101001106322 Homo sapiens Rho GTPase-activating protein 7 Proteins 0.000 description 2
- 102100021446 Rho GTPase-activating protein 7 Human genes 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000005375 photometry Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H04N5/23241—
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/65—Control of camera operation in relation to power supply
- H04N23/651—Control of camera operation in relation to power supply for reducing power consumption by affecting camera operations, e.g. sleep mode, hibernation mode or power off of selective parts of the camera
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/617—Upgrading or updating of programs or applications for camera control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/60—Noise processing, e.g. detecting, correcting, reducing or removing noise
- H04N25/61—Noise processing, e.g. detecting, correcting, reducing or removing noise the noise originating only from the lens unit, e.g. flare, shading, vignetting or "cos4"
Definitions
- the present invention relates to an interchangeable lens (lens unit), a camera to which the interchangeable lens is attachable and from which the interchangeable lens is detachable, and an image-pickup system that includes the interchangeable lens and the camera.
- JP 8-129199 proposes an image-pickup system configured to set a high communication speed or communication clock frequency between the camera and the interchangeable lens after it is confirmed that the interchangeable lens is compatible with that speed.
- JP 7-203116 proposes a radio facsimile machine configured to set a low communication speed when the received voltage level is low and a high communication speed when the received voltage level is high.
- JP 8-129199 sets a high communication speed while maintaining the voltages of the communication terminals of the interchangeable lens and the camera, and the method disclosed in JP 7-203116 sets a high communication speed when the received voltage level is high. Therefore, the number of charges/discharges increases in the communication terminals and a power consumption and a radiation noise increase.
- the present invention provides a camera, lens unit, and image-pickup system that can save the power consumption while increasing the communication speed.
- a camera to which a lens unit is attachable and from which the lens unit is detachable includes a camera communication unit configured to communicate with the lens unit, and a camera controller configured to control the camera communication unit.
- the camera communication unit is configured to change a voltage applied to a communication terminal used for a communication with the lens unit.
- the camera communication unit is configured to communicate with the lens unit using one of a first communication mode and a second communication mode.
- the first communication mode sets the voltage applied to the communication terminal to a first range, and enables the communication with the lens unit using a communication method of a first communication speed.
- the second communication mode sets the voltage applied to the communication terminal to a second range that is located on a lower voltage side than the first range, and enables the communication with the lens unit using a communication method of a second communication speed higher than the first communication speed.
- FIG. 1 is a block diagram of an image-pickup system according to first and second embodiments of the present invention.
- FIG. 2 illustrates a communication unit illustrated in FIG. 1 according to the first embodiment.
- FIG. 3 illustrates signal waveforms of a terminal illustrated in FIG. 2 according to the first embodiment.
- FIG. 4 is a flowchart of an operation of the image-pickup system illustrated in FIG. 1 according to the first embodiment.
- FIG. 5 illustrates a communication unit illustrated in FIG. 1 according to the second embodiment.
- FIG. 6 illustrates signal waveforms of a terminal illustrated in FIG. 5 according to the second embodiment.
- FIG. 1 is a block diagram of an image-pickup system (optical apparatus) according to this embodiment.
- the image-pickup system includes a camera (optical system) 1 and an interchangeable lens (optical apparatus or lens unit) 2 .
- the interchangeable lens 2 is detachably attached to the camera 1 .
- the camera 1 is a camera, such as a single-reflex camera or a mirror-less camera.
- the initial communication starts when the interchangeable lens 2 is attached to the camera 1 or the power is turned on. Due to the initial communication, the camera 1 can identify the image-pickup optical system in the interchangeable lens 2 .
- This embodiment transmits aberration correcting information of an image-pickup optical system in the interchangeable lens 2 to the camera 1 in the initial communication.
- the aberration correcting information that is information on a diffraction characteristic, a drop of a peripheral light amount, a distortion, a chromatic aberration, etc. and depends upon positions or states of a magnification-varying lens, a focus lens, and an extender in the image-pickup optical system.
