US8912177B2 - Method of treating polycystic kidney diseases with ceramide derivatives - Google Patents

Method of treating polycystic kidney diseases with ceramide derivatives Download PDF

Info

Publication number
US8912177B2
US8912177B2 US12/681,291 US68129108A US8912177B2 US 8912177 B2 US8912177 B2 US 8912177B2 US 68129108 A US68129108 A US 68129108A US 8912177 B2 US8912177 B2 US 8912177B2
Authority
US
United States
Prior art keywords
group
compound
alkyl
hydroxy
optionally substituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US12/681,291
Other languages
English (en)
Other versions
US20100298317A1 (en
Inventor
Thomas A. Natoli
Oxana Ibraghimov-Beskrovnaya
John P. Leonard
Nelson S. Yew
Seng H. Cheng
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genzyme Corp
Original Assignee
Genzyme Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genzyme Corp filed Critical Genzyme Corp
Priority to US12/681,291 priority Critical patent/US8912177B2/en
Assigned to GENZYME CORPORATION reassignment GENZYME CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LEONARD, JOHN P., CHENG, SENG H., IBRAGHINOV-BESKROVNAYA, OXANA, NATOLI, THOMAS A., YEW, NELSON S.
Publication of US20100298317A1 publication Critical patent/US20100298317A1/en
Application granted granted Critical
Publication of US8912177B2 publication Critical patent/US8912177B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53771,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/164Amides, e.g. hydroxamic acids of a carboxylic acid with an aminoalcohol, e.g. ceramides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/27Esters, e.g. nitroglycerine, selenocyanates of carbamic or thiocarbamic acids, meprobamate, carbachol, neostigmine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/357Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having two or more oxygen atoms in the same ring, e.g. crown ethers, guanadrel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/4025Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil not condensed and containing further heterocyclic rings, e.g. cromakalim
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/42Oxazoles
    • A61K31/4211,3-Oxazoles, e.g. pemoline, trimethadione
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/42Oxazoles
    • A61K31/422Oxazoles not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • A61K31/427Thiazoles not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/4439Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/02Drugs for disorders of the urinary system of urine or of the urinary tract, e.g. urine acidifiers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys

Definitions

  • a cyst is an abnormal fluid-filled sac that can form in many parts of the body, such as the kidney, liver, pancreas, spleen and heart.
  • Polycystic disease is a disease that occurs when a large number of cysts cause damage to these organs.
  • PPD polycystic kidney disease
  • the PKD cysts can slowly replace much of the mass of the kidneys, reducing kidney function and leading to kidney failure. About half the people with the most common form of PKD progress to kidney failure and require dialysis or kidney transplantation.
  • PKD can also cause cysts in other organs, most commonly the liver, but also the spleen, pancreas, heart and blood vessels in the brain.
  • PKD Autosomal dominant PKD
  • ADPKD Autosomal dominant PKD
  • Present medical and surgical procedures only reduce the pain resulting from expansion of renal cysts or resolve other symptoms associated with PKD such as infections or high blood pressure. None of these procedures, aside from kidney transplantation, appreciably slows the progression of the disease.
  • ceramide derivatives can reduce cystic growth in an animal model for polycystic kidney disease, as measured by kidney/body weight ratio and cyst volume. Based upon this discovery, a method of treating polycystic kidney disease with the ceramide derivatives is disclosed herein.
  • the invention is directed to a method of treating polycystic kidney disease in a subject, comprising administering to the subject an effective amount of a compound represented by Structural Formula (1):
  • R 1 is a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group.
  • Y is —H, a hydrolyzable group, or a substituted or unsubstituted alkyl group.
  • R 2 and R 3 are each independently —H, a substituted or unsubstituted aliphatic group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group, or R 2 and R 3 taken together with the nitrogen atom of N(R 2 R 3 ) form a substituted or unsubstituted non-aromatic heterocyclic ring.
  • X is a covalent bond; —(CR 5 R 6 ) m —; —(CR 5 R 6 ) n -Q-; —O—; —S—; or —NR 7 —;
  • Q is —O—, —S—, —C(O)—, —C(S)—, —C(O)O—, —C(S)O—, —C(S)S—, —C(O)NR 8 —, —NR 8 —, —NR 8 C(O)—, —NR 8 C(O)NR 8 —, —OC(O)—, —SO 3 —, —SO—, —S(O) 2 —, —SO 2 NR 8 —, or —NR 8 SO 2 —.
  • R 4 is a substituted or unsubstituted aliphatic group, or substituted or unsubstituted aryl group, substituted or unsubstituted heteroaryl group, —CN, —NCS, —NO 2 or a halogen.
  • R 4 is a substituted or unsubstituted aliphatic group, or substituted or unsubstituted aryl group, or substituted or unsubstituted heteroaryl group.
  • R 5 and R 6 are each independently —H, —OH, —SH, a halogen, a substituted or unsubstituted lower alkoxy group, a substituted or unsubstituted lower alkylthio group, or a substituted or unsubstituted lower aliphatic group.
  • Each R 7 is independently —H, a substituted or unsubstituted aliphatic group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group, or R 7 and R 4 taken together with the nitrogen atom of NR 7 R 4 form a substituted or unsubstituted non-aromatic heterocyclic group.
  • Each R 8 is independently —H, a substituted or unsubstituted aliphatic group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group.
  • n 1, 2, 3, 4 or 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15.
  • n 1, 2, 3, 4 or 5.
  • ceramide derivatives disclosed herein for treating polycystic kidney disease in a subject.
  • the present invention also includes the use of ceramide derivatives disclosed herein for the manufacture of a medicament for treating a subject having polycystic kidney disease.
  • the present invention has many advantages.
  • the present invention provides a treatment for PKD that addresses the underlying disease state, rather than simply ameliorating symptoms that are associated with PKD.
  • Such compounds may reduce the need for kidney dialysis or transplant in patients suffering from PKD.
  • the present invention is directed to a method of treating polycystic kidney disease (PKD) that comprises administering an effective amount of a ceramide derivative disclosed herein to a subject.
  • PPD polycystic kidney disease
  • Example 4 Applicants have discovered that a certain ceramide derivative can reduce the growth of cyst formation and/or growth in an animal modeled PKD.
  • the ceramide derivative is represented by Structural Formula (I), or a pharmaceutically acceptable salt thereof.
  • Structural Formula (I) A first set of values and preferred values for the variables in Structural Formula (I) is provided in the following paragraphs:
  • Y is —H, a hydrolyzable group, or a substituted or unsubstituted alkyl group.
  • hydrolyzable groups include —C(O)R, —C(O)OR, —C(O)NRR′, C(S)R, —C(S)OR, —C(O)SR or —C(S)NRR′.
  • Specific examples of hydrolyzable groups include an acetyl, —C( ⁇ O)(CH 2 )CH 3 and —C( ⁇ O)-(1-lower alkyl-1,4-dihydropyridin-4-yl.
  • Y is —H, a hydrolyzable group, or an alkyl group.
  • Y is —H, —C(O)R, —C(O)OR or —C(O)NRR′.
  • Y is —H.
  • X is a covalent bond; —(CR 5 R 6 ) n -Q-; —O—; —S—; or —NR 7 —.
  • Q is —O—, —S—, —C(O)—, —C(S)—, —C(O)O—, —C(S)O—, —C(S)S—, —C(O)NR 8 —, —NR 8 —, —NR 8 C(O)—, —NR 8 C(O)NR 8 —, —OC(O)—, —SO 3 —, —SO—, —S(O) 2 —, —SO 2 NR 8 —, or —NR 8 SO 2 —.
  • Q is —O—, —S—, —C(O)—, —C(S)—, —C(O)O—, —C(S)O—, —C(S)S—, —C(O)NR 8 —, —NR 8 C(O)NR 8 —, or —OC(O)—.
  • Q is —O—, —S—, —C(O)—, —C(S)—, —NR 8 (CO)— or —C(O)NR 8 —.
  • Q is —O—, —S—, —C(O)— or —C(S)—.
  • Q is —O— or —C(O)—.
  • R 1 is a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group.
  • R 1 is a substituted or unsubstituted aryl group, such as a substituted or unsubstituted phenyl group.
  • R 1 is
  • r is 1, 2, 3 or 4, preferably 1 or 2.
  • Suitable substituents for each of the aryl and heteroary groups represented by R 1 include halogen, alkyl, haloalkyl, Ar 1 , —OR 30 , —O(haloalkyl), —SR 30 , —NO 2 , —CN, —NCS, —N(R 31 ) 2 , —NR 31 C(O)R 30 , —NR 31 C(O)OR 32 , —N(R 31 )C(O)N(R 31 ) 2 , —C(O)R 30 , —C(S)R 30 , —C(O)OR 30 , —OC(O)R 30 , —C(O)N(R 31 ) 2 , —S(O) 2 R 30 , —SO 2 N(R 31 ) 2 , —S(O)R 32 , —SO 3 R 32 , —NR 31 SO 2 N(R 31 ) 2 , —NR 31 SO 2 R 32
  • R 1 Certain specific substituents for each of the aryl and heteroary groups represented by R 1 include halogen, cyano, nitro, alkyl, haloalkyl, —OR 30 , —SR 30 , —N(R 31 ) 2 , Ar 1 , —V o —OR 30 , —V o —N(R 31 ) 2 , —V o —Ar 1 , —O—V o —Ar 1 , —O—V 1 —N(R 31 ) 2 , —S—V o —Ar 1 , —S—V 1 —N(R 31 ) 2 , —N(R 31 )—V o —Ar 1 , —N(R 31 )—V 1 —N(R 31 ) 2 , —O—[CH 2 ] p —O—, —S—[CH 2 ] p —S—, or —[CH 2 ]
  • certain specific substituents for each of the aryl and heteroary groups represented by R 1 include halogen, cyano, nitro, alkyl, haloalkyl, alkylamino, dialkylamino, aryl, aryloxy, —OH, alkoxy, —O—[CH 2 ] p —O—, and —[CH 2 ] q —.
  • R 1 certain specific substituents for each of the aryl and heteroary groups represented by R 1 include —OR 30 (e.g., —OH, —OCH 3 , —OC 2 H 5 ), alkyl, (e.g., C1-C6 alkyl), or —O—[CH 2 ] p —O—.
  • R 2 and R 3 are each independently —H, a substituted or unsubstituted aliphatic group, a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group, or R 2 and R 3 taken together with the nitrogen atom of N(R 2 R 3 ) form a substituted or unsubstituted non-aromatic heterocyclic ring.
  • R 2 and R 3 taken together with the nitrogen atom of N(R 2 R 3 ) form a 5- or 6-membered, optionally-substituted non-aromatic heterocyclic ring.
  • —N(R 2 R 3 ) is an optionally substituted pyrrolidinyl, azetidinyl, piperidinyl, piperazinyl or morpholinyl group.
  • —N(R 2 R 3 ) is an unsubstituted pyrrolidinyl, azetidinyl, piperidinyl, piperazinyl or morpholinyl group, preferably an unsubstituted pyrrolidinyl group.
  • Suitable substituents for the aliphatic, aryl and heteroaryl groups represented by R 2 and R 3 , and suitable substituents for the non-aromatic heterocyclic ring represented by N(R 2 R 3 ) each independently include halogen, alkyl, haloalkyl, —OR 40 , —O(haloalkyl), —SR 40 , —NO 2 , —CN, —N(R 41 ) 2 , —NR 41 C(O)R 40 , —NR 41 C(O)OR 42 , —N(R 41 )C(O)N(R 41 ) 2 , —C(O)R 40 , —C(S)R 40 , —C(O)OR 40 , —OC(O)R 40 , —C(O)N(R 41 ) 2 , —S(O) 2 R 42 , —SO 2 N(R 41 ) 2 , —S(O)R 42 , —SO
  • Certain specific substituents for the aliphatic, aryl and heteroaryl groups represented by R 2 and R 3 , and for the non-aromatic heterocyclic ring represented by N(R 2 R 3 ) each independently include halogen, alkyl, haloalkyl, —OR 40 , —O(haloalkyl), —SR 40 , —NO 2 , —CN, —N(R 41 ) 2 , —C(O)R 40 , —C(S)R 40 , —C(O)OR 40 , —OC(O)R 40 , —C(O)N(R 41 ) 2 , Ar 2 , V 2 —Ar 2 , —V 2 —OR 40 , —V 2 —O(haloalkyl), —V 2 —SR 40 , —V 2 —NO 2 , —V 2 —CN, —V 2 —N(R 41 ) 2 , —V 2 —
  • certain specific substituents for the aliphatic, aryl and heteroaryl groups represented by R 2 and R 3 , and for the non-aromatic heterocyclic ring represented by N(R 2 R 3 ) each independently include halogen, C1-C10 alkyl, C1-C10 haloalkyl, —O(C1-C10 alkyl), —O(phenyl), —O(C1-C10 haloalkyl), —S(C1-C10 alkyl), —S(phenyl), —S(C1-C10 haloalkyl), —NO 2 , —CN, —NH(C1-C10 alkyl), —N(C1-C10 alkyl) 2 , —NH(C1-C10 haloalkyl), —N(C1-C10 haloalkyl) 2 , —NH(phenyl), —N(phenyl) 2 , —C(O
  • certain specific substituents for the aliphatic, aryl and heteroaryl groups represented by R 2 and R 3 , and for the non-aromatic heterocyclic ring represented by N(R 2 R 3 ) each independently include halogen, C1-C5 alkyl, C1-C5 haloalkyl, hydroxy, C1-C5 alkoxy, nitro, cyano, C1-C5 alkoxycarbonyl, C1-C5 alkylcarbonyl, C1-C5 haloalkoxy, amino, C1-C5 alkylamino and C1-C5 dialkylamino.
  • R 4 is a substituted or unsubstituted aliphatic group, or substituted or unsubstituted aryl group, substituted or unsubstituted heteroaryl group, —CN, —NCS, —NO 2 or a halogen, or alternatively when X is other than —(CR 5 R 6 ) m , R 4 is a substituted or unsubstituted aliphatic group, or substituted or unsubstituted aryl group, or substituted or unsubstituted heteroaryl group. Specifically, R 4 is a substituted or unsubstituted aliphatic group, substituted or unsubstituted aryl group, or substituted or unsubstituted heteroaryl group.
  • R 4 is an optionally substituted aliphatic group, such as an optionally substituted alkyl group.
  • the optionally substituted aliphatic group, including the optionally substituted alkyl group is acyclic.
  • R 4 is an alkyl group.
  • R 4 is a C6-C18 alkyl group, such as a C6, C7, C8, C9 or C10 alkyl group.
  • the alkyl group, including the C6, C7, C8, C9 or C10 alkyl group is acyclic.
  • R 4 is an optionally substituted aryl, an optionally substituted heteroaryl group, or an optionally substituted alkyl group.
  • R 4 is an optionally substituted phenyl group or an optionally substituted alkyl group, such as C1-C10 alkyl group, or C6-C8 alkyl group.
  • R 4 is an aryl group, a heteroaryl group, a lower arylalkyl group or a lower heteroarylalkyl group, or alternatively, R 4 is an optionally substituted aryl or an optionally substituted heteroaryl group.
  • the aryl, the heteroaryl, the lower arylalkyl and the lower heteroaryl groups represented by R 4 are selected from the group consisting of:
  • each of rings A-Z5 is optionally and independently substituted; and each x is independently 0 or 1, specifically x is 0. Even more preferably, R 4 is an optionally substituted
  • R 4 is an optionally substituted phenyl group.
  • R 4 is an aryl group or a heteroaryl group, each independently optionally substituted with Ar 3 , such as a phenyl group optionally substituted with Ar 3 .
  • rings A-Z5 can be attached to variable “X” of Structural Formula (I) through —(CH 2 ) x — at any ring carbon of rings A-Z5 which is not at a position bridging two aryl groups.
  • R 4 represented by
  • R 4 is attached to variable “X” through either ring J or ring K.
  • Suitable substituents for each of the aliphatic, the aryl and the heteroaryl groups represented by R 4 include halogen, alkyl, haloalkyl, Ar 3 , Ar 3 —Ar 3 , —OR 50 , —O(haloalkyl), —SR 50 , —NO 2, —CN, —NCS, —N(R 51 ) 2 , —NR 51 C(O)R 50 , —NR 51 C(O)OR 52 , —N(R 51 )C(O)N(R 51 ) 2 , —C(O)R 50 , —C(S)R 50 , —C(O)OR 50 , —OC(O)R 50 , —C(O)N(R 51 ) 2 , —S(O) 2 R 52 , —SO 2 N(R 51 )
  • certain specific substituents for each of the aliphatic group, the aryl and the heteroaryl groups represented by R 4 include halogen, cyano, nitro, C1-C10 alkyl, C1-C10 haloalkyl, amino, C1-C10 alkylamino, C1-C10 dialkylamino, —OR 50 , —Ar 3 , —V 4 —Ar 3 , —V—OR 50 , —O(C1-C10 haloalkyl), —V 4 —O(C1-C10 haloalkyl), —O—V 4 —Ar 3 , —O—[CH 2 ] p —O— and —[CH 2 ] q —.
  • substituents for each of the aliphatic group, the aryl and the heteroaryl groups represented by R 4 include halogen, cyano, nitro, C1-C10 alkyl, C1-C10 haloalkyl, amino, C1-C10 alkylamino, C1-C10 dialkylamino, aryl, heteroaryl, aryloxy, heteroaryloxy, hydroxy, C1-10 alkoxy, —O—[CH 2 ] p —O— or —[CH 2 ] q —.
  • substituents for each of the aliphatic group, the aryl and the heteroaryl groups represented by R 4 include halogen, cyano, amino, nitro, Ar 3 , C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkoxy, hydroxy and C1-C6 haloalkoxy.
  • each of the aliphatic group, the aryl and the heteroaryl groups represented by R 4 including the alkyl group, the arylalkyl group, the heteroarylalkyl group and rings A-Z5, include —OH, —OCH 3 , —OC 2 H 5 and —O—[CH 2 ] p′ —O—.
  • R 4 is an optionally substituted phenyl ring A, at least one of the optional substituents of ring A is at the para position.
  • R 5 and R 6 are each independently —H, —OH, —SH, a halogen, a substituted or unsubstituted lower alkoxy group, a substituted or unsubstituted lower alkylthio group, or a substituted or unsubstituted lower aliphatic group.
  • R 5 and R 6 are each independently —H; —OH; a halogen; or a lower alkoxy or lower alkyl group. More specifically, R 5 and R 6 are each independently —H, —OH or a halogen. Even more specifically, R 5 and R 6 are each independently —H.
  • Each of R 7 and R 8 independently is —H, a substituted or unsubstituted aliphatic group, a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group.
  • R 7 and R 4 taken together with the nitrogen atom of —NR 7 R 4 form a substituted or unsubstituted non-aromatic heterocyclic group.
  • each of R 7 and R 8 independently is —H, an optionally substituted aliphatic group or an optionally substituted phenyl group.
  • each of R 7 and R 8 independently is —H, an optionally substituted alkyl group or an optionally substituted phenyl group.
  • each of R 7 and R 8 independently is —H or a C1-C6 alkyl group, phenyl or benzyl.
  • suitable substituents including specific examples, for the aliphatic, the aryl and the heteroaryl groups represented by each of R 7 and R 8 independently are as described above for variable R 4 .
  • Examples of suitable substituents for the non-aromatic heterocyclic group represented by —NR 7 R 4 include halogen, ⁇ O, ⁇ S, ⁇ N(C1-C6 alkyl), C1-C6 alkyl, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, (C1-C6 alkoxy)carbonyl, (C1-C6 alkyl)carbonyl, C1-C6 haloalkoxy, amino, (C1-C6 alkyl)amino and (C1-C6 dialkyl)amino.
  • Certain specific substituents for the non-aromatic heterocyclic group represented by —NR 7 R 4 include halogen, C1-C6 alkyl, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, (C1-C6 alkoxy)carbonyl, (C1-C6 alkyl)carbonyl, C1-C6 haloalkoxy, amino, (C1-C6 alkyl)amino and (C1-C6 dialkyl)amino.
  • n is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15. Specifically, n is 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10. Alternatively, n is 1, 2, 3, 4, 5 or 6. Alternatively, n is 5, 6, 7, 8, 9 or 10. Alternatively, n is 1, 2, 3 or 4. Alternatively, n is 2, 3, 4 or 5.
  • n 1, 2, 3, 4, or 5, specifically 1, 2, 3 or 4.
  • Each p is independently 1, 2, 3 or 4, specifically 1 or 2.
  • Each q is independently 3, 4, 5 or 6, specifically 3 or 4.
  • Each p′ is independently 1, 2, 3 or 4, specifically 1 or 2.
  • Each q′ is independently 3, 4, 5 or 6, specifically 3 or 4.
  • Each V o is independently a C1-C10 alkylene group, specifically C1-C4 alkylene group.
  • Each V 1 is independently a C2-C10 alkylene group, specifically C2-C4 alkylene group.
  • Each V 2 is independently a C1-C4 alkylene group.
  • Each V 4 is independently a C1-C10 alkylene group, specifically a C1-C4 alkylene group.
  • Each V 5 is independently a C2-C10 alkylene group, specifically a C2-C4 alkylene group.
  • Each Ar 1 is an aryl group or a heteroaryl group, each of which independently is optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy and haloalkyl.
  • Ar 1 is an aryl group or a heteroaryl group, each of which independently is optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.
  • substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 hal
  • Ar 1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.
  • substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.
  • Each Ar 2 is an aryl group or a heteroaryl group, such as a phenyl group, each of which independently is optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl, C1-C6 haloalkoxy, amino, C1-C6 alkylamino and C1-C6 dialkylamino.
  • substituents selected from the group consisting of halogen, C1-C6 alkyl, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl, C1-C6 haloalkoxy, amino, C1-C6 al
  • Each Ar 3 is independently an aryl group or a heteroaryl group, each of which independently is optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy and haloalkyl.
  • each Ar 3 is independently an aryl group or a heteroaryl group, each of which independently is optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C10 alkyl, C1-C10 haloalkyl, hydroxy, C1-C10 alkoxy, nitro, cyano, C1-C10 alkoxycarbonyl, C1-C10 alkylcarbonyl, C1-C10 haloalkoxy, amino, C1-C10 alkylamino and C1-C10 dialkylamino.
  • substituents selected from the group consisting of halogen, C1-C10 alkyl, C1-C10 haloalkyl, hydroxy, C1-C10 alkoxy, nitro, cyano, C1-C10 alkoxycarbonyl, C1-C10 alkylcarbonyl, C1-C10 haloalkoxy, amino, C1-C10 alkylamino and C1-C
  • each Ar 3 is independently an aryl group or a heteroaryl group, each of which independently is optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C4 alkyl, C1-C4 haloalkyl, hydroxy, C1-C4 alkoxy, nitro, cyano, C1-C4 alkoxycarbonyl, C1-C4 alkylcarbonyl, C1-C4 haloalkoxy, amino, C1-C4 alkylamino and C1-C4 dialkylamino.
  • substituents selected from the group consisting of halogen, C1-C4 alkyl, C1-C4 haloalkyl, hydroxy, C1-C4 alkoxy, nitro, cyano, C1-C4 alkoxycarbonyl, C1-C4 alkylcarbonyl, C1-C4 haloalkoxy, amino, C1-C4 alkylamino and C1-C
  • Each R 30 is independently i) hydrogen; ii) an aryl group or a heteroaryl group, each of which independently is optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkoxycarbonyl, alkylcarbonyl and haloalkyl; or iii) an alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkoxycarbonyl and alkylcarbonyl.
  • each R 30 is independently i) hydrogen; ii) an aryl group or a heteroaryl group, each of which independently is optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or iii) a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C1 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C
  • each R 30 is independently i) hydrogen; ii) a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or iii) a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C1 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl and C1--
  • Each R 31 is independently R 30 , —CO 2 R 30 , —SO 2 R 30 or —C(O)R 30 ; or —N(R 31 ) 2 taken together is an optionally substituted non-aromatic heterocyclic group.
  • each R 31 is independently R 30 , or —N(R 31 ) 2 is an optionally substituted non-aromatic heterocyclic group.
  • Suitable substituents for the non-aromatic heterocyclic group represented by —N(R 31 ) 2 include halogen, ⁇ O, ⁇ S, ⁇ N(C1-C6 alkyl), C1-C6 alkyl, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, (C1-C6 alkoxy)carbonyl, (C1-C6 alkyl)carbonyl, C1-C6 haloalkoxy, amino, (C1-C6 alkyl)amino and (C1-C6 dialkyl)amino.
  • Certain specific substituents for the non-aromatic heterocyclic group represented by —N(R 31 ) 2 include halogen, C1-C6 alkyl, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, (C1-C6 alkoxy)carbonyl, (C1-C6 alkyl)carbonyl, C1-C6 haloalkoxy, amino, (C1-C6 alkyl)amino and (C1-C6 dialkyl)amino.
  • Each R 32 is independently i) an aryl group or a heteroaryl group, each of which independently is optionally substituted optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkoxycarbonyl, alkylcarbonyl and haloalkyl; or ii) an alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkoxycarbonyl and alkylcarbonyl.
  • each R 32 is independently i) an aryl group or a heteroaryl group, each of which independently is optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or ii) a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C1 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl
  • each R 32 is independently i) a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy and C1-C6 haloalkyl; or ii) a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C1 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl and C1-C6 alkylcarbonyl.
  • Each R 40 is independently i) hydrogen; ii) an aryl group or a heteroaryl group, such as a phenyl group, each of which independently is optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl, C1-C6 haloalkoxy, amino, C1-C6 alkylamino and C1-C6 dialkylamino; or iii) a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkyl
  • Each R 41 independently is R 40 , —CO 2 R 40 , —SO 2 R 40 or —C(O)R 40 ; or —N(R 41 ) 2 taken together is an optionally substituted non-aromatic heterocyclic group.
  • each R 41 independently is R 40 , or —N(R 41 ) 2 is an optionally substituted non-aromatic heterocyclic group.
  • Suitable exemplary substituents, including specific exemplary substituents, for the non-aromatic heterocyclic group represented by —N(R 41 ) 2 are as described above for the non-aromatic heterocyclic group represented by —N(R 31 ) 2 .
  • Each R 42 independently is i) an aryl group or a heteroaryl group, such as a phenyl group, each of which independently is optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl, C1-C6 haloalkoxy, amino, C1-C6 alkylamino and C1-C6 dialkylamino; or ii) a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl, C1-
  • Each R 50 independently is i) hydrogen; ii) an aryl group or a heteroaryl group, such as a phenyl group, each of which independently is optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkoxycarbonyl, alkylcarbonyl and haloalkyl; or iii) an alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkoxycarbonyl, alkylcarbonyl and haloalkyl.
  • each R 50 is independently i) hydrogen; ii) an aryl group or a heteroaryl group, such as a phenyl group, each of which independently is optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl, C1-C6 haloalkoxy, amino, C1-C6 alkylamino and C1-C6 dialkylamino; or iii) a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 al
  • Each R 51 independently is R 50 , —CO 2 R 50 , —SO 2 R 50 or —C(O)R 50 , or —N(R 51 ) 2 taken together is an optionally substituted non-aromatic heterocyclic group.
  • each R 51 independently is R5 0 , or —N(R 51 ) 2 is an optionally substituted non-aromatic heterocyclic group.
  • Suitable exemplary substituents, including specific exemplary substituents, for the non-aromatic heterocyclic group represented by —N(R 51 ) 2 are as described above for the non-aromatic heterocyclic group represented by —N(R 31 ) 2 .
  • Each R 52 independently is i) an aryl group or a heteroaryl group, such as a phenyl group, each of which independently is optionally substituted with one or two substituents selected from the group consisting of halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkoxycarbonyl, alkylcarbonyl and haloalkyl; or ii) an alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkoxycarbonyl, alkylcarbonyl and haloalkyl.