- the aberration correcting information of the image-pickup optical system is transmitted from the interchangeable lens to the camera in the initial communication for image processing of reducing or moderating the image deterioration at the camera side.
- the aberration correcting information is information necessary for the image processing in the camera.
- the aberration correcting information may be data itself of a diffraction characteristic, a distortion, a chromatic aberration, etc. of the image-pickup system or may be information relating to a optical transmission function (“OTF”) and a modulation transfer function (“MTF”).
- OTF optical transmission function
- MTF modulation transfer function
- the aberration correcting information has a large data size and takes a long transmission time at a normal initial communication speed. Accordingly, this embodiment devises a way to improve the communication speed of the initial communication.
- the camera 1 includes an electric circuit unit 3 , a control-system (“control”) power supply 12 , a driving-system (“driving”) power supply 13 , and a switch 14 .
- the electric circuit unit 3 includes an image sensor 4 , a photometric unit 5 , a focus detector 6 , a shutter controller 7 , an image processor 8 , a camera CPU 9 , an interchangeable-lens (“lens”) attachment detector 10 , a communication unit 11 , and an image recorder 15 .
- the image sensor 4 is a photoelectric conversion element configured to photoelectrically convert an optical image formed by the interchangeable lens 2 .
- the photometric unit 5 measures a light amount that has passed the image-pickup optical system in the interchangeable lens 2 .
- the focus detector 6 detects a focus state of an interchangeable lens 2 using a phase difference detection method.
- the focus detector 6 may utilize another AF sensor different from the image sensor 4 or focus detecting pixels provided on an image pickup plane of the image sensor 4 .
- the shutter controller 7 controls opening and closing of a shutter (not illustrated) so as to expose the image sensor 4 for a proper time period.
- the image processor 8 provides appropriate processing, such as developing an output of the image sensor 4 .
- the image processor 8 of this embodiment corrects an aberration in a captured image based on the aberration correcting information sent in the initial communication and the positional information of the image-pickup optical system.
- the camera CPU 9 is a CPU or a microcomputer, and serves as a first controller configured to control each component in the camera 1 .
- the camera CPU 9 controls voltage changes by the voltage changer in the communication unit 11 or a voltage-detection-range changing circuit 41 which will be described later.
- the camera CPU 9 communicates with the lens CPU 26 in the interchangeable lens 2 , and transmits a variety of instructions to the lens CPU 26 .
- These instructions contain an instruction that requires a change of a communication mode, such as a communication speed, a working voltage, and a communication line. More specifically, the camera CPU 9 generates an instruction that requires a reduction of the voltage used for communications when increasing a communication speed.
- the lens attachment detector 10 detects an attachment of the interchangeable lens 2 to the camera utilizing a switch, a photodetector, etc.
- the communication unit 11 is a first communication unit configured to enable the camera CPU 9 to communicate with the lens CPU 26 .
- the details of the structure of the communication unit 11 will be described later, and the communication unit 11 includes a first voltage changer configured to change the working voltage.
- the control power supply 12 supplies power to a control system circuit that requires a stable output voltage having a comparatively small power consumption amount for the image sensor 4 , the photometric unit 5 , the focus detector 6 , and the image processor 8 .
- the driving power supply 13 supplies the power to the driving system circuit that requires a comparatively large power consumption amount of the interchangeable lens 2 .
- the switch 14 turns on when a release button is half-pressed, and transmits a SW 1 signal that starts a capture preparation, such as the AF and photometry, to the camera CPU 9 .
- the image recorder 15 may be a nonvolatile memory.
- the interchangeable lens 2 includes the image-pickup optical system configured to form an optical image of an object, and an electric circuit unit 20 .
- the image-pickup optical system includes a magnification-varying lens 21 , a focus lens 22 , an image stabilization lens 23 , a diaphragm 24 , and an extender.
- the magnification-varying lens 21 is moved in the optical direction and changes a focal length.
- the focus lens 22 is moved in the optical axis direction for focusing.
- the image stabilization lens is moved in a direction orthogonal to the optical axis and stabilizes an image.
- the “direction orthogonal to the optical axis” may have a component orthogonal to the optical axis, and the image stabilization lens 23 may be moved obliquely to the optical axis.
- the diaphragm 24 adjusts a light amount incident upon the image sensor 4 of the camera 1 .
- the electric circuit unit 20 includes the communication unit 25 , the lens CPU 26 , a magnification-varying-lens (“zoom”) driving controller 27 , a focus-lens (“focus”) driving controller 28 , an image stabilization lens (“IS”) driving controller 29 , a diaphragm controller 30 , and an aberration correcting information storage 31 .
- the communication unit 25 is a second communication unit that enables the lens CPU 26 to communicate with the camera CPU 9 .
- the details of the structure of the communication unit 25 will be described later, and the communication unit 25 includes the second voltage changer configured to change the working voltage.
- the lens CPU 26 is a CPU or microcomputer, and serves as a second controller configured to communicate with the camera CPU 9 and to control each component in the interchangeable lens 2 .
- the lens CPU 26 controls voltage changes of the voltage changer of the communication unit 25 or the voltage changing circuit 49 , which will be described later.
- the lens CPU 26 transmits to the camera CPU 9 , aberration correcting information of the image-pickup optical system stored in the aberration correcting information storage 31 as well as the normal information, such as a type of the image-pickup optical system.
- the lens CPU changes the communication mode, such as the communication speed, the working voltage, and the communication line, in response to the instruction from the camera CPU 9 .
- the aberration correcting information storage 31 stores aberration correcting information that depends upon positions of the magnification-varying lens 21 , the focus lens 22 , the image stabilization lens 23 , and the diaphragm 24 .
- the zoom driving controller 27 controls driving of the magnification-varying lens 21 in the optical-axis direction.
- the focus driving controller controls driving of the focus lens 22 in the optical-axis direction.
- the IS driving controller 29 controls driving of the image stabilization lens 23 in the direction orthogonal to the optical axis.
- the diaphragm driving controller 30 controls driving of aperture blades.
- FIG. 2 illustrates the CPU 9 , the communication unit 11 on the camera side, the communication unit 25 on the interchangeable lens side, and the lens CPU 26 according to the first embodiment.
- Reference numeral 32 denotes a clock signal terminal CLK
- reference numeral 33 denotes a data transmission terminal DCL from the camera 1 to the interchangeable lens 2
- reference numeral 34 denotes a data communication terminal DLC from the interchangeable lens 2 to the camera 1 .
- Reference numeral 35 denotes a pull-up resistor configured to stabilize the communication terminal voltage when the output circuit opens.
- Reference numeral 36 denotes an input circuit configured to detect whether an FET 46 turns on or off while the output circuit 37 opens the output for a predetermined time period.
- Reference numerals 38 and 40 are current limiting resistors configured to limit the current so as to prevent the output circuit from destroying when the output circuit contacts the power supply terminal or ground terminal by mistake.
- Reference numeral 39 is an output circuit configured to transmit information from the camera 1 to the interchangeable lens 2 .
- Reference numeral 41 is a voltage-detecting-range changing circuit configured to change an input voltage detecting range of the input circuit 42 in accordance with the signal from the camera CPU 9 , and to vary the voltage used for the communication. When the communication terminal voltage is decreased, the input voltage detecting range is set suitable for the detection using that voltage.
- the voltage detecting range changing circuit 41 manages the central voltage of 2.5V and a range from the central voltage ( ⁇ 2.5V) when the working voltage is 5V, and the central voltage of 1.5V and a range from the central voltage ( ⁇ 1.5V) when the working voltage is 3V.