  • each R 52 independently is i) an aryl group or a heteroaryl group, such as a phenyl group, each of which independently is optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl, C1-C6 haloalkoxy, amino, C1-C6 alkylamino and C1-C6 dialkylamino; or ii) a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl, C
  • R and R′ are each independently i) —H; ii) a C1-C6 aliphatic group optionally substituted with one or more substituents selected from the group consisting of halogen, —OH, —CN, —NCS, —NO 2 , —NH 2 , C1-C6 alkoxy, C1-C6 haloalkoxy, aryl and heteroaryl; or iii) an aryl or a heteroaryl group, each independently and optionally substituted with one or more substituents selected from the group consisting of halogen, —OH, —CN, —NCS, —NO 2 , —NH 2 , C1-C6 alkoxy, C1-C6 haloalkoxy, C1-C6 aliphatic group and C1-C6 haloaliphatic group.
  • R and R′ taken together with the nitrogen atom of NRR′ form a non-aromatic heterocyclic ring optionally substituted with one or more substituents selected from the group consisting of: halogen; —OH; —CN; —NCS; —NO 2 ; —NH 2 ; C1-C6 alkoxy; C1-C6 haloalkoxy; C1-C6 aliphatic group optionally substituted with one or more substituents selected from the group consisting of halogen, —OH, —CN, —NCS, —NO 2 , —NH 2 , C1-C6 alkoxy, C1-C6 haloalkoxy, aryl and heteroaryl; and an aryl or a heteroaryl group, each independently and optionally substituted with one or more substituents selected from the group consisting of halogen, —OH, —CN, —NCS, —NO 2 , —NH 2 , C1-C6 alkoxy
  • R and R′ are each independently i) —H; ii) a C1-C6 aliphatic group optionally substituted with one or more substituents selected from the group consisting of halogen, —OH, —CN, —NCS, —NO 2 , —NH 2 , C1-C6 alkoxy, C1-C6 haloalkoxy, aryl and heteroaryl; or iii) a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, —OH, —CN, —NCS, —NO 2 , —NH 2 , C1-C6 alkoxy, C1-C6 haloalkoxy, C1-C6 aliphatic group and C1-C6 haloaliphatic group.
  • R and R′ taken together with the nitrogen atom of NRR′ form a non-aromatic heterocyclic ring optionally substituted with one or more substituents selected from the group consisting of: halogen; —OH; —CN; —NCS; —NO 2 ; —NH 2 ; C1-C6 alkoxy; C1-C6 haloalkoxy; C1-C6 aliphatic group optionally substituted with one or more substituents selected from the group consisting of halogen, —OH, —CN, —NCS, —NO 2 , —NH 2 , C1-C6 alkoxy, C1-C6 haloalkoxy, aryl and heteroaryl; and a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, —OH, —CN, —NCS, —NO 2 , —NH 2 , C1-C6 alkoxy, C1-C6 hal
  • R and R′ are each independently —H; a C1-C6 aliphatic group optionally substituted with one or more substituents selected from the group consisting of halogen, phenyl, hydroxy, C1-C4 alkoxy, C1-C4 haloalkoxy and benzyl; phenyl; or benzyl.
  • substituents selected from the group consisting of halogen, phenyl, hydroxy, C1-C4 alkoxy, C1-C4 haloalkoxy and benzyl; phenyl; or benzyl.
  • R and R′ include —H, C1-C4 alkyl, phenyl and benzyl.
  • Y is —H, —C(O)R, —C(O)OR or —C(O)NRR′, preferably —H.
  • R 1 is an optionally substituted aryl group or an optionally substituted heteroaryl group.
  • suitable substituents including specific substituents, for the aryl and the heteroaryl groups represented by R 1 are as described in the first set of values for the variables of Structural Formula (I).
  • R 2 and R 3 taken together with the nitrogen atom of N(R 2 R 3 ) form a 5- or 6-membered, optionally-substituted non-aromatic heterocyclic ring.
  • suitable substituents, including specific substituents, for the non-aromatic heterocyclic ring represented by —NR 2 R 3 are as described in the first set of values for the variables of Structural Formula (I).
  • Y is —H, —C(O)R, —C(O)OR or —C(O)NRR′, preferably —H.
  • R 1 is an optionally substituted aryl group or an optionally substituted heteroaryl group.
  • suitable substituents including specific substituents, for the aryl and the heteroaryl groups represented by R 1 are as described in the first set of values for the variables of Structural Formula (I).
  • R 2 and R 3 taken together with the nitrogen atom of N(R 2 R 3 ) form a 5- or 6-membered, optionally-substituted non-aromatic heterocyclic ring.
  • suitable substituents, including specific substituents, for the non-aromatic heterocyclic ring represented by —NR 2 R 3 are as described in the first set of values for the variables of Structural Formula (I).
  • R 5 and R 6 are each independently —H, —OH, a halogen, a lower alkoxy group or a lower alkyl group.
  • Each of Y, R 1 , R 2 , R 3 , R 5 and R 6 independently is as described above for the third set of values.
  • X is —(CR 5 R 6 ) n -Q-;
  • Q is —O—, —S—, —C(O)—, —C(S)—, —C(O)O—, —C(S)O—, —C(S)S—, —C(O)NR 8 —, —NR 8 —, —NR 8 C(O)—, —NR 8 C(O)NR 8 —, —OC(O)—, —SO 3 —, —SO—, —S(O) 2 —, —SO 2 NR 8 —, or —NR 8 SO 2 —; and R 4 is —H, a substituted or unsubstituted aliphatic group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group.
  • X is —O—, —S— or —NR 7 —; and R 4 is a substituted or unsubstituted aliphatic group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group.
  • X is —(CR 5 R 6 ) m —; and R 4 is a substituted or unsubstituted cyclic alkyl group, or a substituted or unsubstituted cyclic alkenyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group, —CN, —NCS, —NO 2 or a halogen.
  • X is a covalent bond; and R 4 is a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group.
  • n 1, 2, 3, 4, 5 or 6.
  • the ceramide derivative is represented by Structural Formula (II), (III), (IV), (V), (VI), (VII), (VIII), (IX), (X), (XI), (XII), (XIII) or (XIV):
  • Y in Structural Formula (II) is —H, —C(O)R, —C(O)OR or —C(O)NRR′, preferably —H.
  • R 1 is an optionally substituted aryl group or an optionally substituted heteroaryl group.
  • suitable substituents including specific substituents, for the aryl and the heteroaryl groups represented by R 1 are as described in the first set of values for the variables of Structural Formula (I).
  • R 2 and R 3 taken together with the nitrogen atom of N(R 2 R 3 ) form a 5- or 6-membered, optionally-substituted non-aromatic heterocyclic ring.
  • suitable substituents, including specific substituents, for the non-aromatic heterocyclic ring represented by —NR 2 R 3 are as described in the first set of values for the variables of Structural Formula (I).
  • R 4 is an optionally substituted aliphatic group.
  • R 4 is an optionally substituted aliphatic group, an optionally substituted aryl group, an optionally substituted heteroaryl group, —CN, —NCS, —NO 2 or a halogen.
  • R 4 is an optionally substituted aryl group or an optionally substituted heteroaryl group. Examples of suitable substituents, including specific substituents, for the aliphatic, the aryl and the heteroaryl groups represented by R 4 are as described in the first set of values for the variables of Structural Formula (I).
  • Each R 4 in Structural Formulas (IV), (V), (VI), (VII), (X), (XI) and (XII) is independently an optionally substituted aliphatic group, an optionally substituted aryl group or an optionally substituted heteroaryl group.
  • each R 4 independently is an optionally substituted aryl group, an optionally substituted heteroaryl group, an optionally substituted lower arylalkyl group or an optionally substituted heteroarylalkyl group.
  • suitable substituents, including specific substituents, for the aliphatic, the aryl and the heteroaryl groups represented by R 4 are as described in the first set of values for the variables of Structural Formula (I).
  • R 5 and R 6 in Structural Formulas (III), (IV) and (V) are each independently —H, —OH, a halogen, a C1-C6 alkoxy group or a C1-C6 alkyl group.
  • Each R 4 in Structural Formulas (III) and (VIII) independently is an optionally substituted cyclic alkyl (e.g., C3-C8) group, an optionally substituted cyclic alkenyl (e.g., C3-C8) group, an optionally substituted aryl group, or an optionally substituted heteroaryl group, —CN, —NCS, —NO 2 or a halogen.
  • R 4 is an optionally substituted aryl group or an optionally substituted heteroaryl group.
  • suitable substituents, including specific substituents, for the alkyl, the alkenyl, the aryl and the heteroaryl groups represented by R 4 are as described in the first set of values for the variables of Structural Formula (I).
  • Each R 7 in Structural Formulas (VII) and (XII) is independently —H or C1-C6 alkyl.
  • values and preferred values of each of Q and R 8 independently are as described above in the first set of values for Structural Formula (I).
  • Q is —O—, —S—, —C(O)—, —C(S)—, —C(O)O—, —C(S)O—, —C(S)S—, —NR 8 (CO)—, —C(O)NR 8 — or —OC(O)—; and R 8 is optionally —H, an optionally substituted aliphatic group, an optionally substituted aryl group or an optionally substituted heteroaryl group.
  • Q is —O—, —S—, —C(O)—, —C(S)—, —C(O)O—, —C(S)O—, —C(S)S—, —NR 8 (CO)—, —C(O)NR 8 — or —OC(O)—; and R 8 is optionally —H, an optionally substituted aliphatic group or an optionally substituted phenyl group.
  • Q is —O—, —S—, —C(O)—, —C(S)—, —NR 8 (CO)— or —C(O)NR 8 —; and R 8 is optionally —H, an optionally substituted aliphatic group, an optionally substituted aryl group or an optionally substituted heteroaryl group.
  • Q is —O—, —S—, —C(O)—, —C(S)—, —NR 8 (CO)— or —C(O)NR 8 —; and R 8 is optionally —H, an optionally substituted aliphatic group or an optionally substituted phenyl group.
  • Q is —O—, —S—, —C(O)—, —C(S)—, —NR 8 (CO)— or —C(O)NR 8 —; and R 8 is optionally —H, an optionally substituted aliphatic group or an optionally substituted phenyl group; and R 8 is —H or a C1-C6 alkyl group, phenyl or benzyl.
  • suitable substituents including specific substituents, for the alkyl, the alkenyl, the aryl and the heteroaryl groups represented by R 8 are as described in the first set of values for the variables of Structural Formula (I).
  • Each R 10 in Structural Formulas (XIII) and (XIV) independently is i) —H; ii) an aryl group or a heteroaryl group, each independently optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, and haloalkyl; or iii) a C1-C6 alkyl group each optionally and independently substituted with one or more substituents selected from the group consisting of with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C10 alkyl, C1-C10 haloalkyl, amino, C1-C10 alkylamino, C1-C10 dialkylamino, aryl, heteroaryl, aryloxy, heteroaryloxy, hydroxy, C1-10 alkoxy, —
  • Each k in Structural Formulas (XIII) and (XIV) independently is 1, 2, 3, 4, 5 or 6.
  • n in Structural Formulas (IV) and (V) independently is 1, 2, 3, 4, 5 or 6.
  • Each of Y, Q, R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 10 independently is as described above for the first set of values for the variables of Structural Formulas (II)-(XIV).
  • R 1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, alkyl, haloalkyl, —OR 30 , —SR 30 , —N(R 31 ) 2 , Ar 1 , —V o —OR 30 , —V o —N(R 31 ) 2 , —V o —Ar 1 , —O—V o —Ar 1 , —O—V 1 —N(R 31 ) 2 , —S—V o —Ar 1 , —S—V 1 —N(R 31 ) 2 , —N(R 31 )—V o —Ar 1 , —N(R 31 )—V 1 , —N(R 31 )—V o —Ar 1 , —N(R 31 )—V 1 , —N(R 31 )—V o
  • R 1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, alkyl, haloalkyl, alkylamino, dialkylamino, aryl, aryloxy, —OH, alkoxy, —O—[CH 2 ] p —O— and —[CH 2 ] q —.
  • substituents selected from the group consisting of halogen, cyano, nitro, alkyl, haloalkyl, alkylamino, dialkylamino, aryl, aryloxy, —OH, alkoxy, —O—[CH 2 ] p —O— and —[CH 2 ] q —.
  • the “alkyl” referred to in the alkyl, alkoxy, haloalkyl, alkylamino and dialkylamino groups of the exemplary substituents independently is C1-C6 alky
  • Ar 1 is a phenyl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.
  • Ar 1 is a phenyl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.
  • substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.
  • Each R 30 is independently i) hydrogen; ii) a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or iii) a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6
  • Each R 31 is independently R 30 , or —N(R 31 ) 2 is an optionally substituted non-aromatic heterocyclic group.
  • suitable substituents, including specific substituents, for the non-aromatic heterocyclic ring represented by —NR 2 R 3 are as described in the first set of values for the variables of Structural Formula (I).
  • Each of Y, Q, R 1 , R 4 , R 5 , R 6 , R 7 , R 8 , R 10 , R 30 , R 31 and Ar 1 independently is as described above for the second set of values for the variables of Structural Formulas (II)-(XIV).
  • Each —N(R 2 R 3 ) is a pyrrolidinyl, azetidinyl, piperidinyl, piperazinyl or morpholinyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C5 alkyl, C1-C5 haloalkyl, hydroxyl, C1-C5 alkoxy, nitro, cyano, C1-C5 alkoxycarbonyl, C1-C5 alkylcarbonyl or C1-C5 haloalkoxy, amino, C1-C5 alkylamino and C1-C5 dialkylamino.
  • Each of Y, Q, R 1 , R 4 , R 5 , R 6 , R 7 , R 8 , R 10 , R 30 , R 31 and Ar 1 independently is as described above for the third set of values for values for the variables of Structural Formulas (II)-(XIV).
  • Each —N(R 2 R 3 ) is an unsubstituted pyrrolidinyl, azetidinyl, piperidinyl, piperazinyl or morpholinyl group.
  • R 1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of —OR 30 (e.g., —OH, —OCH 3 , —OC 2 H 5 ), alkyl (e.g., C1-C10 alkyl) and —O—[CH 2 ] p —O—.
  • R 1 is 4-hydroxyphenyl or 3,4-ethylenedioxy-1-phenyl.
  • Each R 4 for Structural Formulas (II), (IV)-(VII), (IX) and (X) is independently i) an aryl group or a heteroaryl group, each of which independently is optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, alkyl, haloalkyl, amino, alkylamino, dialkylamino, —OR 50 , —Ar 3 , —V 4 —Ar 3 , —V—OR 50 , —O(haloalkyl), —V 4 —O(haloalkyl), —O—V 4 —Ar 3 , —O—[CH 2 ] p′ —O— and —[CH 2 ] q′ —; or ii) an aliphatic group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, haloalkyl, amino
  • Each R 4 for Structural Formulas (XI) and (XII) is independently an aryl group, a heteroaryl group, a lower arylalkyl group or a lower heteroaryl group, each of which independently is optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl, haloalkyl, Ar 3 , —OR 50 , —O(haloalkyl), —SR 50 , —NO 2, —CN, —N(R 51 ) 2 , —NR 51 C(O)R 50 , —C(O)R 50 , —C(O)OR 50 , —OC(O)R 50 , —C(O)N(R 51 ) 2 , —V 4 —Ar 3 , —V—OR 50 , —V 4 —O(haloalkyl), —V 4 —SR 50 , —V 4 —NO 2, —V 4 —CN,
  • R 4 is an optionally substituted aryl or an optionally substituted heteroaryl group, each optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, alkyl, haloalkyl, amino, alkylamino, dialkylamino, —OR 50 , —Ar 3 , —V 4 —Ar 3 , —V—OR 50 , —O(haloalkyl), —V 4 —O(haloalkyl), —O—V 4 —Ar 3 , —O—[CH 2 ] p′ —O— and —[CH 2 ] q′ —.
  • Each R 4 for Structural Formulas (III) and (VIII) independently is an aryl group or a heteroaryl group, each of which independently is optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, alkyl, haloalkyl, amino, alkylamino, dialkylamino, —OR 50 , —Ar 3 , —V 4 —Ar 3 , —V—OR 50 , —O(haloalkyl), —V 4 —O(haloalkyl), —O—V 4 —Ar 3 , —O—[CH 2 ] p′ —O— and —[CH 2 ] q′ —.
  • Each Ar 3 is independently a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.
  • Each R 50 is independently i) hydrogen; ii) a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or iii) an C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 al
  • Each —N(R 2 R 3 ) is independently N-pyrrolidinyl or N-morpholinyl.
  • R 4 for Structural Formula (II) is an aliphatic group. Specifically, R 4 is a C6-C18 alkyl group or a C6-C8 alkyl group (e.g., C6, C7, C8, C9 or C10 alkyl group).
  • Each R 4 for Structural Formulas (IX) and (X) is independently an alkyl group, or an optionally substituted phenyl group. Specifically, each R 4 is an unsubstituted alkyl group (e.g., C1-C10 alkyl), or a phenyl group optionally substituted with one or more substituents selected from the group consisting of —OH, —OCH 3 and —OC 2 H 5 .
  • Each R 4 for Structural Formulas (XI) and (XII) is an optionally substituted aryl or an optionally substituted heteroaryl group, each optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, alkyl, haloalkyl, amino, alkylamino, dialkylamino, —OR 50 , —Ar 3 , —V 4 —Ar 3 , —V—OR 50 , —O(haloalkyl), —V 4 —O(haloalkyl), —O—V 4 —Ar 3 , —O—[CH 2 ]p′—O— and —[CH 2 ] q′ —.
  • alkyl referred to in the alkyl, alkoxy, haloalkyl, alkylamino and dialkylamino groups of the exemplary substituents independently is C1-C10 alkyl, or, alternatively, C1-C6 alkyl.
  • R 4 for Structural Formula (III) or (VIII) is a biaryl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, amino, nitro, Ar 3 , alkyl, haloalkyl, alkoxy, hydroxy and haloalkoxy.
  • the optionally substituted biaryl group is an optionally substituted biphenyl group.
  • —(CH 2 ) n —R 8 is
  • phenyl ring A is optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, amino, nitro, Ar 3 , alkyl, haloalkyl, alkoxy, hydroxy and haloalkoxy.
  • Each R 10 for Structural Formulas (XIII) and (XIV) is independently a C1-C6 alkyl group; an optionally substituted phenyl group; or an optionally substituted, monocyclic or bicyclic heteroaryl group.
  • Suitable substituents, including specific substituents, for each of the alkyl, phenyl and the heteroaryl groups are as described in the first set of values for R 4 of Structural Formula (I).
  • exemplary substituents for each of the alkyl, phenyl and the heteroaryl groups are as described above in the seventh set of values for R 8 for Structural Formulas (XIII) and (XIV).
  • m is 1, 2 or 3.
  • each n is independently 1, 2, 3, 4 or 5. Specifically, for Structural Formula (IX), n is 1, 2, 3 or 4. Specifically, for Structural Formula (X), n is 3, 4 or 5.
  • values and preferred values of each of Y, Q, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 30 , R 31 , R 32 , R 40 , R 41 , R 42 , R 50 , R 51 , R 52 , Ar 1 , Ar 2 , and Ar 3 of Structural Formulas (II)-(XIV) independently are as described above for the first set, second set, third set or fourth set of values for the variables of Structural Formula (I).
  • ceramide derivatives that can be employed in the invention are as follows:
  • each ring A is optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl and alkoxy.
  • the ceramide derivatives disclosed herein may contain one or more chiral center and/or double bond and, therefore, exist as stereoisomers, such as double-bond isomers (i.e., geometric isomers), enantiomers, or diastereomers.
  • stereomerically pure forms e.g., geometrically pure, enantiomerically pure, or diastereomerically pure
  • stereoisomeric mixtures are encompassed.
  • the compound represented by Structural Formula (I) below has chiral centers 1 and 2.
  • the ceramide derivatives depicted by Structural Formula (I) include the (1R,2R), (1R, 2S), (1S,2R) or (1S,2S) stereoisomer and mixtures thereof.
  • the ceramide derivatives represented by Structural Formula (I) are (1R,2R) stereoisomers.
  • a racemic mixture means about 50% of one enantiomer and about 50% of its corresponding enantiomer relative to all chiral centers in the molecule.
  • Enantiomeric and diastereomeric mixtures can be resolved into their component enantiomers or stereoisomers by well known methods, such as chiral-phase gas chromatography, chiral-phase high performance liquid chromatography, crystallizing the compound as a chiral salt complex, or crystallizing the compound in a chiral solvent.
  • Enantiomers and diastereomers can also be obtained from diastereomerically- or enantiomerically-pure intermediates, reagents, and catalysts by well known asymmetric synthetic methods.
  • the named or depicted stereoisomer is at least 60%, 70%, 80%, 90%, 99% or 99.9% by weight pure relative to the other stereoisomers.
  • the depicted or named enantiomer is at least 60%, 70%, 80%, 90%, 99% or 99.9% optically pure.
  • Percent optical purity by weight is the ratio of the weight of the enatiomer over the weight of the enantiomer plus the weight of its optical isomer.
  • ceramide derivatives can be used in the methods disclosed herein.
  • the ceramide derivatives that include one or more basic amine groups can form pharmaceutically acceptable salts with pharmaceutically acceptable acid(s).
  • Suitable pharmaceutically acceptable acid addition salts include salts of inorganic acids (such as hydrochloric acid, hydrobromic, phosphoric, metaphosphoric, nitric, and sulfuric acids) and of organic acids (such as, acetic acid, benzenesulfonic, benzoic, citric, ethanesulfonic, fumaric, gluconic, glycolic, isethionic, lactic, lactobionic, maleic, malic, methanesulfonic, succinic, p-toluenesulfonic, and tartaric acids).
  • inorganic acids such as hydrochloric acid, hydrobromic, phosphoric, metaphosphoric, nitric, and sulfuric acids
  • organic acids such as, acetic acid, benzenesulfonic, be
  • ceramide derivatives that include one or more acidic groups, such as carboxylic acids can form pharmaceutically acceptable salts with pharmaceutically acceptable base(s).
  • suitable pharmaceutically acceptable basic salts include ammonium salts, alkali metal salts (such as sodium and potassium salts) and alkaline earth metal salts (such as magnesium and calcium salts).
  • halo as used herein means halogen and includes chloro, fluoro, bromo and iodo.
  • An “aliphatic group” is non-aromatic, consists solely of carbon and hydrogen and may optionally contain one or more units of unsaturation, e.g., double and/or triple bonds.
  • An aliphatic group may be straight chained, branched or cyclic. When straight chained or branched, an aliphatic group typically contains between 1 and 20 carbon atoms, typically between 1 and 10 carbon atoms, more typically between 1 and 6 atoms. When cyclic, an aliphatic group typically contains between 3 and 10 carbon atoms, more typically between about 3 and 7 carbon atoms.
  • a “substituted aliphatic group” is substituted at any one or more “substitutable carbon atom”.
  • a “substitutable carbon atom” in an aliphatic group is a carbon in an aliphatic group that is bonded to one or more hydrogen atoms.
  • One or more hydrogen atoms can be optionally replaced with a suitable substituent group.
  • a “haloaliphatic group” is an aliphatic group, as defined above, substituted with one or more halogen atoms. Suitable substituents on a substitutable carbon atom of an aliphatic group are the same as those for an alkyl group.
  • alkyl used alone or as part of a larger moiety, such as “alkoxy”, “haloalkyl”, “arylalkyl”, “alkylamine”, “cycloalkyl”, “dialkyamine”, “alkylamino”, “dialkyamino” “alkylcarbonyl”, “alkoxycarbonyl” and the like, as used herein means saturated straight-chain, cyclic or branched aliphatic group.
  • a C1-C6 alkyl group is referred to “lower alkyl.”
  • the terms “lower alkoxy”, “lower haloalkyl”, “lower arylalkyl”, “lower alkylamine”, “lower cycloalkylalkyl”, “lower dialkyamine”, “lower alkylamino”, “lower dialkyamino” “lower alkylcarbonyl”, “lower alkoxycarbonyl” include straight and branched saturated chains containing one to six carbon atoms.
  • the “alkyl” used alone or as part of a larger moiety such as “alkoxy”, “haloalkyl”, “arylalkyl”, “alkylamine”, “cycloalkyl”, “dialkyamine”, “alkylamino”, “dialkyamino” “alkylcarbonyl”, “alkoxycarbonyl” and the like, independently is C1-C10 alkyl, or, alternatively, C1-C6 alkyl.
  • alkoxy means —O-alkyl
  • hydroxyalkyl means alkyl substituted with hydroxy
  • aralkyl means alkyl substituted with an aryl group
  • alkoxyalkyl mean alkyl substituted with an alkoxy group
  • alkylamine means amine substituted with an alkyl group
  • cycloalkylalkyl means alkyl substituted with cycloalkyl
  • dialkylamine means amine substituted with two alkyl groups
  • alkylcarbonyl means —C(O)—R*, wherein R* is alkyl
  • alkoxycarbonyl means —C(O)—OR*, wherein R* is alkyl; and where alkyl is as defined above.