- Reference numerals 43 and 44 denote pull-up resistors.
- Reference numeral 45 denotes an input circuit configured to receive a clock signal from the output circuit 37 .
- Reference numeral 46 denotes an FET used to inform the camera CPU 9 of various states from the lens CPU 26 while the output circuit 37 opens the output.
- Reference numeral 47 denotes a pull-up resistor, and reference numeral 48 denotes an input circuit.
- Reference numeral 49 denotes a voltage changing circuit configured to change the output voltage of the output circuit 50 in accordance with the signal from the lens CPU 26 , and serves as a voltage changer configured to change the voltage used for the communication.
- FIG. 3 is a signal waveform chart of the clock signal terminal CLK 32 , the data transmission terminal DCL 33 , and the data communication terminal DLC 34 according to the first embodiment.
- a three-wire synchronous communication is performed with the data transmission terminal DCL 33 and the data communication terminal DLC 34 in synchronization with the CLK signal (clock) that flows in the clock signal terminal CLK 32 .
- the communication speed from the interchangeable lens 2 to the camera 1 via the data communication terminal DLC 34 is a first communication speed (first clock frequency in synchronization with the CLK signal) and the first voltage is applied to the data communication terminal DLC 34 .
- the communication mode is changed to the high-speed low-voltage communication in the initial communication.
- the CLK signal that flows in the clock signal terminal CLK 32 is the same as the DCL signal that flows in the data transmission terminal DCL 33 , but the communication mode via the data communication terminal DLC 34 is changed to set the second communication speed and the second voltage.
- the second communication speed is higher than the first communication speed, and the second voltage is lower than the first voltage.
- the communication via the data transmission terminal DLC 34 is asynchronous with the CLK signal, and the clock frequency is fast for the low-voltage communication.
- This configuration can transmit a large amount of aberration correcting information (several megabytes) at a high speed from the interchangeable lens 2 to the camera 1 and shorten the initial communication time period.
- the communication time period is 8 seconds for the aberration correcting information of 1 Mbyte and the clock frequency of the CLK signal of 1 MHz even when starting and ending data of the communication and an increase amount for redundancy of the asynchronous communication are removed. Since this time period affects the snapshot of the camera, the communication time period is reduced down to 80 ms by setting the DLC communication clock to 100 MHz so as to increase the communication speed.
- the power consumption and the radiation noises can be reduced by lowering the voltage, for example, from 5V to 3V. Since this embodiment is subject to the incoming noises when the communication terminal voltage is dropped, the wiring arrangement is adjusted and the shield member is provided on the lens barrel.
- FIG. 4 is a flowchart of the image-pickup system, and “S” stands for the step.
- the flowchart illustrated in FIG. 4 can be implemented as a program that enables a computer to realize a function of each step.
- S 1 to S 13 represent an operation of the camera 1 (camera CPU 9 )
- S 21 to S 28 represent an operation of the interchangeable lens 2 (lens CPU 26 ).
- the camera CPU 9 starts an operation of the camera 1 (S 1 ), and supplies power to the interchangeable lens 2 via the control power supply 12 and the driving power supply 13 when detecting an attachment of the interchangeable lens 2 based on the output of the lens attachment detector 10 (Yes of S 2 ). Thereby, the lens CPU 26 starts an operation of the interchangeable lens 2 (S 21 ).
- the camera CPU 9 starts an initial communication with the lens CPU 26 using a first communication speed and a first voltage (S 4 and S 22 ), and instructs the lens CPU 26 to transmit information (first data) relating to corresponding information of the communication method, a type, a focal length, a position of each lens, and aberration correcting information, etc. of the image-pickup optical system.
- the camera CPU 9 transmits a driving instruction to each actuator to the lens CPU 26 .
- the lens CPU 26 transmits necessary information to the camera CPU 9 .
- the camera CPU 9 determines whether the interchangeable lens 2 is compatible with the high-speed low-voltage communication, based upon the corresponding information of the communication mode received in S 3 (S 4 ).
- the camera CPU 9 requires the lens CPU 26 to change the communication (S 5 , S 23 ).
- the camera CPU 9 changes setting of the voltage-detection-range changing circuit 41 of the communication unit 11 so as to set the communication clock of the data communication terminal DLC 34 to 100 MHz and the voltage detecting range to 3V.
- the lens CPU 26 sets the voltage changing circuit 49 so as to set the frequency of the DLC signal to 100 MHz and the voltage detecting range to 3V.
- the camera CPU 9 requires the lens CPU 26 to transmit aberration correcting information (S 6 ).
- the lens CPU 26 transmits the aberration correcting information of the aberration correcting information storage 31 using a communication mode that utilizes a second communication speed faster than the first communication speed and a second voltage lower than the first voltage (S 24 ).
- the aberration correcting information is second data, and the second data size is larger than the first data size.
- This communication is an asynchronous communication because it has a frequency different from the clock frequency of the clock signal terminal CLK 32 .
- the asynchronous communication can use a communication method, such as an 8 b / 10 b communication and an NRZ communication.
- data representing the start or end of the communication and an error correcting code are transmitted.
- a different voltage signal is received and a sufficiently free time period is set.
- the camera CPU 9 When the reception of the aberration correcting information is completed, the camera CPU 9 requires the lens CPU 26 to return to the original DLC communication mode (S 8 , S 25 ), and changes the setting of the communication unit 11 to the original state. More specifically, the camera CPU 9 changes setting of the voltage detection range changing circuit 41 so as to reset the communication clock of the data communication terminal DLC 34 to 1 MHz and the voltage detection range to 5V. The lens CPU 26 sets the voltage changing circuit 49 so as to conform to the communication clock of 1 MHz and the voltage detection range of 5V. A different voltage is received at the switching time, and a sufficiently free time period is set. As a result, the DLC communication employs a first communication speed and a first voltage.
- the camera CPU 9 requires the lens CPU 26 to transmit the aberration correcting information in accordance with the communication mode that utilizes the first communication and the first voltage, and the lens CPU 26 transmits the aberration correcting information in accordance with that communication mode (S 8 , S 24 ).
- the camera 9 determines the driving direction and the driving speed of the focus lens 22 based on the information received in the initial communication (S 4 ) and the output of the focus detector 6 , and transmits it to the lens CPU 26 (S 9 ).
- the lens CPU 26 receives the focus lens driving instruction and drives the focus lens 22 via the focus driving controller 28 (S 26 ).
- the camera CPU 9 controls the shutter controller 7 and the diaphragm 24 based on the output of the photometric unit 5 , exposes the image sensor 4 , and captures an image (S 10 , S 27 ).
- the image processor 8 processes the image taken by the image sensor 4 , using the aberration correcting information received from the lens CPU 26 in S 7 or S 8 , and records the resultant image in the image recorder 15 .
- FIG. 5 illustrates the camera CPU 9 , the communication unit 11 on the camera side, the communication unit 25 on the interchangeable unit side, and the lens CPU 26 according to a second embodiment.
- Reference numeral 51 denotes an output-circuit switching circuit that opens the output of the output circuit 39 .
- Reference numeral 52 denotes an input-voltage switching circuit, and reference numeral 53 denotes a differential input circuit.
- Reference numeral 54 is an output-circuit switching circuit, and reference numeral 55 denotes an output circuit.
- FIG. 6 is a signal waveform chart of the clock signal terminal CLK 32 , the data transmission terminal DCL 33 , and the data communication terminal DLC 34 according to the second embodiment.
- the three-wire synchronous communication is performed between the data transmission terminal DCL 33 and the data communication terminal DLC 34 in synchronization with the clock signal (clock) that flows in the clock signal terminal CLK 32 .