  • haloalkyl and haloalkoxy mean alkyl or alkoxy, as the case may be, substituted with one or more halogen atoms.
  • halogen means F, Cl, Br or I.
  • the halogen in a haloalkyl or haloalkoxy is F.
  • acyl group means —C(O)R*, wherein R* is an optionally substituted alkyl group or aryl group (e.g., optionally substituted phenyl). R is preferably an unsubstituted alkyl group or phenyl.
  • alkylene group is represented by —[CH 2 ] z —, wherein z is a positive integer, preferably from one to eight, more preferably from one to four.
  • alkenylene group is an alkylene in which at least a pair of adjacent methylenes are replaced with —CH ⁇ CH—.
  • alkynylene group is an alkylene in which at least a pair of adjacent methylenes are replaced with —C ⁇ C—.
  • aryl group used alone or as part of a larger moiety as in “arylalkyl”, “arylalkoxy”, or “aryloxyalkyl”, means carbocyclic aromatic rings.
  • carbocyclic aromatic group may be used interchangeably with the terms “aryl”, “aryl ring” “carbocyclic aromatic ring”, “aryl group” and “carbocyclic aromatic group”.
  • An aryl group typically has 6-14 ring atoms.
  • a “substituted aryl group” is substituted at any one or more substitutable ring atom.
  • C 6-14 aryl as used herein means a monocyclic, bicyclic or tricyclic carbocyclic ring system containing from 6 to 14 carbon atoms and includes phenyl, naphthyl, anthracenyl, 1,2-dihydronaphthyl, 1,2,3,4-tetrahydronaphthyl, fluorenyl, indanyl, indenyl and the like.
  • heteroaryl refers to aromatic ring groups having five to fourteen ring atoms selected from carbon and at least one (typically 1-4, more typically 1 or 2) heteroatoms (e.g., oxygen, nitrogen or sulfur). They include monocyclic rings and polycyclic rings in which a monocyclic heteroaromatic ring is fused to one or more other carbocyclic aromatic or heteroaromatic rings.
  • 5-14 membered heteroaryl as used herein means a monocyclic, bicyclic or tricyclic ring system containing one or two aromatic rings and from 5 to 14 atoms of which, unless otherwise specified, one, two, three, four or five are heteroatoms independently selected from N, NH, N(C 1-6 alkyl), O and S.
  • Examples of monocyclic heteroaryl groups include furanyl (e.g., 2-furanyl, 3-furanyl), imidazolyl (e.g., N-imidazolyl, 2-imidazolyl, 4-imidazolyl, 5-imidazolyl), isoxazolyl(e.g., 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl), oxadiazolyl (e.g., 2-oxadiazolyl, 5-oxadiazolyl), oxazolyl (e.g., 2-oxazolyl, 4-oxazolyl, 5-oxazolyl), pyrazolyl (e.g.,
  • Examples of monocyclic six-membered nitrogen-containing heteraryl groups include pyrimidinyl, pyridinyl and pyridazinyl.
  • polycyclic aromatic heteroaryl groups for example, for the heteroaryl groups represented by each of R 1 , R 2 , R 3 , R 4 , R 7 , R 10 , R 21 , R 22 , R 30 , R 32 , R 40 , R 42 , R 50 , R 52 , Ar 1 , Ar 2 and Ar 3 , include carbazolyl, benzimidazolyl, benzothienyl, benzofuranyl, indolyl, quinolinyl, benzotriazolyl, benzothiazolyl, benzoxazolyl, benzimidazolyl, isoquinolinyl, indolyl, isoindolyl, acridinyl, or benzisoxazolyl.
  • the aryl and heteroaryl groups represented by each of R, R′, R 1 , R 2 , R 3 , R 4 , R 7 , R 10 , R 21 , R 22 , R 30 , R 32 , R 40 , R 42 , R 50 , R 52 , Ar 1 , Ar 2 and Ar 3 are C6-C14 aryl and 5-14 membered heteroaryl groups, respectively.
  • aryl and heteroaryl groups including those represented by each of R, R′, R 1 , R 2 , R 3 , R 4 , R 7 , R 10 , R 21 , R 22 , R 30 , R 32 , R 40 , R 42 , R 50 , R 52 , Ar 1 , Ar 2 and Ar 3 each independently include:
  • each of rings A-Z5 is optionally and independently substituted.
  • Suitable substituents for rings A-Z5 are as described above.
  • the aryl and heteroaryl groups including those represented by each of R, R′, R 1 , R 2 , R 3 , R 4 , R 7 , R 10 , R 21 , R 22 , R 30 , R 32 , R 40 , R 42 , R 50 , R 52 , Ar 1 , Ar 2 and Ar 3 , include monocyclic rings A, B, E, F, G, H, I, N, O, V, and W, wherein each ring is optionally and independently substituted.
  • the aryl and heteroaryl groups including those represented by each of R, R′, R 1 , R 2 , R 3 , R 4 , R 7 , R 10 , R 21 , R 22 , R 30 , R 32 , R 40 , R 42 , R 50 , R 52 , Ar 1 , Ar 2 and Ar 3 , can be optionally substituted.
  • the aryl and heteroaryl groups are each independently optionally substituted with one or more substituents selected from the group consisting of halogen, nitro, cyano, hydroxy, C 1-20 alkyl, C 2-20 alkenyl, C 2-20 alkynyl, amino, C 1-20 alkylamino, C 1-20 dialkylamino, C 1-20 alkoxy, (C 1-10 alkoxy)C 1-20 alkyl, C 1-20 haloalkoxy, (C 1-10 haloalkoxy)C 1-20 alkyl and C 1-20 haloalkyl.
  • substituents selected from the group consisting of halogen, nitro, cyano, hydroxy, C 1-20 alkyl, C 2-20 alkenyl, C 2-20 alkynyl, amino, C 1-20 alkylamino, C 1-20 dialkylamino, C 1-20 alkoxy, (C 1-10 alkoxy)C 1-20 alkyl, C 1-20 haloalkoxy, (C 1-10
  • substituents for the aryl and heteroaryl groups include halogen, nitro, cyano, hydroxy, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, amino, C 1-10 alkylamino, C 1-10 dialkylamino, C 1-10 alkoxy, (C 1-6 alkoxy)C 1-10 alkyl, C 1-10 haloalkoxy, (C 1-6 haloalkoxy)C 1-10 alkyl and C 1-10 haloalkyl. More specific substituents include C 1-10 alkyl, —OH, C 1-10 alkoxy, C 1-10 haloalkyl, halogen, C 1-10
  • non-aromatic heterocyclic group used alone or as part of a larger moiety as in “non-aromatic heterocyclylalkyl group”, refers to non-aromatic ring systems typically having five to twelve members, preferably five to seven, in which one or more ring carbons, preferably one or two, are each replaced by a heteroatom such as N, O, or S.
  • a non-aromatic heterocyclic group can be monocyclic or fused bicyclic.
  • a “nitrogen-containing non-aromatic heterocyclic group” is a non-aromatic heterocyclic group with at least one nitrogen ring atom.
  • non-aromatic heterocyclic groups include (tetrahydrofuranyl (e.g., 2-tetrahydropyranyl, 3-tetrahydropyranyl, 4-tetrahydropyranyl), [1,3]-dioxalanyl, [1,3]-dithiolanyl, [1,3]-dioxanyl, tetrahydrothienyl (e.g., 2-tetrahydrothienyl, 3-tetrahydrothieneyl), azetidinyl (e.g., N-azetidinyl, 1-azetidinyl, 2-azetidinyl), oxazolidinyl (e.g., N-oxazolidinyl, 2-oxazolidinyl, 4-oxazolidinyl, 5-oxazolidinyl), morpholinyl (e.g., N-morpholinyl, 2-morpholinyl, 3-morpholinyl (
  • N N-morpholinyl, N-thiomorpholinyl, N-pyrrolidinyl, N-piperazinyl, N-piperidinyl and the like indicates that the non-aromatic heterocyclic group is attached to the remainder of the molecule at the ring nitrogen atom.
  • ceramide derivatives disclosed herein can be prepared by processes analogous to those established in the art, for example, in U.S. Pat. No. 5,849,326; U.S. Pat. No. 5,916,911; U.S. Pat. No. 6,255,336; U.S. Pat. No. 7,148,251; U.S. Pat. No. 6,855,830; U.S. Pat. No. 6,835,831; and U.S. Provisional Application No. 60/932,370, filed May 31, 2007, the entire teachings of which are incorporated herein by reference. It is noted that the definitions of terms provided herein prevail over those of the references incorporated herein by reference.
  • ceramide derivatives disclosed herein or salts thereof can be administered by an appropriate route.
  • routes of administration include, but are not limited to, orally, intraperitoneally, subcutaneously, intramuscularly, intradermally, transdermally, rectally, sublingually, intravenously, buccally or via inhalation.
  • the compounds are administered orally or intravenously.
  • a “subject” is a mammal, preferably a human, but can also be an animal in need of veterinary treatment, such as a companion animal (e.g., dogs, cats, and the like), a farm animal (e.g., cows, sheep, pigs, horses, and the like) or a laboratory animal (e.g., rats, mice, guinea pigs, and the like). Subject and patient are used interchangeably.
  • a companion animal e.g., dogs, cats, and the like
  • a farm animal e.g., cows, sheep, pigs, horses, and the like
  • a laboratory animal e.g., rats, mice, guinea pigs, and the like.
  • Subject and patient are used interchangeably.
  • Treatment or “treating” refers to both therapeutic and prophylactic treatment.
  • An effective amount of a disclosed ceramide derivative depends, in each case, upon several factors, e.g., the health, age, gender, size and condition of the subject to be treated, the intended mode of administration, and the capacity of the subject to incorporate the intended dosage form, among others.
  • An effective amount of an active agent is an amount sufficient to have the desired effect for the condition being treated, which can either be treatment of an active disease state or prophylactically inhibiting the active disease state from appearing or progressing.
  • an effective amount of a compound for treating a polycystic kidney disease is the quantity of compound that results in a slowing in the progression of the polycystic kidney disease, a reversal of the polycystic kidney disease state, the inhibition of new cyst formation (partial or complete inhibition of cystogenesis), a reduction in cyst mass, a reduction in the size and number of cysts, and/or a reduction in the severity of the symptoms associated with the polycystic kidney disease.
  • the ceramide derivatives disclosed herein are administered for a sufficient period of time to achieve the desired therapeutic effect.
  • Effective amounts of the disclosed ceramide derivatives typically range between 0.001 mg/kg per day and 500 mg/kg per day, such as between 0.1 and 500 mg/kg body weight per day, between 0.1 and 100 mg/kg body weight per day or between 0.01 mg/kg per day and 50 mg/kg per day.
  • the disclosed ceramide derivatives may be administered continuously or at specific timed intervals.
  • the ceramide derivatives may be administered 1, 2, 3, or 4 times per day, such as, e.g., a daily or twice-daily dosage regimen.
  • Commercially available assays may be employed to determine optimal dose ranges and/or schedules for administration.
  • assays for measuring blood glucose levels are commercially available (e.g., OneTouch®Ultra®, Lifescan, Inc. Milpitas, Calif.). Kits to measure human insulin levels are also commercially available (Linco Research, Inc. St. Charles, Mo.). Additionally, effective doses may be extrapolated from dose-response curves obtained from animal models (see, e.g., Comuzzie et al., Obes. Res. 11 (1):75 (2003); Rubino et al., Ann. Surg. 240(2):389 (2004); Gill-Randall et al., Diabet. Med. 21 (7):759 (2004), the entire teachings of which are incorporated herein by reference).
  • Therapeutically effective dosages achieved in one animal model can be converted for use in another animal, including humans, using conversion factors known in the art (see, e.g., Freireich et al., Cancer Chemother. Reports 50(4):219 (1996), the entire teachings of which are incorporated herein by reference) and Table A below for equivalent surface area dosage factors.
  • the pharmaceutical compositions of the ceramide derivatives disclosed herein can be administered before or after a meal, or with a meal.
  • “before” or “after” a meal is typically within two hours, preferably within one hour, more preferably within thirty minutes, most preferably within ten minutes of commencing or finishing a meal, respectively.
  • the method of the present invention is a mono-therapy where the disclosed ceramide derivatives are administered alone. Accordingly, in this embodiment, the ceramide derivative is the only pharmaceutically active ingredient being administered for the treatment PKD.
  • the method of the invention is a co-therapy with other therapeutically active drug(s).
  • the disclosed ceramide derivatives are co-administered either simultaneously as a single dosage form or consecutively as separate dosage forms with other agents that ease the symptoms and/or complications associated with PKD.
  • the associated symptoms with PKD include pain, headaches, urinary tract infections and high blood pressure.
  • the agents that can be co-administered with the compounds of the invention include, but are not limited to, over-the counter pain medications, antibiotics, antimicrobials, thiazide diuretics, angiotensin-converting enzyme inhibitors, angiotensin II antagonists such as losartan, and calcium channel blockers such as diltiazem.
  • Examples of pain medications include acetaminophen, aspirin, naproxen, ibuprofen and COX-2 selective inhibitors such as rofecoxib, celecoxib and valdecoxib.
  • antibiotics and antimicrobials include cephalosporins, penicilin derivatives, aminoglycosidesm ciprofloxacin, erythromycin, chloramphemicol, tetracycline, ampicillin, gentamicin, sulfamethoxazole, trimethoprim and ciprofloxacin, streptomycin, rifamycin, amphotericin B, griseofulvin, cephalothin, cefazolin, fluconazole, clindamycin, erythromycin, bacitracin, vancomycin and fusidic acid
  • thiazide diuretics include bendroflumethiazide, chlorothiazide, chlorthalidone, hydrochlorothiazi
  • angiotensin-converting enzyme inhibitors examples include benazepril, captopril, cilazapril, enalapril, enalaprilat, fosinopril, lisinopril, moexipril, perindopril, quinapril, ramipril and trandolapril.
  • compositions of the disclosed ceramide derivatives optionally include one or more pharmaceutically acceptable carriers and/or diluents therefor, such as lactose, starch, cellulose and dextrose.
  • pharmaceutically acceptable carriers and/or diluents therefor such as lactose, starch, cellulose and dextrose.
  • Other excipients such as flavoring agents; sweeteners; and preservatives, such as methyl, ethyl, propyl and butyl parabens, can also be included. More complete listings of suitable excipients can be found in the Handbook of Pharmaceutical Excipients (5 th Ed., Pharmaceutical Press (2005)).
  • the carriers, diluents and/or excipients are “acceptable” in the sense of being compatible with the other ingredients of the pharmaceutical composition and not deleterious to the recipient thereof.
  • the pharmaceutical compositions can conveniently be presented in unit dosage form and can be prepared by any suitable method known to the skilled artisan. In general, the pharmaceutical compositions are prepared by uniformly and intimately bringing into association the compounds disclosed herein with the carriers, diluents and/or excipients and then, if necessary, dividing the product into unit dosages thereof.
  • compositions of the disclosed ceramide derivatives can be formulated as a tablet, sachet, slurry, food formulation, troche, capsule, elixir, suspension, syrup, wafer, chewing gum or lozenge.
  • a syrup formulation will generally consist of a suspension or solution of the compounds of the invention described herein or salt in a liquid carrier, for example, ethanol, glycerine or water, with a flavoring or coloring agent.
  • a liquid carrier for example, ethanol, glycerine or water
  • a flavoring or coloring agent for example, ethanol, glycerine or water
  • one or more pharmaceutical carriers routinely used for preparing solid formulations can be employed. Examples of such carriers include magnesium stearate, starch, lactose and sucrose.
  • compositions are in the form of a capsule
  • use of routine encapsulation is generally suitable, for example, using the aforementioned carriers in a hard gelatin capsule shell.
  • composition is in the form of a soft gelatin shell capsule
  • pharmaceutical carriers routinely used for preparing dispersions or suspensions can be considered, for example, aqueous gums, celluloses, silicates or oils, and are incorporated in a soft gelatin capsule shell.
  • compositions of the invention may also be formulated for rectal administration as a suppository or retention enema, e.g., containing conventional suppository bases such as cocoa butter or other glycerides.
  • pharmaceutical compositions of the invention can be formulated for injection, or for transdermal or transmucosal administration.
  • modes of administration methods, vehicles and carriers are those described, for example, in Remington's Pharmaceutical Sciences, 18 th ed. (1990), the disclosure of which is incorporated herein by reference.
  • Compound A such as (1R,2R)-2-amino-1-(2,3-dihydro-benzo[1,4]dioxin-6-yl)-3-pyrrolidin-1-yl-propan-1-ol
  • Compound D prepared according to the method below
  • methylene chloride under an atmosphere of nitrogen, for example, for 18 to 24 hours depending on the ester used.
  • Benzyl(1R,2R)-1-(2,3-dihydrobenzo[ ⁇ ][1,4]dioxin-6-yl)-1,3-dihydroxypropan-2-ylcarbamate was dissolved in excess pyridine, cooled to ⁇ 15° C. and one equivalent of methanosulfonyl chloride was added to the mixture. Mixture was stirred about half an hour, and ten equivalents of the amine were added. The reaction mixture was allowed to warm up to room temperature and then heated at 50° C. overnight. The crude was evaporated down and the product was purified by column chromatography using a mixture of methanol/methylene chloride/ammonium hydroxide.
  • the pure compound EVI was then de-protected by hydrolysis in the microwave, using aqueous NaOH (40% in weight)/methanol solution as solvent and heating the mixture to 150° C. for about 15 minutes to give the free amines of the type EVI.
  • the final product was purified by silica-gel column chromatography using a mixture of methanol/methylene chloride/ammonium hydroxide.
  • Step 1 a mixture of 4-(p-hydroxyphenol)-2-butanone (1.032 g), triton 13 (400 ⁇ L), acrylonitrile (4 mL) and MeOH (0.8 mL) was heated at 70° C. for 20 hours. The mixture was cooled to room temperature and the solvent was removed to dryness. 3-(4-(3-oxobutyl)phenoxy)propanenitrile was obtained as a white solid (0.572 g) after purification by column chromatography using ethyl acetate/hexane.
  • Step 1 a mixture of 4-(2-methoxy ethyl)phenol (1.547 g, 10.3 mmol), propiolic acid tert-butyl ester (1.367 g, 10.8 mmol) and N-methyl morpholine (1.18 mL, 10.8 mmol) in CH 2 Cl 2 (15 mL) was stirred at room temperature for 24 hours. The mixture was absorbed on SiO 2 (20 g) and purified by column chromatography using a mixture of methylene chloride/hexane. The product was obtained as a two to one mixture of (E)/(Z)-tert-butyl 3-(4-(2-methoxyethyl)phenoxy)acrylate isomers (2.0 g).
  • Step 3 (E)/(Z)-3-(4-(2-methoxyethyl)phenoxy)acrylic acid (0.3 g) was dissolved in EtOH (10 mL) and Pd/C (5%, degussa type E101, 40 mg) was added. The mixture was hydrogenated at atmospheric pressure for 2 hours and then filtered and the solvent removed to dryness. After purification by column chromatography using a mixture of hexane/ethyl acetate, 3-(4-(2-methoxyethyl)phenoxy)propanoic acid was obtained as a white solid (0.236 g).
  • Step 1 3-phenoxypropionic acid (5.0 g, 30 mmol) was dissolved in MeOH (12 mL) and H 2 SO 4 (18 M, 3 drops) was added. The mixture was place in the microwave reactor (T: 140° C., t: 5 min). The solvent was evaporated, the mixture was partitioned in EtOAc (30 mL) and NaOH (2N, 20 mL). The organic phase was dried over MgSO 4 , filtered, and evaporated to give methyl 3-phenoxypropanoate (5.0 g, 27.7 mmol, 92.5%).
  • Step 2 aluminum chloride (1.1 g, 8.34 mmol) was added to a cold solution (0° C.) solution of methyl 3-phenoxypropanoate (1.0 g, 5.56 mmol) and tert-butylacetyl chloride (1.25 mL, 8.34 mmol) in CH 2 Cl 2 (9 mL) and the reaction mixture was stirred overnight. The mixture was evaporated and the residue was diluted with EtOAc (30 mL) and then washed with water (2 ⁇ 20 mL). The organic phase was removed and purified with silica chromatography using of a gradient hexanes/EtOAc (100:0 ⁇ 0:100) to give methyl 3-phenoxypropanoate (600 mg, 2.27 mmol, 40%).
  • Step 3 a solution of methyl 3-phenoxypropanoate (200 mg, 0.76 mmol) in 2 mL of HCl (37%) was placed in a microwave reactor (T: 120° C., t: 5 min). The mixture was poured into iced water (2 g) and washed with EtOH (3 ⁇ 10 mL). The organic phase was combined and evaporated. The crude product was purified with silica gel chromatography using of a gradient hexanes/EtOAc (100:0 ⁇ 0:100) to give 3-(4-(3-methylbutanoyl)phenoxy)propanoic acid (120 mg, 0.48 mmol, 63%).
  • HPLC showed conversion to the product and loss of both the NHS ester and step 5 amine.
  • the reaction mixture was vacuum filtered on a Büchner funnel to remove DCC urea.
  • the solid urea was washed with 500 mL of methylene chloride.
  • the organic layers were combined, placed in a separatory funnel, and treated with 500 mL of 1.0M NaOH.
  • the resultant biphasic solution was poured into an Erlenmeyer flask and cautiously neutralized to a pH of 7.2-7.4 with a saturated solution of sodium bicarbonate (approx 200 mL of solution).
  • the organic layer was separated from the aqueous layer, dried over sodium sulfate and evaporated to yield 83.6 g of yellow oil (theoretical yield: 77.03 g).
  • the oil was dissolved in isopropyl alcohol (500 mL) with heating and transferred to a 1 L round bottom flask equipped with a mechanical stirrer and heating mantel. The solution was heated to 50° C. and the mechanical stirrer was set to a rate of 53-64 rpm.
  • Tartaric acid (25.33 g, 168 mmol) was dissolved in deionized water (50 mL) and added to the stirred solution at 50° C. Once the solution turned from milky white to clear, seed crystals were added to the mixture and crystallization immediately began (temperature jumped to 56° C.). After 20 minutes, the mixture was set to cool to a temperature of 35° C. (cooling took 1.15 hours). Heating was removed and the solution was allowed to stir for 12 hours. The resulting thick slurry was filtered on a Büchner funnel. Any remaining solid in the flask was washed onto the funnel using ice-cold isopropyl alcohol (100 mL). The material was transferred to a drying tray and heated to 48° C.
  • Steps 1-2 preparation of (R)-benzyl 4-(methoxy(methyl)carbamoyl)-2,2-dimethyloxazolidine-3-carboxylate: N,O-dimethylhydroxylamine hydrochloride (45 g, 0.46 mmol, 1.5 eq) and N-methyl morpholine (84 mL, 0.765 mol, 2.5 eq.) were added slowly to a cold ( ⁇ 15° C.) suspension of d-CBz serine (73.0 g, 0.305 mol) in CH 2 Cl 2 (560 mL) keeping the temperature below ⁇ 5° C. The mixture was cooled back to ⁇ 15° C.
  • 1,2-dibromoethane (0.2 mL) was added slowly to a hot (65° C.) solution of magnesium turnings (0.91 g, 37 mmol) in THF (14 mL), followed by the dropwise addition of a solution of 4-bromo anisole (4 mL, 32 mmol) in THF (14 mL). The mixture was refluxed for 2 hours and then cooled to room temperature. The grignard solution was added dropwise to a suspension of CuI (6.8 g, 36 mmol) in a mixture of Me 2 S (20 mL)/THF (100 mL) at ⁇ 78° C. The mixture was warmed slowly to ⁇ 45° C.
  • jck mice was administered Compound A ad libitum in feed (0.225% Compound A mixed with a standard diet chow in powdered format) from 26-64 days of age.
  • Control jck mice were fed a control powdered diet from 26-64 days of age.
  • animals were transferred to metabolic cages for 24 hour urine collection.
  • animals were sacrificed by CO 2 administration. Blood was collected by heart puncture for serum isolation. Kidneys were isolated and bisected; half of each kidney was fixed in 4% paraformaldehyde in PBS overnight for paraffin embedding and H&E staining.
  • Cyst volume was measured by quantitating the percentage of cystic area in histological sections of kidneys from the treated and control animals, multiplied by the kidney/body weight ratio. A significant decrease in cyst volume was observed (p-value ⁇ 0.05, two-tailed t-test) for the treated animals.
  • BUN Blood urea nitrogen
US12/681,291 2007-10-05 2008-10-03 Method of treating polycystic kidney diseases with ceramide derivatives Expired - Fee Related US8912177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/681,291 US8912177B2 (en) 2007-10-05 2008-10-03 Method of treating polycystic kidney diseases with ceramide derivatives

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US99780307P 2007-10-05 2007-10-05
PCT/US2008/011450 WO2009045503A1 (en) 2007-10-05 2008-10-03 Method of treating polycystic kidney diseases with ceramide derivatives
US12/681,291 US8912177B2 (en) 2007-10-05 2008-10-03 Method of treating polycystic kidney diseases with ceramide derivatives

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/011450 A-371-Of-International WO2009045503A1 (en) 2007-10-05 2008-10-03 Method of treating polycystic kidney diseases with ceramide derivatives

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/532,432 Continuation US20150216872A1 (en) 2007-10-05 2014-11-04 Method of treating polycystic kidney diseases with ceramide derivatives

Publications (2)

Publication Number Publication Date
US20100298317A1 US20100298317A1 (en) 2010-11-25
US8912177B2 true US8912177B2 (en) 2014-12-16

Family

ID=40108810

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/681,291 Expired - Fee Related US8912177B2 (en) 2007-10-05 2008-10-03 Method of treating polycystic kidney diseases with ceramide derivatives
US14/532,432 Abandoned US20150216872A1 (en) 2007-10-05 2014-11-04 Method of treating polycystic kidney diseases with ceramide derivatives
US15/414,838 Expired - Fee Related US10220039B2 (en) 2007-10-05 2017-01-25 Method of treating polycystic kidney diseases with ceramide derivatives

Family Applications After (2)

Application Number Title Priority Date Filing Date
US14/532,432 Abandoned US20150216872A1 (en) 2007-10-05 2014-11-04 Method of treating polycystic kidney diseases with ceramide derivatives
US15/414,838 Expired - Fee Related US10220039B2 (en) 2007-10-05 2017-01-25 Method of treating polycystic kidney diseases with ceramide derivatives

Country Status (14)

Country Link
US (3) US8912177B2 (ja)
EP (2) EP2550965B1 (ja)
JP (3) JP5896601B2 (ja)
KR (3) KR20150085139A (ja)
CN (2) CN101888840A (ja)
AU (1) AU2008307516B2 (ja)
BR (2) BRPI0823522A2 (ja)
CA (1) CA2701649C (ja)
ES (1) ES2660690T3 (ja)
IL (1) IL204741A (ja)
MX (2) MX337396B (ja)
RU (2) RU2517345C9 (ja)
SG (2) SG10201707161PA (ja)
WO (1) WO2009045503A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9272996B2 (en) 2008-10-03 2016-03-01 Genzyme Corporation 2-acylaminopropoanol-type glucosylceramide synthase inhibitors
US9481671B2 (en) 2008-07-28 2016-11-01 Genzyme Corporation Glucosylceramide synthase inhibition for the treatment of collapsing glomerulopathy and other glomerular disease
US9532976B2 (en) 2004-11-10 2017-01-03 Genzyme Corporation Method of lowering blood glucose
US9556155B2 (en) 2006-05-09 2017-01-31 Genzyme Corporation Methods of treating fatty liver disease
US9745294B2 (en) 2007-05-31 2017-08-29 Genzyme Corporation 2-acylaminopropoanol-type glucosylceramide synthase inhibitors
US10220039B2 (en) * 2007-10-05 2019-03-05 Genzyme Corporation Method of treating polycystic kidney diseases with ceramide derivatives
US10385042B2 (en) 2013-03-15 2019-08-20 Concert Pharmaceuticals, Inc. Inhibitors of the enzyme UDP-glucose: N-acyl-sphingosine glucosyltransferase

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8961959B2 (en) 2011-10-17 2015-02-24 The Regents Of The University Of Michigan Glucosylceramide synthase inhibitors and therapeutic methods using the same
AU2013305759C1 (en) 2012-08-23 2018-01-18 Janssen Biopharma, Inc. Compounds for the treatment of paramoxyvirus viral infections
SG11201600977XA (en) 2013-08-21 2016-03-30 Alios Biopharma Inc Antiviral compounds
US9457016B2 (en) 2013-08-29 2016-10-04 New York University Methods for treating polycystic kidney disease
CN110372636B (zh) * 2013-09-20 2023-03-28 生物马林药物股份有限公司 用于治疗疾病的葡萄糖神经酰胺合成酶抑制剂
SI3063141T1 (sl) 2013-10-29 2018-11-30 Biomarin Pharmaceutical Inc. N-(1-hidroksi-3-(pirolidinil)propan-2-il)pirolidin-3-karboksamidni derivati kot inhibitorji glukozilceramid sintaze
CN115322089B (zh) * 2022-07-18 2023-10-03 中国农业科学院烟草研究所(中国烟草总公司青州烟草研究所) 一种覆盆子酮半抗原、人工抗原及其制备方法、抗体和应用

Citations (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4065562A (en) 1975-12-29 1977-12-27 Nippon Shinyaku Co., Ltd. Method and composition for reducing blood glucose levels
US4182767A (en) 1977-06-25 1980-01-08 Nippon Shinyaku Co., Ltd. Antihyperglycemic N-alkyl-3,4,5-trihydroxy-2-piperidine methanol
GB2054371A (en) 1979-06-28 1981-02-18 Janssen Pharmaceutica Nv Long-acting parenteral compositions of haloperidol and bromperidol derivatives
EP0126974A1 (en) 1983-04-26 1984-12-05 G.D. Searle & Co. Carboxyalkyl peptide derivatives
EP0144290A2 (de) 1983-12-01 1985-06-12 Ciba-Geigy Ag Substituierte Aethylendiaminderivate
US4533668A (en) 1978-05-03 1985-08-06 Nippon Shinyaku Co. Ltd. Antihyperglycemic moranoline derivatives
US4639436A (en) 1977-08-27 1987-01-27 Bayer Aktiengesellschaft Antidiabetic 3,4,5-trihydroxypiperidines
US5041441A (en) 1988-04-04 1991-08-20 The Regents Of The University Of Michigan Method of chemotherapy using 1-phenyl-2-decanoylamino-3-morpholino-1-propanol
US5302609A (en) 1992-12-16 1994-04-12 The Regents Of The University Of Michigan Treatment of diabetic nephropathy
US5472969A (en) 1993-05-13 1995-12-05 Monsanto Company Method of inhibiting glycolipid synthesis
WO1997010817A1 (en) 1995-09-20 1997-03-27 The Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
EP0765865A1 (en) 1994-06-10 1997-04-02 Seikagaku Corporation 2-acylaminopropanol compound and medicinal composition
US5631394A (en) 1994-02-02 1997-05-20 The Liposome Company, Inc. Pharmaceutically active ceramide-related compounds
JPH09169664A (ja) 1995-12-20 1997-06-30 Seikagaku Kogyo Co Ltd 分化誘導作用を有する薬剤
JPH09216856A (ja) 1995-12-08 1997-08-19 Seikagaku Kogyo Co Ltd アミノアルコール誘導体及び該誘導体の製造方法
US5707649A (en) 1993-08-13 1998-01-13 Seikagaku Corporation Agent for treating neuronal diseases
WO1998052553A1 (en) 1997-05-21 1998-11-26 Johns Hopkins University Methods for treatment of conditions associated with lactosylceramide
JPH10324671A (ja) 1997-05-23 1998-12-08 Seikagaku Kogyo Co Ltd アミノアルコール誘導体及びそれを含有する医薬
JPH10338636A (ja) 1997-06-06 1998-12-22 Seikagaku Kogyo Co Ltd アミノアルコール誘導体を含む医薬及び異常増殖性疾患治療薬
US5907039A (en) 1995-12-08 1999-05-25 Seikagaku Kogyo Kabushiki Kaisha Amino alcohol derivative and method for preparing the same
WO2001004108A1 (en) 1999-07-09 2001-01-18 Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
US20010003741A1 (en) 1999-12-06 2001-06-14 Hiroyuki Masuda Aminoalcohol derivative and medicament comprising the same
US6255336B1 (en) 1995-09-20 2001-07-03 The Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
WO2001054654A2 (en) 2000-01-25 2001-08-02 The Gillette Company Reduction of hair growth
WO2001080852A1 (en) 2000-04-19 2001-11-01 Borody Thomas J Compositions and therapies for hyperlipidaemia-associated disorders
WO2002050019A2 (en) 2000-12-20 2002-06-27 Bristol-Myers Squibb Pharma Co. Diamines as modulators of chemokine receptor activity
WO2002055498A1 (en) 2001-01-12 2002-07-18 Oxford Glycosciences (Uk) Ltd Pharmaceutically active piperidine derivatives
US20020156107A1 (en) 2001-01-10 2002-10-24 Shayman James A. Amino ceramide - like compounds and therapeutic methods of use
US20020198240A1 (en) 2001-01-10 2002-12-26 Shayman James A. Amino ceramide - like compounds and therapeutic methods of use
US6511979B1 (en) 1998-07-27 2003-01-28 Johns Hopkins University Methods for treating conditions modulated by lactosylceramide
WO2003008399A1 (en) 2001-07-16 2003-01-30 Genzyme Corporation Synthesis of udp-glucose: n-acylsphingosine glucosyltransferase inhibitors
US20030073680A1 (en) 1995-09-20 2003-04-17 The Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
WO2003057874A1 (en) 2001-12-28 2003-07-17 Sumitomo Pharmaceuticals Company, Limited Disease markers for renal diseaes and utilization thereof
WO2003068255A1 (en) 2002-02-14 2003-08-21 Academisch Medisch Centrum Bij De Universiteit Van Amsterdam Compositions and methods for improving enzyme replacement therapy of lysosomal storage diseases
US6610703B1 (en) 1998-12-10 2003-08-26 G.D. Searle & Co. Method for treatment of glycolipid storage diseases
JP2003238410A (ja) 2002-02-21 2003-08-27 Seibutsu Yuki Kagaku Kenkyusho:Kk インスリン抵抗性解除剤
US6660749B2 (en) 1997-12-11 2003-12-09 Chancellor, Masters And Scholars Of The University Of Oxford Inhibition of glycolipid biosynthesis
WO2004007453A1 (en) 2002-07-17 2004-01-22 Oxford Glycosciences (Uk) Ltd Piperidinetriol derivatives as inhibitors of glycosylceramide synthase
EP1384719A1 (en) 1999-07-09 2004-01-28 The Regents of The University of Michigan Inhibitors of the glucosyl ceramide synthase enzyme useful for the treatment of cancers, sphingolipidosis and microbial infections
WO2004056748A1 (en) 2002-12-21 2004-07-08 Astrazeneca Ab Therapeutic agents
WO2004078193A1 (en) 2003-02-28 2004-09-16 Intermune, Inc. Interferon drug therapy for the treatment of viral diseases and liver fibrosis
US20040260099A1 (en) 2001-01-10 2004-12-23 The Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
US6835831B2 (en) 2001-11-26 2004-12-28 Genzyme Corporation Diastereoselective synthesis of UDP-glucose: N-acylsphingosine glucosyltransferase inhibitors
US20050049235A1 (en) 2002-04-29 2005-03-03 The Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
EP1528056A1 (en) 2003-10-29 2005-05-04 Academisch Ziekenhuis bij de Universiteit van Amsterdam Deoxynojirimycin analogues and their uses as glucosylceramidase inhibitors
WO2005039578A2 (en) 2003-10-29 2005-05-06 Macrozyme B.V. Use of a deoxynojirimycin derivative or a pharmaceutically salt thereof
WO2005063275A1 (en) 2003-12-23 2005-07-14 Musc Foundaton For Research Development Methods and compositions for the prevention and treatment of inflammatory diseases or conditions
EP1576894A1 (en) 2004-03-16 2005-09-21 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO The use of sphingolipids in the treatment and prevention of type 2 diabetes mellitus, insulin resistance and Metabolic Syndrome
WO2005087023A1 (en) 2004-03-16 2005-09-22 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno The use of sphingolipids in the treatment and prevention of type 2 diabetes mellitus, insulin resistance and metabolic syndrome
WO2005108600A1 (en) 2004-05-07 2005-11-17 Merck Patent Gmbh Gm3 synthase as a therapeutic target in microvascular complications of diabetes
WO2005123055A2 (en) 2004-06-14 2005-12-29 Musc Foundation For Research Development Methods for treating inflammatory disorders
WO2006023827A2 (en) 2004-08-20 2006-03-02 The Johns Hopkins University Methods for treatment of angiogenesis
WO2006053043A2 (en) 2004-11-10 2006-05-18 Genzyme Corporation Methods of treating diabetes mellitus
US20060217560A1 (en) 2002-04-29 2006-09-28 Shayman James A Amino ceramide-like compounds and therapeutic methods of use
WO2007022518A2 (en) 2005-08-19 2007-02-22 Amylin Pharmaceuticals, Inc. New uses of glucoregulatory proteins
US20070072916A1 (en) 2001-01-10 2007-03-29 The Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
US20070112028A1 (en) 2003-06-13 2007-05-17 Actelion Pharmaceuticals Ltd. 2-Hydroxymethyl-3,4,5-trihydroxy-1-benzilpiperidine derivatives as inhibitors of glucosylceramide
WO2007134086A2 (en) 2006-05-09 2007-11-22 Genzyme Corporation Methods of treating fatty liver disease comprising inhibiting glucosphingolipid synthesis
WO2008011487A2 (en) 2006-07-19 2008-01-24 Allergan, Inc. L-benzyl-l-hydr0xy-2, 3-diamin0-propyl amines and 3-benzyl-3-hydroxy-2-amino-propionicacid amides for chronic pain
WO2008011478A2 (en) 2006-07-19 2008-01-24 Allergan, Inc. Methods for treating chronic pain using 3-aryl-3-hydroxy-2-amino-propionic acid amides, 3-heteroaryl-3-hydroxy-2-amino-propionic acid amides and related compounds
WO2008012555A2 (en) 2006-07-27 2008-01-31 Isis Innovation Limited Epitope reduction therapy
WO2008024337A2 (en) 2006-08-21 2008-02-28 Infinity Discovery, Inc. Compounds and methods for inhibiting the interaction of bcl proteins with binding partners
WO2008150486A2 (en) 2007-05-31 2008-12-11 Genzyme Corporation 2-acylaminopropoanol-type glucosylceramide synthase inhibitors
WO2009045503A1 (en) 2007-10-05 2009-04-09 Genzyme Corporation Method of treating polycystic kidney diseases with ceramide derivatives
WO2009117150A2 (en) 2008-03-20 2009-09-24 Genzyme Corporation Method of treating lupus with ceramide derivatives
US20110166134A1 (en) 2008-07-28 2011-07-07 Genzyme Corporation Glucosylceramide Synthase Inhibition For The Treatment Of Collapsing Glomerulopathy And Other Glomerular Disease
US20110184021A1 (en) 2008-10-03 2011-07-28 Craig Siegel 2-Acylaminopropoanol-Type Glucosylceramide Synthase Inhibitors

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2871565B2 (ja) 1995-12-26 1999-03-17 株式会社神戸製鋼所 ローラヘッド押出機とその制御方法
CA2378600A1 (en) * 1999-07-09 2001-01-18 The Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
JP5009459B2 (ja) 1999-12-06 2012-08-22 生化学工業株式会社 アミノアルコール誘導体及びそれを含有する医薬
US7365197B2 (en) 2000-12-29 2008-04-29 Wyeth Method for the regioselective preparation of substituted benzo[g]quinoline-3-carbonitriles and benzo[g]quinazolines
ATE314370T1 (de) 2002-01-22 2006-01-15 Warner Lambert Co 2-(pyridin-2-ylamino)-pyrido(2,3-d)pyrimidin-7- one
KR20110053390A (ko) 2002-07-17 2011-05-20 바이오겐 아이덱 엠에이 인코포레이티드 인터페론-β를 이용한 신부전증의 치료법
GB0400812D0 (en) 2004-01-14 2004-02-18 Celltech R&D Ltd Novel compounds
KR20070095754A (ko) * 2004-05-26 2007-10-01 파스젠, 엘엘씨. 신규 화합물, 그것을 함유하는 약학 조성물, 및 그것을사용하는 방법
CN101151248B (zh) 2005-01-26 2012-06-20 阿勒根公司 具有镇痛活性和/或免疫刺激物活性的3-芳基-3-羟基-2-氨基丙酸酰胺类、3-杂芳基-3-羟基-2-氨基丙酸酰胺类以及相关化合物
MX2009008493A (es) 2007-02-09 2009-08-20 Irm Llc Compuestos y composiciones como inhibidores de la proteasa activadora de canal.

Patent Citations (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4065562A (en) 1975-12-29 1977-12-27 Nippon Shinyaku Co., Ltd. Method and composition for reducing blood glucose levels
US4182767A (en) 1977-06-25 1980-01-08 Nippon Shinyaku Co., Ltd. Antihyperglycemic N-alkyl-3,4,5-trihydroxy-2-piperidine methanol
US4639436A (en) 1977-08-27 1987-01-27 Bayer Aktiengesellschaft Antidiabetic 3,4,5-trihydroxypiperidines
US4533668A (en) 1978-05-03 1985-08-06 Nippon Shinyaku Co. Ltd. Antihyperglycemic moranoline derivatives
GB2054371A (en) 1979-06-28 1981-02-18 Janssen Pharmaceutica Nv Long-acting parenteral compositions of haloperidol and bromperidol derivatives
EP0126974A1 (en) 1983-04-26 1984-12-05 G.D. Searle & Co. Carboxyalkyl peptide derivatives
EP0144290A2 (de) 1983-12-01 1985-06-12 Ciba-Geigy Ag Substituierte Aethylendiaminderivate
US5041441A (en) 1988-04-04 1991-08-20 The Regents Of The University Of Michigan Method of chemotherapy using 1-phenyl-2-decanoylamino-3-morpholino-1-propanol
US5302609A (en) 1992-12-16 1994-04-12 The Regents Of The University Of Michigan Treatment of diabetic nephropathy
US5472969A (en) 1993-05-13 1995-12-05 Monsanto Company Method of inhibiting glycolipid synthesis
US5525616A (en) 1993-05-13 1996-06-11 Monsanto Company Method of inhibiting glycolipid synthesis
US5707649A (en) 1993-08-13 1998-01-13 Seikagaku Corporation Agent for treating neuronal diseases
US5849326A (en) 1993-08-13 1998-12-15 Seikagaku Corporation Method for treating neuronal diseases via administration of 2-acylaminopropanol derivatives
US5631394A (en) 1994-02-02 1997-05-20 The Liposome Company, Inc. Pharmaceutically active ceramide-related compounds
EP0765865A1 (en) 1994-06-10 1997-04-02 Seikagaku Corporation 2-acylaminopropanol compound and medicinal composition
US5763438A (en) 1994-06-10 1998-06-09 Seikagaku Corporation 2-acylaminopropanol compound and medical composition
US6030995A (en) 1995-09-20 2000-02-29 The Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
US6040332A (en) 1995-09-20 2000-03-21 The Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
US6569889B2 (en) 1995-09-20 2003-05-27 The Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
WO1997010817A1 (en) 1995-09-20 1997-03-27 The Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
US6255336B1 (en) 1995-09-20 2001-07-03 The Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
US20050239862A1 (en) 1995-09-20 2005-10-27 The Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
US6051598A (en) 1995-09-20 2000-04-18 The Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
US5916911A (en) 1995-09-20 1999-06-29 The Regents Of The University Of Michigan Amino ceramide--like compounds and therapeutic methods of use
US5945442A (en) 1995-09-20 1999-08-31 The Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
US5952370A (en) 1995-09-20 1999-09-14 The Regents Of University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
US20030073680A1 (en) 1995-09-20 2003-04-17 The Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
US6335444B1 (en) 1995-12-08 2002-01-01 Seikagaku Kogyo Kabushiki Kaisha Amino alcohol derivative and method for preparing the same
JPH09216856A (ja) 1995-12-08 1997-08-19 Seikagaku Kogyo Co Ltd アミノアルコール誘導体及び該誘導体の製造方法
US5907039A (en) 1995-12-08 1999-05-25 Seikagaku Kogyo Kabushiki Kaisha Amino alcohol derivative and method for preparing the same
JPH09169664A (ja) 1995-12-20 1997-06-30 Seikagaku Kogyo Co Ltd 分化誘導作用を有する薬剤
US6228889B1 (en) 1997-05-21 2001-05-08 Johns Hopkins University Methods for treatment of conditions associated with lactosylceramide
WO1998052553A1 (en) 1997-05-21 1998-11-26 Johns Hopkins University Methods for treatment of conditions associated with lactosylceramide
US5972928A (en) 1997-05-21 1999-10-26 Johns Hopkins University Methods for treatment of conditions associated with lactosylceramide
JPH10324671A (ja) 1997-05-23 1998-12-08 Seikagaku Kogyo Co Ltd アミノアルコール誘導体及びそれを含有する医薬
JPH10338636A (ja) 1997-06-06 1998-12-22 Seikagaku Kogyo Co Ltd アミノアルコール誘導体を含む医薬及び異常増殖性疾患治療薬
US6660749B2 (en) 1997-12-11 2003-12-09 Chancellor, Masters And Scholars Of The University Of Oxford Inhibition of glycolipid biosynthesis
US6511979B1 (en) 1998-07-27 2003-01-28 Johns Hopkins University Methods for treating conditions modulated by lactosylceramide
US6610703B1 (en) 1998-12-10 2003-08-26 G.D. Searle & Co. Method for treatment of glycolipid storage diseases
US6890949B1 (en) 1999-07-09 2005-05-10 The Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
EP1384719A1 (en) 1999-07-09 2004-01-28 The Regents of The University of Michigan Inhibitors of the glucosyl ceramide synthase enzyme useful for the treatment of cancers, sphingolipidosis and microbial infections
WO2001004108A1 (en) 1999-07-09 2001-01-18 Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
US6407064B2 (en) 1999-12-06 2002-06-18 Seikagaku Corporation Aminoalcohol derivative and medicament comprising the same
US20010003741A1 (en) 1999-12-06 2001-06-14 Hiroyuki Masuda Aminoalcohol derivative and medicament comprising the same
WO2001054654A2 (en) 2000-01-25 2001-08-02 The Gillette Company Reduction of hair growth
WO2001080852A1 (en) 2000-04-19 2001-11-01 Borody Thomas J Compositions and therapies for hyperlipidaemia-associated disorders
WO2002050019A2 (en) 2000-12-20 2002-06-27 Bristol-Myers Squibb Pharma Co. Diamines as modulators of chemokine receptor activity
US20070072916A1 (en) 2001-01-10 2007-03-29 The Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
US7335681B2 (en) 2001-01-10 2008-02-26 The Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
US7148251B2 (en) 2001-01-10 2006-12-12 The Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
US20020198240A1 (en) 2001-01-10 2002-12-26 Shayman James A. Amino ceramide - like compounds and therapeutic methods of use
US20020156107A1 (en) 2001-01-10 2002-10-24 Shayman James A. Amino ceramide - like compounds and therapeutic methods of use
US20040260099A1 (en) 2001-01-10 2004-12-23 The Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
US20060074107A1 (en) 2001-01-12 2006-04-06 Oxford Glycosciences (Uk) Ltd. Pharmaceutically active piperidine derivatives
WO2002055498A1 (en) 2001-01-12 2002-07-18 Oxford Glycosciences (Uk) Ltd Pharmaceutically active piperidine derivatives
US7196205B2 (en) 2001-07-16 2007-03-27 The Regents Of The University Of Michigan Synthesis of UDP-glucose: N-acylsphingosine glucosyltransferase inhibitors
WO2003008399A1 (en) 2001-07-16 2003-01-30 Genzyme Corporation Synthesis of udp-glucose: n-acylsphingosine glucosyltransferase inhibitors
US20030050299A1 (en) 2001-07-16 2003-03-13 Genzyme Corporation Synthesis of UDP-glucose: N-acylsphingosine glucosyltransferase inhibitors
US20050009872A1 (en) 2001-07-16 2005-01-13 Genzyme Corporation Synthesis of UDP-glucose: N-acylsphingosine glucosyltransferase inhibitors
US6855830B2 (en) 2001-07-16 2005-02-15 Genzyme Corporation Synthesis of UDP-glucose: N-acylsphingosine glucosyltransferase inhibitors
US20050222244A1 (en) 2001-07-16 2005-10-06 Genzyme Corporation Synthesis of UDP-glucose: N-acylsphingosine glucosyltransferase inhibitors
US7763738B2 (en) 2001-07-16 2010-07-27 Genzyme Corporation Synthesis of UDP-glucose: N-acylsphingosine glucosyltransferase inhibitors
US20070203223A1 (en) 2001-07-16 2007-08-30 Craig Siegel Synthesis of UDP-glucose: N-acylsphingosine glucosyltransferase inhibitors
US7615573B2 (en) 2001-07-16 2009-11-10 The Regents Of The University Of Michigan Synthesis of UDP-glucose: N-acylsphingosine glucosyltransferase inhibitors
US7265228B2 (en) 2001-07-16 2007-09-04 Genzyme Corporation Synthesis of UDP-glucose: N-acylsphingosine glucosyltransferase inhibitors
US6835831B2 (en) 2001-11-26 2004-12-28 Genzyme Corporation Diastereoselective synthesis of UDP-glucose: N-acylsphingosine glucosyltransferase inhibitors
WO2003057874A1 (en) 2001-12-28 2003-07-17 Sumitomo Pharmaceuticals Company, Limited Disease markers for renal diseaes and utilization thereof
WO2003068255A1 (en) 2002-02-14 2003-08-21 Academisch Medisch Centrum Bij De Universiteit Van Amsterdam Compositions and methods for improving enzyme replacement therapy of lysosomal storage diseases
JP2003238410A (ja) 2002-02-21 2003-08-27 Seibutsu Yuki Kagaku Kenkyusho:Kk インスリン抵抗性解除剤
US6916802B2 (en) 2002-04-29 2005-07-12 Genzyme Corporation Amino ceramide-like compounds and therapeutic methods of use
US20080146533A1 (en) 2002-04-29 2008-06-19 Shayman James A Amino ceramide-like compounds and therapeutic methods of use
US20090312392A1 (en) 2002-04-29 2009-12-17 Shayman James A Amino ceramide-like compounds and therapeutic methods of use
US20050049235A1 (en) 2002-04-29 2005-03-03 The Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
US7253185B2 (en) 2002-04-29 2007-08-07 The Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
US20050267094A1 (en) 2002-04-29 2005-12-01 The Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
US20060217560A1 (en) 2002-04-29 2006-09-28 Shayman James A Amino ceramide-like compounds and therapeutic methods of use
WO2004007453A1 (en) 2002-07-17 2004-01-22 Oxford Glycosciences (Uk) Ltd Piperidinetriol derivatives as inhibitors of glycosylceramide synthase
US20060058349A1 (en) 2002-07-17 2006-03-16 Oxford Glycosciences(Uk) Ltd Piperidinetriol derivatives as inhibitors of glycosyceramid synthase
WO2004056748A1 (en) 2002-12-21 2004-07-08 Astrazeneca Ab Therapeutic agents
WO2004078193A1 (en) 2003-02-28 2004-09-16 Intermune, Inc. Interferon drug therapy for the treatment of viral diseases and liver fibrosis
US20070112028A1 (en) 2003-06-13 2007-05-17 Actelion Pharmaceuticals Ltd. 2-Hydroxymethyl-3,4,5-trihydroxy-1-benzilpiperidine derivatives as inhibitors of glucosylceramide
WO2005039578A2 (en) 2003-10-29 2005-05-06 Macrozyme B.V. Use of a deoxynojirimycin derivative or a pharmaceutically salt thereof
WO2005040118A1 (en) 2003-10-29 2005-05-06 Macrozyme B.V. Deoxynojirimycin analogues and their uses as glucosylceramidase inhibitors
EP1528056A1 (en) 2003-10-29 2005-05-04 Academisch Ziekenhuis bij de Universiteit van Amsterdam Deoxynojirimycin analogues and their uses as glucosylceramidase inhibitors
US20070066581A1 (en) 2003-10-29 2007-03-22 Aerts Johannes Maria Franciscu Deoxynojirimycin analogues and their uses as glucosylceramidase inhibitors
WO2005063275A1 (en) 2003-12-23 2005-07-14 Musc Foundaton For Research Development Methods and compositions for the prevention and treatment of inflammatory diseases or conditions
WO2005087023A1 (en) 2004-03-16 2005-09-22 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno The use of sphingolipids in the treatment and prevention of type 2 diabetes mellitus, insulin resistance and metabolic syndrome
EP1576894A1 (en) 2004-03-16 2005-09-21 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO The use of sphingolipids in the treatment and prevention of type 2 diabetes mellitus, insulin resistance and Metabolic Syndrome
WO2005108600A1 (en) 2004-05-07 2005-11-17 Merck Patent Gmbh Gm3 synthase as a therapeutic target in microvascular complications of diabetes
WO2005123055A2 (en) 2004-06-14 2005-12-29 Musc Foundation For Research Development Methods for treating inflammatory disorders
WO2006023827A2 (en) 2004-08-20 2006-03-02 The Johns Hopkins University Methods for treatment of angiogenesis
WO2006053043A2 (en) 2004-11-10 2006-05-18 Genzyme Corporation Methods of treating diabetes mellitus
US20120022126A1 (en) 2004-11-10 2012-01-26 Genzyme Corporation Method Of Treating Diabetes Mellitus
US8003617B2 (en) 2004-11-10 2011-08-23 Genzyme Corporation Methods of treating diabetes mellitus
WO2006053043A3 (en) 2004-11-10 2006-08-24 Genzyme Corp Methods of treating diabetes mellitus
WO2007022518A2 (en) 2005-08-19 2007-02-22 Amylin Pharmaceuticals, Inc. New uses of glucoregulatory proteins
WO2007134086A3 (en) 2006-05-09 2008-01-17 Genzyme Corp Methods of treating fatty liver disease comprising inhibiting glucosphingolipid synthesis
WO2007134086A2 (en) 2006-05-09 2007-11-22 Genzyme Corporation Methods of treating fatty liver disease comprising inhibiting glucosphingolipid synthesis
WO2008011478A2 (en) 2006-07-19 2008-01-24 Allergan, Inc. Methods for treating chronic pain using 3-aryl-3-hydroxy-2-amino-propionic acid amides, 3-heteroaryl-3-hydroxy-2-amino-propionic acid amides and related compounds
WO2008011487A2 (en) 2006-07-19 2008-01-24 Allergan, Inc. L-benzyl-l-hydr0xy-2, 3-diamin0-propyl amines and 3-benzyl-3-hydroxy-2-amino-propionicacid amides for chronic pain
WO2008012555A2 (en) 2006-07-27 2008-01-31 Isis Innovation Limited Epitope reduction therapy
WO2008024337A2 (en) 2006-08-21 2008-02-28 Infinity Discovery, Inc. Compounds and methods for inhibiting the interaction of bcl proteins with binding partners
US20100256216A1 (en) 2007-05-31 2010-10-07 Craig Siegel 2-acylaminopropoanol-type glucosylceramide synthase inhibitors
WO2008150486A2 (en) 2007-05-31 2008-12-11 Genzyme Corporation 2-acylaminopropoanol-type glucosylceramide synthase inhibitors
US8304447B2 (en) 2007-05-31 2012-11-06 Genzyme Corporation 2-acylaminopropoanol-type glucosylceramide synthase inhibitors
US20120322787A1 (en) 2007-05-31 2012-12-20 Genzyme Corporation 2-acylaminopropoanol-type glucosylceramide synthase inhibitors
WO2009045503A1 (en) 2007-10-05 2009-04-09 Genzyme Corporation Method of treating polycystic kidney diseases with ceramide derivatives
WO2009117150A2 (en) 2008-03-20 2009-09-24 Genzyme Corporation Method of treating lupus with ceramide derivatives
US20110166134A1 (en) 2008-07-28 2011-07-07 Genzyme Corporation Glucosylceramide Synthase Inhibition For The Treatment Of Collapsing Glomerulopathy And Other Glomerular Disease
US8389517B2 (en) 2008-07-28 2013-03-05 Genzyme Corporation Glucosylceramide synthase inhibition for the treatment of collapsing glomerulopathy and other glomerular disease
US20130225573A1 (en) 2008-07-28 2013-08-29 Genzyme Corporation Glucosylceramide synthase inhibition for the treatment of collapsing glomerulopathy and other glomerular disease
US20110184021A1 (en) 2008-10-03 2011-07-28 Craig Siegel 2-Acylaminopropoanol-Type Glucosylceramide Synthase Inhibitors
US8309593B2 (en) 2008-10-03 2012-11-13 Genzyme Corporation 2-acylaminopropoanol-type glucosylceramide synthase inhibitors
US20120322786A1 (en) 2008-10-03 2012-12-20 Genzyme Corporation 2-acylaminopropoanol-type glucosylceramide synthase inhibitors

Non-Patent Citations (155)

* Cited by examiner, † Cited by third party
Title
*Non-Final Office Action dated Apr. 27, 2012 for U.S. Appl. No. 13/122,135, titled "2-Acylaminopropoanol-Type Glucosylceramide Synthase Inhibitors".
*Non-Final Office Action for U.S. Appl. No. 12/227,076 mailed on Nov. 23, 2011.
*Non-Final Office for U.S. Appl. No. 13/193,990, titled "Method of Treating Diabetes Mellitus", dated: Feb. 20, 2014.
*Non-Final Office for U.S. Appl. No. 13/595,349, titled "2-Acylaminopropoanol-Type Glucosylceramide Synthase Inhibitors", dated: Dec. 19, 2013.
*Notice of Allowance and Fee(s) Due for U.S. Appl. No. 12/227,076; titled: "Methods of Treating Fatty Liver Disease" Date Mailed: Jun. 4, 2013.
*Notice of Allowance and Fee(s) Due for U.S. Appl. No. 12/227,076; titled: "Methods of Treating Fatty Liver Disease" Date Mailed: Oct. 9, 2012.
*Notice of Allowance and Fee(s) Due for U.S. Appl. No. 12/227,076; titled:."Methods of Treating Fatty Liver Disease" Date Mailed: Dec. 23, 2013.
*Notice of Allowance and Fee(s) Due for U.S. Appl. No. 12/601,871; "2-Acylaminopropoanol-Type Glucosylceramide Synthase Inhibitors" Date Mailed: Aug. 9, 2012.
*Notice of Allowance and Fee(s) Due for U.S. Appl. No. 13/055,036; titled: "Glucosylceramide Synthase Inhibition for the Treatment of Collapsing Glomerulopathy and Other Glomerular Disease" Date Mailed: Oct. 31, 2012.
*Notice of Allowance and Fee(s) Due for U.S. Appl. No. 13/122,135; "2-Acylaminopropoanol-Type Glucosylceramide Synthase Inhibitors" Date Mailed: Aug. 1, 2012.
*Notice of Allowance and Fee(s) Due for U.S. Appl. No. 13/762,102; titled: "Glucosylceramide Synthase Inhibition for the Treatment of Collapsing Glomerulopathy and Other Glomerular Disease" Date Mailed: Jan. 9, 2014.
*Office Action dated Mar. 29, 2012 for U.S. Appl. No. 12/601,871, titled "2-Acylaminopropoanol-Type Glucosylceramide Synthase Inhibitors".
*Office Action dated May 28, 2013 for U.S. Appl. No. 13/762,102; titled: "Glucosylceramide Synthase Inhibition for the Treatment of Collapsing Glomerulopathy and Other Glomerular Disease".
*Office Action for U.S. Appl. No. 12/227,076 dated Mar. 20, 2012.
*Office Action for U.S. Appl. No. 12/601,871 dated Sep. 21, 2011.
Abdel-Magid, A., et al., "Metal-Assisted Aldol Condensation of Chiral alpha-Halogenated Imide Enolates: A Stereocontrolled Chiral Epoxide Syntheses, "J. Am. Chem Soc., 108: 4595-4602 (1986).
Abdel-Magid, A., et al., "Metal-Assisted Aldol Condensation of Chiral α-Halogenated Imide Enolates: A Stereocontrolled Chiral Epoxide Syntheses, "J. Am. Chem Soc., 108: 4595-4602 (1986).
Abe, A., et al., "Improved Inhibitors of Glucosylceramide Synthase," J. Biochem.,.111:191-196 (1992).
Abe, A., et al., "Induction of Glucosylceramide Synthase by Synthase Inhibitors and Ceramide," Biochim. Biophys. Acta, 1299: 333-341 (1996).
Abe, A., et al., "Metabolic Effects of Short-Chain Ceramide and Glucosylceramide on Sphingolipids and Protein Kinase C," Eur. J. Biochem, 210: 765-773 (1992).
Abe, A., et al., "Reduction of Globotriasylceramide in Fabry Disease mice by substrate deprivation", J. Clin Invest. 105(11): 1563-1571, (2000).
Abe, A., et al., "Structural and stereochemical studies of potent inhibitors of glucosylceramide synthase and tumor cell growth," J. of Lipid Research, 36:611-621 (1995).
Abe, A., et al., "Use of Sulfobutyl Ether beta-Cyclodextrin as a Vehicle for d-threo-1-Phenyl-2-decanoylamino-3-morpholinopropanol-Related Glucosylceramide Synthase Inhibitors", Analytical Biochemistry, vol. 287, pp. 344-347 (2000).
Abe, A., et al., "Use of Sulfobutyl Ether β-Cyclodextrin as a Vehicle for d-threo-1-Phenyl-2-decanoylamino-3-morpholinopropanol-Related Glucosylceramide Synthase Inhibitors", Analytical Biochemistry, vol. 287, pp. 344-347 (2000).
Adams, L.A., et al., "Nonalcoholic Fatty Liver Disease," JAMC, 172(7):899-905 (2005).
Alberti, C., et al., "Chloramphenicol. XII and XIII. Chloramphenicol analogs. p-Nitrophenyldiaminopropanols", Chemical Abstracts Service, XP002495477 retrieved from CAPLUS Database accession No. 1957:17088 (abstract).
Alker, D., et al., "Application of Enantiopure Templated Azomethine Ylids to beta-Hydroxy-alpha-amino Acid Syntheses," Tetrahedron: 54: 6089-6098 (1998).
Alker, D., et al., "Application of Enantiopure Templated Azomethine Ylids to β-Hydroxy-α-amino Acid Syntheses," Tetrahedron: 54: 6089-6098 (1998).
Alon, R., et al., "Glycolipid Ligands for Selectins Support Leukocyte Tethering and Rolling Under Physiologic Flow Conditions," J. Immunol., 154: 5356-5366 (1995).
Ames, Bruce N., "Assay of Inorganic Phosphate, Total Phosphate and Phosphatases," Methods Enzymol., 8: 115-118 (1996).
Asano, N., "Glycosidase Inhibitors: Update and Perspectives on Practical Use," Glycobiology, 13(10):93R-104R (2003).
Belikov., V.G., "Pharmaceutical Chemistry, Moscow", Vysshaya Shkola Publishers, pp. 43-47 (1993).
Bielawska, A., et al., "Ceramide-Mediated Biology: Determination of Structural and Stereospecific Requirements Through the Use of N-Acyl-Phenylaminoalcohol Analogs," J. Biol. Chem., 267: 18493-18497 (1992).
Bielawska, et al., "Modulation of Cell Growth and Differentiation by Ceramide," FEBS Letters, 307(2): 211-214 (1992).
Blobe, G.C., et al., "Regulation of Protein Kinase C and its Role in Cancer Biology," Cancer Metastasis Rev., 13: 411-431 (1994).
Brenkert, A., et al., "Synthesis of Galactosyl Ceramide and Glucosyl Ceramide by Rat Brain: Assay Procedures and Changes with Age," Brain Res., 36: 183-193 (1972).
CAPLUS Listing of Accession No. 1985:221199, Keith McCullagh, et al., "Carboxyalkyl peptide derivatives."
Carson, K.G., et al., "Studies on Morpholinosphingolipids: Potent Inhibitors of Glucosylceramide Synthase," Tetrahedron Letters, 35(17): 2659-2662 (1994).
Chatterjee, S., et al.,"Oxidized Low Density Lipoprotein Stimulates Aortic Smooth Muscle Cell Proliferation", Glycobiology, 6(3): 303-311 (1996).
Chatterjee, S., et al.,"Role of lactosylceramide and MAP kinase in the proliferation of proximal tubular cells in human polycystic kidney disease", Journal of Lipid Research, 37(6): 1334-1344 (1996).
Clark, J.M., et al., "Nonalcoholic Fatty Liver Disease, An Underrecognized Caulse of Cryptogenic Cirrhosis," JAMA, 289(22):3000-3004 (2003).
Communication from European Patent Office for EP Patent Application No. 05 826 118.1-1216, dated Aug. 13, 2007.
Comuzzie, A.G., et al., "The Baboon as a Nonhuman Primate Model for the Study of the Genetics of Obesity", Obesity Research, 11(1):75-80 (2003).
Dellaria, Jr., J.F., et al., "Enantioselective Synthesis of alpha-Amino Acid Derivatives via the Stereoselective Alkylation of a Homochiral Glycine Enolate Synthon," J Org. Chem., 54: 3916-3926 (1989).
Dellaria, Jr., J.F., et al., "Enantioselective Synthesis of α-Amino Acid Derivatives via the Stereoselective Alkylation of a Homochiral Glycine Enolate Synthon," J Org. Chem., 54: 3916-3926 (1989).
Dickie, P., et al., "HIV-Associated Nephropathy in Transgenic Mice Expressing HIV-1 Genes," Virology, 185:109-119, 1991.
Dittert, L.W., et al., "Acetaminophen Prodrugs I-Synthesis, Physicochemical Properties and Analgesic Activity", J. Pharm. Sci. 57(5), pp. 774-780 (1968).
Elbein, A.D., "Glycosidase Inhibitors: Inhibitors of N-linked Oligosaccharide Processing," The FASEB Journal, 5:3055-3063 (1991).
European Search Report for EP Patent Application No. 12007327.5, "Method of Treating Polycystic Kidney Diseases With Ceramide Derivatives" dated Apr. 11, 2013.
European Search Report, European Application No. 09003291.3 dated Apr. 29, 2009.
European Search Report, European Application No. 13154949.5, "2-Acylaminopropoanol-Type Glucosylceramide Synthase Inhibitors" dated Jul. 12, 2013.
European Search Report, European Application No. 13154955.2, "2-Acylaminopropoanol-Type Glucosylceramide Synthase Inhibitors" dated Jul. 10, 2013.
European Search Report, European Application No. 13154967.7, "2-Acylaminopropoanol-Type Glucosylceramide Synthase Inhibitors" dated Jul. 18, 2013.
European Search Report, European Application No. 13154970.1, "2-Acylaminopropoanol-Type Glucosylceramide Synthesis Inhibitors" dated Jul. 10, 2013.
Evans, D.A., et al., "Stereoselective Aldol Condensations Via Boron Enolates," J. Am. Chem. Soc., 103: 3099-3111 (1981).
Fan, J-G., et al., "Preventie Effects of Metformin on Rats with Nonalcoholic Steatohepatitis," Hepatology, 34(4)(1), p. 501A (2003).
Felding-Habermann, B., et al., "A Ceramide Analog Inhibits T Cell Proliferative Response Through Inhibition of Glycosphingolipid Synthesis and Enhancement of N,N-Dimethylsphingosins Synthesis," Biochemistry, 29: 6314-6322 (1990).
Folch, J., et al., "A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues", J. Biol. Chem., 226:497-509, 1957.
Freireich, E., et al., "Quantitative Comparison of Toxicity of Anticancer Agents in Mouse, Rat, Hampster, Dog, Monkey, and Man", Cancer Chemother. Reports 50(4):219 (1996).
Gatt, S., et al., "Assay of Enzymes of Lipid Metabolism with Colored and Fluorescent Derivatives of Natural Lipids," Meth. Enzymol., 72: 351-375 (1981).
Gill-Randall, R.J., et al., "Is human Type 2 diabetes maternally inherited? Insights from an animal model", Diabet. Med. 21 (7):759 (2004).
Hakomori, S. "New Directions in Cancer Therapy Based on Aberrant Expression of Glycosphingolipids: Anti-adhesion and Ortho-Signaling Therapy," Cancer Cells 3:461-470 (1991).
Hammett, L.P. Physical Organic Chemistry, (NY: McGraw), (1940).
Harwood, L.M., et al., "Asymmetric Cycloadditions of Aldehydes to Stabilized Azomethine Ylids: Enantiocontrolled Construction of beta-Hydroxy-alpha-amino acid Derivitives," Tetrahedron: Asymmetry, 3(9): 1127-1130 (1992).
Harwood, L.M., et al., "Asymmetric Cycloadditions of Aldehydes to Stabilized Azomethine Ylids: Enantiocontrolled Construction of β-Hydroxy-α-amino acid Derivitives," Tetrahedron: Asymmetry, 3(9): 1127-1130 (1992).
Harwood, L.M., et al., "Double diastereocontrol in the synthesis of enantiomerically pure polyoxamic acid," Chem. Commun., 2641-2642 (1998).
Högberg, T. and Ulf Norinder, "Theoretical and Experimental Methods in Drug Design Applied on Antipsychotic Dopamine Antagonists" Textbook of Drug Design and Development, Harwood Academic, pp. 55-91 (1991).
Hospattankar, A. V., et al., "Changes in Liver Lipids After Administration of 2-Decanoylamino-3-morpholinopropiophenone and Chlorpromazine," Lipids, 17(8): 538-543 (1982).
Husain, A., and Ganem, B., "syn-Selective additions to Garner aldehyde: synthesis of a potent glucosylceramide synthase inhibitor", Tetrahedron Letters, 43: 8621-8623 (2002).
Inokuchi, et al., "Amino Alcohol Esters as Ceramide Analogs and Pharmaceuticals Containing Them for Treatment of Nerve Diseases," Abstract of CAPLUS Accession No. 1998: 786189, JP 10324671 (1998).
Inokuchi, et al., (1996): SNT International HCAPLUS database, Columbus (OH), accession No. 1996: 214749.
Inokuchi, J. et al., "Antitumor Activity Via Inhibition of Glycosphingolipid Biosynthesis," Cancer Lett., 38:23-30(1987).
Inokuchi, J., el al., "Inhibition of Experimental Metastasis of Murine Lewis Lung Carcinoma by an Inhibitor of Glucosylceramide Synthase and Its Possible Mechanism of Action", Cancer Research, 50:6731-6737 (1990).
Inokuchi, J., et al., "Inhibition of Experimental Metastasis of Murine Lewis Lung Carcinoma by an Inhibitor of Glucosylceramide Synthase and Its Possible Mechanism of Action," Cancer Research, 50:6731-6737 (1990).
Inokuchi, J., et al., "Preparation of the Active Isomer of 1-phenyl-2-decanoylamino-3-morpholino-1-propanol, Inhibitor of Murine Clucocerebroside Synthetase," Journal of Lipid Research, 28:565-571 (1987).
Inokuchi, K., et al., "Aminoalcohol derivatives for treatment of abnormal proliferative diseases", Chemical Abstracts Service, XP002495476 retrieved from CAPLUS Database accession No. 1998:816280 (abstract).
International Preliminary Examination Report on Patentability, issued in International Application PCT/US2000/18935 (WO 01/04108) dated Jul. 20, 2001.
International Preliminary Report on Patentability for International Application No. PCT/US2002/022659 dated Jul. 24, 2003.
International Preliminary Report on Patentability for International Application No. PCT/US2008/011450 dated Apr. 7, 2010.
International Preliminary Report on Patentability for International Application No. PCT/US2009/001773 dated Sep. 21, 2010.
International Preliminary Report on Patentability for International Application No. PCT/US2009/051864 dated Feb. 1, 2011.
International Preliminary Report on Patentability issued in International Application PCT/US2005/040596 dated May 15, 2007.
International Preliminary Report on Patentability issued in International Application PCT/US2007/068521 dated Nov. 11, 2008.
International Preliminary Report on Patentability, issued in International Application PCT/US2002/00808, dated Jan. 10, 2003.
International Search Report for PCT/US2000/018935 dated Nov. 28, 2000.
International Search Report for PCT/US2002/00808 dated Oct. 1, 2002.
International Search Report for PCT/US2002/022659 dated Nov. 5, 2002.
Jaffrézou, Jr., et al., "Inhibition of Lysosomal Acid Sphingomyelinase by Agents which Reverse Multidrug Resistance," Biochim. Biophys. Acta, 1266: 1-8 (1995).
Jankowski, K., "Microdetermination of phosphorus in organic materials from polymer industry by microwave-induced plasma atomic emission spectrometry after microwave digestion", Microchem. J., 70:41-49, 2001.
Jimbo, M., et al., "Development of a New Inhibitor of Glucosylceramide Synthase", J. Biochem, 127: 485-491 (2000).
Kabayama, K., et al., "TNFα-induced Insulin Resistance in Adipocytes as a Membrane Microdomain Disorder: Involvement of Ganglioside GM3," Glycobiology, 15(1):29-29 (2005).
Kalén, A., et al., "Elevated Ceramide Levels in GH4C1 Cells Treated with Retinoic Acid," Biochim. Biophys. Acta, 1125: 90-96 (1992).
Kharkevich, D.A., "Pharmacology", M., Medicament, 47-48 (1987).
Koga, K., and Yamada, S., "Stereochemical Studies. X. Effects of Neighboring Functional Groups on 1,2-Asymmetric Induction in the Reduction of Propiophenone Derivatives with Sodium Borohydride", Chemical and Pharmaceutical Bulletin, 20(3): 526-538 (1972).
Kopaczyk, K., C., et al., "In Vivo Conversions of Cerebroside and Ceramide in Rat Brain," J. Lipid Res., 6: 140-145 (1965).
Kurosawa, M., et al.,"14C-Labeling of Novel Atypical beta-Adrenoceptor Agonist, SM-11044," Journal of Labelled Compounds and Radiopharmaceuticals, 38(3): 285-297 (1996).
Kurosawa, M., et al.,"14C-Labeling of Novel Atypical β-Adrenoceptor Agonist, SM-11044," Journal of Labelled Compounds and Radiopharmaceuticals, 38(3): 285-297 (1996).
Lee, L., et al. "Improved Inhibitors of Glucosylceramide Synthase", J. of Bio Chem., 274(21): 14662-14669 (1999).
Levery, S.B., et al., "Disruption of the glucosylceramide biosynthetic pathway in Aspergillus nidulans and Aspergillus fumigatus by inhibitors of UDP-GLC: Ceramide glucosyltransferase strongly affects spore germination, cell cycle, and hyphal growth", FEBS Letters, vol. 525, pp. 59-64 (2002).
Masson, E., et al., "a-Series Gangliosides Mediate the Effects of Advanced Glycation End Products on Pericyte and Mesangial Cell Proliferation—A Common Mediator for Retinal and Renal Microangiopathy?," Diabetes, 54:220-227 (2005).
Mitchell, S., et al., "Glycosyltransferase Inhibitors: Synthesis of D-threo-PDMP, L-threo-PDMP, and Other Brain Glucosylceramide Synthase Inhibitors from D- or L-Serine," J. Org. Chem., 63: 8837-8842 (1998).
Miura, T., et al., "Synthesis and Evaluation of Morpholino and Pyrrolidinosphingolipids as Inhibitors of Glucosylceramide Synthase," Bioorganic and Medicinal Chemistry, (6) 1481-1489 (1998).
Nakamura, K., et al., "Coomassie Brilliant Blue Staining of Lipids on Thin-Layer Plates," Anal. Biochem., 142: 406-410 (1984).
Natoli, T.A., et al., "Inhibition of glucosylceramide accumulation results in effective blockade of polycystic kidney disease in mouse models" and supplemental information, Nature Medicine, 16(7): 788-792 (Jul. 2010).
Nicolaou, K., et al., "A Practical and Enantioselective Synthesis of Glycosphingolipids and Related Compounds. Total Synthesis of Globotriasylceramide (Gb3)," J. Am. Chem., Soc., 110: 7910-7912 (1988).
Nicolaus, B.J.R., "Symbiotic Approach to Drug Design", Decision Making in Drug Research, XP-001111439, p. 1-14 (1983).
Nishida, A., et al., "Practical Synthesis of threo-(1S, 2S)-1-Phenyl-2-palmitoylamino-3-morpholino-1-propanol (PPMP) from L-Serine, "Synlett, 389-390(1998).
Nojiri, H., et al., "Ganglioside GM3: An acidic membrane component that increases during macrophage-like cell differentiation can induce monocytic differentiation of human myeloid and monoctyoid leukemic cell lines HL-60 and U937", Proc. Natl. Acad. Sci., 83:782-786 (1986).
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 11/667,224; Date Mailed: Apr. 22, 2011.
Notification Concerning Transmittal of International Preliminary Report on Patentability for International Application No. PCT/US2008/006906 Dated Dec. 10, 2009.
Notification concerning Transmittal of International Preliminary Report on Patentability for International Application No. PCT/US2009/005435 dated Apr. 5, 2011.
Notification of Office Action for European Patent Office for EP Patent Application No. 05 826 118.1-1216 dated Nov. 13, 2007.
Notification of Transmittal of the International Search Report and Written Opinion of the International Searching Authority from counterpart International Application No. PCT/US2007/068521 dated Nov. 21, 2007.
Notification of Transmittal of the International Search Report and Written Opinion of the International Searching Authority from counterpart International Application No. PCT/US2008/006906, dated Apr. 12, 2008.
Notification of Transmittal of the International Search Report and Written Opinion of the International Searching Authority from counterpart International Application No. PCT/US2008/011450, dated Jan. 21, 2009.
Notification of Transmittal of the International Search Report and Written Opinion of the International Searching Authority from counterpart International Application No. PCT/US2009/001773, dated Nov. 11, 2009.
Notification of Transmittal of the International Search Report and Written Opinion of the International Searching Authority from counterpart International Application No. PCT/US2009/005435, dated Feb. 12, 2010.
Notification of Transmittal of the International Search Report and Written Opinion of the International Searching Authority from counterpart International Application No. PCT/US2009/051864, dated Nov. 3, 2009.
Ogawa, S., et al., "Synthesis and Biological Evaluation of Four Stereoisomers of PDMP-Analogue, N-(2-Decylamino-3-Hydroxy-3-Phenylprop-1-YL)-beta-Valienamine, and Related Compounds," Bioorganic & Medicinal Chemistry Letters, 7(14):1915-1920 (1997).
Ogawa, S., et al., "Synthesis and Biological Evaluation of Four Stereoisomers of PDMP-Analogue, N-(2-Decylamino-3-Hydroxy-3-Phenylprop-1-YL)-β-Valienamine, and Related Compounds," Bioorganic & Medicinal Chemistry Letters, 7(14):1915-1920 (1997).
Ong, et al., "Nonalcoholic Fatty Liver Disease and the epidemic of Obesity", Cleveland Clinic Journal of Medicine, 71(8): 657-664 (Aug. 2004).
Overkleeft, H.S., et al., "Generation of Specific Deoxynojirimycin-type Inhibitors of the Non-lysosomal Glucosylceramidase," The Journal of Biological Chemistry, 273(41):26522-26527 (1998).
Preiss, J., et al., "Quantitative Measurement of sn-1,2-Diaclglycerols Present in Platelets, Hepatocytes, and ras-and sis-Transformed Normal Rat Kidney Cells," J. Biol.Chem., 261(19): 8597-8600 (1986).
Qi Qian et al. (Kidney International (2001) 59, 2005-2022; doi:10.1046/j.1523 1755.2001.00716). *
Radin, N.S., "Killing Cancer Cells by Poly-drug Elevation of Ceramide Levels, A Hypothesis Whose Time has Come:," Eur. J. Biochem. 268(2): 193-204 (2001).
Radin, N.S., et al., "Metabolic Effects of Inhibiting Glucosylceramide Synthesis with PDMP and Other Substances."Advances in Lipid Research: Sphingolipids, Part B., R.M. Bell et al., Eds. (San Diego: Academic Press), 26: 183-213 (1993).
Radin, N.S., et al., "Ultrasonic Baths as Substitutes for Shaking Incubator Baths," Enzyme, 45: 867-70(1991).
Radin, N.S., et al., "Use of an Inhibitor of Glucosylceramide Synthesis, D-1-Phenyl-2-decanoylamino-3-morpholino-1-propanol," In NeuroProtocols: A Companion to Methods in Neurosciences, S.K. Fisher, et al., Eds., (San Diego: Academic Press) 3: 145-155 (1993).
Rosenweld, A.G., et al., "Effects of a Sphingolipid Synthesis Inhibitor on Membrane Transport Through the Secretory Pathway," Biochemistry, 31: 3581-3590 (1992).
Rosenweld, A.G., et al., "Effects of the Glucosphingolipid Synthesis Inhibitor, PDMP, on Lysosomes in Cultured Cells," J. Lipid Res., 35: 1232-1240 (1994).
Rubino, MD., F., et al., "Letter to the Editor", Annals of Surgery, 240(2):389-390 (2004).
Sandhoff, K., et al., "Biosynthesis and Degradation of Mammalian Glycosphingolipids," Phil. Trans. R. Soc. Lond, B 358:847-861 (2003).
Sasaki, A., et al., "Overexpression of Plasma Membrane-Associated Sialidase Attenuates Insulin Signaling in Transgenic Mice," The Journal of Biological Chemistry, 278(30):27896-27902 (2003).
Schwimmer, J.B., et al., "Obesity, Insulin Resistance, and and Other Clinicopathological Correlates of Pediatric Nonalcoholic Fatty Liver Disease", Journal of Pediatrics, 143(4): 500-505 (2003).
Shayman, J.A., et al., "Glucosphingolipid Dependence of Hormone-Stimulated Inositol Trisphophate Formation," J. Biol. Chem., 265(21): 12135-12138 (1990).
Shayman, J.A., et al., "Modulation of Renal Epithelial Cell Growth by Glucosylceramide," The Journal of Biological Chemistry, 266(34):22968-22974 (1991).
Shukla, A., et al., "Metabolism of D-[3H]threo-1-pheny1-2-decanoylamino-3-morpholino-1-propanol, an inhibitor of glucosylceramide synthesis and the synergistic action of an inhibitor of microsomal momooxygenase," J. of Lipid Research, 32: 713-722 (1991).
Shukla, G., et al., "Rapid Kidney Changes Resulting From Glycosphingolipid Depletion by Treatment with a Glucosyltransferase Inhibitor," Biochim. Biophys. Acta, 1083: 101-108 (1991).
Shukla, G.S., et al., "Glucosylceramide Synthase of Mouse Kidney: Further Characterization with an Improved Assay Method," Arch. Biochem. Biophys., 283(2): 372-378 (1990).
Skehan, P., et al., "New Colorimetric Cytotoxicity Assay for Anticancer-Drug Screening," N. Natl. Cancer Inst., 82(13): 1107-1112 (1990).
Strum, J.C., et al.,"1-β-D-Arabinofuranosylcytosine Stimulates Ceramide and Diglyceride Formation in HL-60- Cells," J. Biol. Chem., 269(22): 15493-15497 (1994).
Svensson, M., et al., "Epithelial Glucosphingolipid Express as a Determinant of Bacterial Adherence and Cytokine Production", Infection and Immunity, 62:10 pp. 4404-4410 (1994).
Tagami, S., et al., "Ganglioside GM3 Participates in the Pathological Conditions of Insulin Resistance", The Journal of Biological Chemistry, 227(5):3085-3092 (2002).
Tang, W., et al., "Phorbol Ester Inhibits 13-Cis-Retinoic Acid-Induced Hydrolysis of Phosphatidylinositol 4,5-Biophosphate in cultured Murine Keratinocytes: A Possible Negative Feedback Via Protein Kinase C-Activation," Cell Bioch. Funct., 9: 183-191 (1991).
Tay-Sachs, URL: http://www.ninds.nih.gov/disorders/taysachs/taysachs.htm. National Institute of Health of Neurological Disorders and Stroke. Accessed online Sep. 9, 2011.
Uemura, K., et al., "Effect of an Inhibitor of Glucosylceramide Synthesis on Cultured Rabbit Skin Fibroblasts," J. Biochem., (Tokyo) 108(4): 525-530 (1990).
Vunnum, R.,R., et al.., "Analogs of Ceramide That Inhibit Glucocerebroside Synthetase in Mouse Brain," Chemistry and Physics of Lipids, LD. Bergelson, et al., eds. (Elsevier/North-Holland Scientific Publishers Ltd.), 26: 265-278 (1980).
Wermuth, C.G., et al.., "Designing Prodrug and Bioprecursors I: Carrier Prodrug", The Practice of Medicinal Chemistry, C.G., Wermuth, ed.(CA: Academic Press Limited), pp. 671-696 (1996).
Wong, C-H., et al.., "Synthesis and Evaluation of Homoazasugars as Glycosidase Inhibitors," J. Org. Chem., 60: 1492-1501, (1995).
Yamashita, T., et al., "Enhanced insulin sensitivity in mice lacking ganglioside GM3", Proc. Natl. Acad. Scl., 100(6): 3445-3449 (2003).
Yew, N.S., et al., "Increased Hepatic Insulin Action in Diet-Induced Obese Mice Following Inhibition of Glucosylceramide Synthase" PLoS one, 5(6): 1-9 (Jun. 2010).
Zador, I., et al. "A Role for Glycosphingolipid Accumulation in the Renal Hypertrophy of Streptozotocin-induced Diabetes Mellitus", J. Clin. Invest., 91: 797-803 (1993).
Zhao, H., et al., "Inhibiting Glycosphingolipid Synthesis Ameliorates Hepatic Steatosis in Obese Mice" Hepatology, pp. 85-93 (Jul. 2009)).
Zhao, H., et al., "Inhibiting glycosphingolipid systhesis improves glycemic control and insulin sensitivity in animal models of type 2 diabetes.", Diabetes, 56(5): 1210-1218 (2007).
Ziche, M. et al., "Angiogenesis Can Be Stimulated or Repressed In Vivo by a Change in GM3 :GD3 Ganglioside Ratio," Lab. Invest., 67:711-715 (1992).

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9532976B2 (en) 2004-11-10 2017-01-03 Genzyme Corporation Method of lowering blood glucose
US9556155B2 (en) 2006-05-09 2017-01-31 Genzyme Corporation Methods of treating fatty liver disease
US9745294B2 (en) 2007-05-31 2017-08-29 Genzyme Corporation 2-acylaminopropoanol-type glucosylceramide synthase inhibitors
US10220039B2 (en) * 2007-10-05 2019-03-05 Genzyme Corporation Method of treating polycystic kidney diseases with ceramide derivatives
US9481671B2 (en) 2008-07-28 2016-11-01 Genzyme Corporation Glucosylceramide synthase inhibition for the treatment of collapsing glomerulopathy and other glomerular disease
US9272996B2 (en) 2008-10-03 2016-03-01 Genzyme Corporation 2-acylaminopropoanol-type glucosylceramide synthase inhibitors
US9744153B2 (en) 2008-10-03 2017-08-29 Genzyme Corporation 2-acylaminopropoanol-type glucosylceramide synthase inhibitors
US10385042B2 (en) 2013-03-15 2019-08-20 Concert Pharmaceuticals, Inc. Inhibitors of the enzyme UDP-glucose: N-acyl-sphingosine glucosyltransferase

Also Published As

Publication number Publication date
CA2701649A1 (en) 2009-04-09
WO2009045503A1 (en) 2009-04-09
SG184721A1 (en) 2012-10-30
SG10201707161PA (en) 2017-10-30
EP2209473B1 (en) 2017-11-22
KR20150085139A (ko) 2015-07-22
KR20160085917A (ko) 2016-07-18
BRPI0817864A2 (pt) 2012-12-25
US20170258802A1 (en) 2017-09-14
CN102940627A (zh) 2013-02-27
KR101640263B1 (ko) 2016-07-15
EP2550965A2 (en) 2013-01-30
CN101888840A (zh) 2010-11-17
EP2209473A1 (en) 2010-07-28
ES2660690T3 (es) 2018-03-23
IL204741A0 (en) 2010-11-30
CA2701649C (en) 2016-05-24
US10220039B2 (en) 2019-03-05
RU2014102885A (ru) 2015-08-10
JP5896601B2 (ja) 2016-03-30
RU2010117585A (ru) 2011-11-10
EP2550965A3 (en) 2013-05-15
JP2014024858A (ja) 2014-02-06
US20150216872A1 (en) 2015-08-06
AU2008307516A1 (en) 2009-04-09
KR20100084647A (ko) 2010-07-27
AU2008307516B2 (en) 2011-11-17
MX337396B (es) 2016-03-02
US20100298317A1 (en) 2010-11-25
RU2517345C9 (ru) 2014-08-20
JP2010540638A (ja) 2010-12-24
EP2550965B1 (en) 2019-01-16
MX2010003603A (es) 2010-06-02
BRPI0823522A2 (pt) 2014-01-07
RU2517345C2 (ru) 2014-05-27
IL204741A (en) 2015-11-30
JP2016041761A (ja) 2016-03-31

Similar Documents

Publication Publication Date Title
US10220039B2 (en) Method of treating polycystic kidney diseases with ceramide derivatives
US9744153B2 (en) 2-acylaminopropoanol-type glucosylceramide synthase inhibitors
US9745294B2 (en) 2-acylaminopropoanol-type glucosylceramide synthase inhibitors
US8729075B2 (en) Glucosylceramide synthase inhibition for the treatment of collapsing glomerulopathy and other glomerular disease

Legal Events

Date Code Title Description
AS Assignment

Owner name: GENZYME CORPORATION, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NATOLI, THOMAS A.;IBRAGHINOV-BESKROVNAYA, OXANA;LEONARD, JOHN P.;AND OTHERS;SIGNING DATES FROM 20090326 TO 20090331;REEL/FRAME:022526/0299

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551)

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20221216