- the communication speed via the data communication terminal DLC 34 from the interchangeable lens 2 to the camera 1 is the first communication speed
- the voltage applied to the data communication terminal DLC 34 is the first voltage.
- the communication method is turned to the high-speed low-voltage communication in the initial communication.
- the CLK signal that flows in the clock signal terminal CLK 32 is the same as the DCL signal from the camera 1 to the interchangeable lens 2 which flows in the data transmission terminal DCL 33
- the communication mode via the data communication terminal DLC 34 is switched to the differential communication mode.
- the DLC signal flows from the interchangeable lens 2 to the camera 1 both through the communications terminals, such as the data transmission terminal DCL 33 and the data communication terminal DLC 34 .
- DLC1 represents a DLC signal flowing in the data communication terminal DLC 34
- DLC2 represents a DLC signal flowing in the data transmission terminal DCL 33
- the lens CPU 26 switches the communication direction to the opposite direction when transmitting the DLC2 signal. It is similar to the first embodiment that the communication modes of DLC1 and DLC2 use the second communication speed and the second voltage and are asynchronous with the CLK signal. The transmission of the differential signal can reduce the radiation noises.
- the output-circuit switching circuit 51 opens the output of the output circuit 39 .
- the output-circuit switching circuit 54 in the communication unit 25 opens the output of the output circuit 55 in the initial communication.
- the communication mode of the communication terminal for the DCL signal may be changed when the data size transmitted from the camera 1 to the interchangeable lens 2 is large.
- the present invention can provide a camera, lens unit, and image-pickup system that can restrain the power consumption while increasing the communication speed.
- the present invention is applicable to an interchangeable lens, a camera to which the interchangeable lens is attachable, and an image-pickup system that includes the interchangeable lens and the camera.
- Embodiments of the present invention can also be realized by a computer of a system or apparatus that reads out and executes computer executable instructions recorded on a storage medium (e.g., non-transitory computer-readable storage medium) to perform the functions of one or more of the above-described embodiment(s) of the present invention, and by a method performed by the computer of the system or apparatus by, for example, reading out and executing the computer executable instructions from the storage medium to perform the functions of one or more of the above-described embodiment(s).
- the computer may comprise one or more of a central processing unit (CPU), micro processing unit (MPU), or other circuitry, and may include a network of separate computers or separate computer processors.
- the computer executable instructions may be provided to the computer, for example, from a network or the storage medium.
- the storage medium may include, for example, one or more of a hard disk, a random-access memory (RAM), a read only memory (ROM), a storage of distributed computing systems, an optical disk (such as a compact disc (CD), digital versatile disc (DVD), or Blu-ray Disc (BD)TM), a flash memory device, a memory card, and the like.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Software Systems (AREA)
- Structure And Mechanism Of Cameras (AREA)
- Studio Devices (AREA)
- Exposure Control For Cameras (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013081497A JP6222967B2 (ja) | 2013-04-09 | 2013-04-09 | 撮像装置、レンズ装置及び撮影システム |
JP2013-081497 | 2013-04-09 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20140300770A1 US20140300770A1 (en) | 2014-10-09 |
US9002193B2 true US9002193B2 (en) | 2015-04-07 |
Family
ID=51654167
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/248,789 Active US9002193B2 (en) | 2013-04-09 | 2014-04-09 | Camera, lens unit, and image-pickup system |
Country Status (3)
Country | Link |
---|---|
US (1) | US9002193B2 (enrdf_load_stackoverflow) |
JP (1) | JP6222967B2 (enrdf_load_stackoverflow) |
CN (1) | CN104104848B (enrdf_load_stackoverflow) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10133939B2 (en) * | 2015-10-29 | 2018-11-20 | Fujitsu Ten Limited | Image processing apparatus |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015125517A1 (ja) * | 2014-02-21 | 2015-08-27 | ソニー株式会社 | 通信制御装置、通信制御方法及びプログラム |
JP6422332B2 (ja) * | 2014-12-24 | 2018-11-14 | キヤノン株式会社 | 電子機器、アクセサリー機器、その制御方法、および制御プログラム |
JP6641594B2 (ja) * | 2016-02-02 | 2020-02-05 | ソニー株式会社 | 交換レンズおよびその通信方法、並びに、撮像装置およびその通信方法 |
US10652082B2 (en) * | 2016-02-16 | 2020-05-12 | IXI Technology | Automated detection of communicational system type |
JP6838943B2 (ja) * | 2016-11-17 | 2021-03-03 | キヤノン株式会社 | レンズ装置、撮像装置、並びに、レンズ装置および撮像装置の通信制御方法 |
WO2018139168A1 (ja) * | 2017-01-27 | 2018-08-02 | 富士フイルム株式会社 | カメラシステム、カメラ、レンズ、アクセサリー、及び、カメラシステムのアクセサリー検出方法 |
CN108989614B (zh) * | 2017-05-31 | 2022-01-11 | 佳能株式会社 | 摄像设备和配件装置及其控制方法和通信控制方法 |
WO2019244972A1 (ja) * | 2018-06-21 | 2019-12-26 | キヤノン株式会社 | 撮像装置、アクセサリ装置、およびこれらの制御方法 |
JP7327915B2 (ja) * | 2018-08-30 | 2023-08-16 | キヤノン株式会社 | 撮像装置 |
JP7483349B2 (ja) | 2019-10-30 | 2024-05-15 | キヤノン株式会社 | レンズ装置および撮像システム |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07203116A (ja) | 1993-12-28 | 1995-08-04 | Matsushita Graphic Commun Syst Inc | 無線ファクシミリ装置 |
JPH08129199A (ja) | 1994-09-07 | 1996-05-21 | Nikon Corp | カメラボディ、カメラアクセサリおよびカメラシステム |
US8374499B2 (en) * | 2010-06-08 | 2013-02-12 | Canon Kabushiki Kaisha | Imaging apparatus and interchangeable lens |
US20140022418A1 (en) * | 2012-07-20 | 2014-01-23 | Canon Kabushiki Kaisha | Image capture apparatus and control method thereof, and lens unit |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002152576A (ja) * | 2000-11-15 | 2002-05-24 | Canon Inc | カメラシステム |
JP2005018312A (ja) * | 2003-06-25 | 2005-01-20 | Sony Corp | 信号伝送装置および方法、ならびに情報機器 |
JP2007325156A (ja) * | 2006-06-05 | 2007-12-13 | Seiko Epson Corp | 受信装置および送受信システム |
JP5034429B2 (ja) * | 2006-10-16 | 2012-09-26 | ソニー株式会社 | レンズ装置、撮像装置及び収差補正方法 |
US8095000B2 (en) * | 2007-02-15 | 2012-01-10 | Panasonic Corporation | Camera system |
CN102027411B (zh) * | 2008-05-16 | 2013-07-24 | 松下电器产业株式会社 | 照相机系统 |
JP5279553B2 (ja) * | 2009-03-04 | 2013-09-04 | キヤノン株式会社 | レンズ装置及びカメラシステム |
JP2010237514A (ja) * | 2009-03-31 | 2010-10-21 | Nikon Corp | 撮像装置および撮影レンズ |
JP5296620B2 (ja) * | 2009-07-06 | 2013-09-25 | ルネサスエレクトロニクス株式会社 | 信号中継回路 |
CN202102220U (zh) * | 2010-09-09 | 2012-01-04 | 株式会社尼康 | 可换透镜、相机主体及电子设备 |
JP5247859B2 (ja) * | 2010-10-27 | 2013-07-24 | キヤノン株式会社 | 撮像装置及びその制御方法、アクセサリ及びその制御方法、撮像装置システム |
-
2013
- 2013-04-09 JP JP2013081497A patent/JP6222967B2/ja active Active
-
2014
- 2014-04-03 CN CN201410132976.4A patent/CN104104848B/zh active Active
- 2014-04-09 US US14/248,789 patent/US9002193B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07203116A (ja) | 1993-12-28 | 1995-08-04 | Matsushita Graphic Commun Syst Inc | 無線ファクシミリ装置 |
JPH08129199A (ja) | 1994-09-07 | 1996-05-21 | Nikon Corp | カメラボディ、カメラアクセサリおよびカメラシステム |
US8374499B2 (en) * | 2010-06-08 | 2013-02-12 | Canon Kabushiki Kaisha | Imaging apparatus and interchangeable lens |
US20140022418A1 (en) * | 2012-07-20 | 2014-01-23 | Canon Kabushiki Kaisha | Image capture apparatus and control method thereof, and lens unit |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10133939B2 (en) * | 2015-10-29 | 2018-11-20 | Fujitsu Ten Limited | Image processing apparatus |
Also Published As
Publication number | Publication date |
---|---|
US20140300770A1 (en) | 2014-10-09 |
JP2014203041A (ja) | 2014-10-27 |
CN104104848A (zh) | 2014-10-15 |
CN104104848B (zh) | 2017-08-01 |
JP6222967B2 (ja) | 2017-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9002193B2 (en) | Camera, lens unit, and image-pickup system | |
US8757904B2 (en) | Adapter, camera system, and adapter control program | |
US12055787B2 (en) | Imaging apparatus, interchangeable lens, intermediate accessory, and control methods therefor | |
US11223774B2 (en) | Imaging apparatus, lens apparatus, and method for controlling the same | |
US20180352142A1 (en) | Image-capturing apparatus, accessory apparatus and control method therefor | |
US11513309B2 (en) | Lens apparatus, imaging apparatus, and accessory | |
US10511770B2 (en) | Accessory apparatus and recording medium storing control program for accessory apparatus | |
JP2012203137A (ja) | 焦点検出装置及びその制御方法並びに焦点検出装置を有する撮像装置 | |
US10834326B2 (en) | Interchangeable lens apparatus, its control method, and imaging apparatus | |
US10187561B2 (en) | Accessory apparatus, image-capturing apparatus, control apparatus, lens apparatus, control method, computer program and storage medium storing computer program | |
US11165946B2 (en) | Imaging apparatus, lens apparatus, camera system, and control method of imaging apparatus that perform exposure control | |
EP3016373A1 (en) | Image capturing accessory, image capturing apparatus, control method thereof and communication control program | |
JP5709806B2 (ja) | レンズユニットおよび撮像装置 | |
JP2008209734A (ja) | 焦点検出装置 | |
US11093015B2 (en) | Imaging apparatus, accessory apparatus, control method, and storage medium | |
US20250056120A1 (en) | Control apparatus, image pickup apparatus, lens apparatus, control method, and storage medium, that determine correction ratios between multiple image stabilizers | |
JP6529217B2 (ja) | 撮像装置、交換レンズ装置および撮像装置の制御プログラム | |
JP2016208648A (ja) | 電子機器、制御方法およびプログラム | |
JP2013038657A (ja) | 画像処理装置及び画像処理方法 | |
US12323702B2 (en) | Control apparatus, lens apparatus, image pickup apparatus, control method, and storage medium | |
US20250224654A1 (en) | Accessory, image pickup apparatus, and control method | |
US12155942B2 (en) | Image capturing apparatus for photometry, control method, and storage medium | |
US11914215B2 (en) | Image pickup apparatus, lens apparatus, and camera system | |
US20230009822A1 (en) | Lens apparatus, image pickup apparatus, image pickup apparatus body, and storage medium | |
JP7084799B2 (ja) | 撮像装置およびその制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CANON KABUSHIKI KAISHA, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:IZUKAWA, KAZUHIRO;REEL/FRAME:033470/0485 Effective date: 20140401 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |