US8717773B2 - Multi-plate board embedded capacitor and methods for fabricating the same - Google Patents
Multi-plate board embedded capacitor and methods for fabricating the same Download PDFInfo
- Publication number
- US8717773B2 US8717773B2 US13/040,841 US201113040841A US8717773B2 US 8717773 B2 US8717773 B2 US 8717773B2 US 201113040841 A US201113040841 A US 201113040841A US 8717773 B2 US8717773 B2 US 8717773B2
- Authority
- US
- United States
- Prior art keywords
- conductive
- pwb
- conductive plates
- plates
- normal axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 113
- 238000000034 method Methods 0.000 title claims description 15
- 239000012811 non-conductive material Substances 0.000 claims abstract description 24
- 239000004020 conductor Substances 0.000 claims description 17
- 230000008878 coupling Effects 0.000 claims description 8
- 238000010168 coupling process Methods 0.000 claims description 8
- 238000005859 coupling reaction Methods 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 5
- 238000010586 diagram Methods 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/30—Stacked capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/33—Thin- or thick-film capacitors
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/16—Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
- H05K1/162—Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed capacitors
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/18—Printed circuits structurally associated with non-printed electric components
- H05K1/181—Printed circuits structurally associated with non-printed electric components associated with surface mounted components
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/06—Thermal details
- H05K2201/068—Thermal details wherein the coefficient of thermal expansion is important
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/09—Shape and layout
- H05K2201/09209—Shape and layout details of conductors
- H05K2201/095—Conductive through-holes or vias
- H05K2201/09618—Via fence, i.e. one-dimensional array of vias
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
- Y10T29/49124—On flat or curved insulated base, e.g., printed circuit, etc.
- Y10T29/49126—Assembling bases
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
- Y10T29/49124—On flat or curved insulated base, e.g., printed circuit, etc.
- Y10T29/49155—Manufacturing circuit on or in base
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
- Y10T29/49124—On flat or curved insulated base, e.g., printed circuit, etc.
- Y10T29/49155—Manufacturing circuit on or in base
- Y10T29/49165—Manufacturing circuit on or in base by forming conductive walled aperture in base
Definitions
- PWBs printed wiring boards
- PCBs printed circuit boards
- Electronic devices generally include a variety of components, including capacitors, mounted to a PWB.
- PWBs include an embedded capacitor that uses conductive layers of the PWB (e.g., a ground plane and a power plane) as capacitor plates.
- Such an embedded capacitor may eliminate the need to mount a capacitor to a surface of the PWB.
- at least some known embedded capacitors require a relatively large portion of the PWB to be dedicated to the capacitor, or require that the PWB be sized sufficiently to achieve a desired capacitance.
- Such a design may be infeasible for a smaller-sized PWB, such as a PWB designed for use in a mobile electronic device.
- the capacitor may occupy so much of the PWB that insufficient space remains for other electronic components to be mounted on the PWB.
- known embedded capacitors may exhibit a relatively high inductance, such that the capacitor becomes ineffective at high frequencies (e.g., above 40 megahertz).
- a conventional surface-mounted capacitor may be subjected to physical stress as the surface-mounted capacitor and the underlying PWB expand at different rates, whereas a capacitor embedded within a PWB may expand at substantially the same rate as the PWB to which it is mounted.
- a printed wiring board defining a substantially planar area.
- the PWB includes a plurality of first conductive plates oriented substantially parallel to the planar area and extending from a first normal axis towards a second normal axis.
- the first and second normal axes are oriented substantially perpendicular to the planar area.
- the PWB also includes a second conductive plate oriented substantially parallel to the planar area and extending from the second normal axis towards the first normal axis.
- the second conductive plate extends between an adjacent pair of the first conductive plates.
- the PWB further includes a non-conductive material extending between the second conductive plate and the first conductive plates, and a plurality of first conductive vias aligned substantially collinear with the first normal axis and in contact with at least one of the first conductive plates.
- a printed wiring board defining a substantially planar area and including a PWB-embedded capacitor mounted to the planar area.
- the PWB-embedded capacitor occupies a portion of the planar area and includes a plurality of first conductive plates extending from a first normal axis towards a second normal axis. The first normal axis and the second normal axis are oriented substantially perpendicular to the planar area within the occupied portion of the planar area.
- the PWB-embedded capacitor also includes a plurality of second conductive plates extending from the second normal axis towards the first normal axis and interleaved with the first conductive plates.
- the PWB-embedded capacitor further includes a non-conductive material disposed between the first conductive plates and the second conductive plates and a plurality of first conductive vias coupling the first conductive plates.
- a method for producing a capacitor embedded within a printed wiring board includes creating a plurality of first substantially overlapping conductive plates within the PWB.
- a plurality of second substantially overlapping conductive plates is created within the PWB.
- the second conductive plates are interleaved with the first conductive plates and substantially overlap the first conductive plates.
- a non-conductive material is positioned between the first conductive plates and the second conductive plates such that the first conductive plates do not contact the second conductive plates.
- the first conductive plates are electrically coupled with a plurality of first conductive vias.
- FIG. 1 is a diagram of a cross-section of an exemplary embedded capacitor.
- FIG. 2 is a diagram illustrating a plurality of layers formed within a PWB according to one embodiment.
- FIG. 3 is a flowchart of an exemplary method for creating one or more capacitors that are embedded within a PWB.
- FIG. 4 is an overhead view of an exemplary PWB that includes a plurality of PWB-embedded capacitors.
- FIG. 5 is a diagram of a cross-section of an alternate PWB with a plurality of embedded capacitors.
- a printed wiring board also known as a printed circuit board (PCB) is a structure including one or more layers of non-conductive material.
- Electronic components such as integrated circuits (ICs), logic gates, transistors, and/or capacitors may be coupled (e.g., by soldering) to a surface of the PWB.
- Such electronic components may be electrically coupled to each other using conductors, known as “traces”, that are positioned on the non-conductive material.
- Some PWBs include multiple layers of non-conductive material, such that multiple layers of traces may be stacked by positioning the traces on the different layers of the PWB, with the non-conductive material insulating the traces on different layers from each other.
- one or more conductors known as “vias”, may extend between different layers of the PWB to couple a trace to another trace on a different layer and/or to an electronic component.
- the embodiments described herein provide multi-plate capacitors that are embedded within a PWB.
- Two sets of interleaved, or alternately stacked, conductive plates may be created on layers of non-conductive material within the PWB.
- the conductive plates of each set may be electrically coupled to each other (e.g., using a conductive via). Accordingly, when an electrical potential difference (i.e., a voltage) is applied across the two sets of conductive plates, the non-conductive material acts as a dielectric, and electrical energy may be stored in a static electric field within the dielectric.
- an electrical potential difference i.e., a voltage
- Embedding a multi-plate capacitor within a PWB as described herein facilitates reducing the effect of thermal expansion on the performance and/or longevity of a capacitor. At least in part because of the physical characteristics (e.g., permittivity) of the non-conductive material within the PWB and/or because of multiple conductive vias are included, providing an embedded capacitor as described herein may facilitate reducing the inductance exhibited by a capacitor and enable the use of such a capacitor at higher switching rates (i.e., frequencies) than are feasible with conventional capacitors. For example, a multi-plate embedded capacitor may be effective above 40 megahertz.
- FIG. 1 is a diagram of a cross-sectional view of an exemplary embedded capacitor 100 .
- capacitor 100 is embedded within a PWB 105 that defines a planar area 110 (indicated by a horizontal plane in FIG. 1 ).
- Capacitor 100 includes a plurality of first conductive plates 115 and at least one second conductive plate 120 that are aligned substantially parallel to planar area 110 . More specifically, first conductive plates 115 extend from a first normal axis 125 towards a second normal axis 130 . Each second conductive plate 120 extends from second normal axis 130 towards first normal axis 125 . Both first normal axis 125 and second normal axis 130 are substantially perpendicular to planar area 110 .
- capacitor 100 includes a plurality of second conductive plates 120 that are interleaved with (e.g., alternately positioned with) first conductive plates 115 .
- capacitor 100 includes n first conductive plates and n second conductive plates 120 .
- n ⁇ 1 second conductive plates 120 are positioned between each respective pair of first conductive plates 115
- a single second conductive plate 120 is positioned adjacent to a single first conductive plate 115 .
- capacitor 100 includes n first conductive plates 115 and n ⁇ 1 second conductive plates 120 .
- each second conductive plate 120 is positioned between a pair of first conductive plates 115 .
- a non-conductive material 135 extends between first conductive plates 115 and second conductive plates 120 .
- Non-conductive material 135 may also be positioned between first conductive plates 115 and second normal axis 130 , and/or between second conductive plates 120 and first normal axis 125 . Accordingly, in each embodiment, first conductive plates 115 are not direct against and/or do not contact second conductive plates 120 .
- non-conductive material 135 is a dielectric, such as FR-4, and first conductive plates 115 and second conductive plates 120 are composed of copper.
- first conductive plates 115 and second conductive plates 120 may be composed of any suitable electrically conductive material.
- capacitor 100 also includes at least one first conductive via 140 that is aligned substantially collinear with first normal axis 125 and that contacts first conductive plates 115 , and at least one second conductive via 145 that is aligned substantially collinear with second normal axis 130 and that contacts second conductive plates 120 .
- first conductive plates 115 and/or second conductive plates 120 may be variably selected based on a desired capacitance level for capacitor 100 .
- increasing the quantity and/or size of first conductive plates 115 and/or second conductive plates 120 generally facilitates increasing the capacitance of capacitor 100 .
- capacitor 100 includes between 4 and 40 first conductive plates 115 and between four and forty second conductive plates 120 .
- Capacitor 100 occupies at least a portion of the thickness or height 150 of PWB 105 .
- first conductive plates 115 and second conductive plates 120 are stacked approximately to PWB thickness 150 .
- the outermost conductive plates 155 of capacitor 100 may be covered by non-conductive material 135 to facilitate reducing the risk of accidental electrical contact with capacitor 100 .
- a capacitor is created that includes layers of non-conductive material 135 with conductive plates positioned thereon.
- FIG. 2 is a diagram showing an exemplary plurality of layers 200 within PWB 105 .
- FIG. 3 is a flowchart of an exemplary method 300 that may be used to create capacitors 100 that are embedded within PWB 105 .
- one or more available areas 405 (shown in FIG. 4 ) of a PWB to which capacitor 100 will be mounted are determined 305 , as described in more detail below. If no portion of the PWB is allocated for mounting electronic components, the entirety of the PWB may be considered available. Otherwise, available areas 405 may be selected depending on the position and/or the size of electronic components to be coupled to PWB 105 .
- the dimensions, quantities, and/or spacing of conductive plates 115 , 120 to include in a capacitor 100 are then determined 310 .
- the dimensions, quantities, and/or spacing of the conductive plates 115 , 120 may be determined 310 based at least in part on the desired capacitance, the available areas of the PWB to which capacitor 100 will be mounted, the quantity of layers within PWB 105 , and/or physical characteristics (e.g., permittivity) of the non-conductive material 135 within PWB 105 .
- a first non-conductive layer 205 is created 315 , and a first conductive plate 115 is extended across 320 at least a portion of first non-conductive layer 205 .
- first conductive plate 115 may be created 320 by applying a copper material across a portion of first non-conductive layer 205 .
- First conductive plate 115 extends from first normal axis 125 towards second normal axis 130 .
- a second non-conductive layer 210 may be created 325 .
- a dielectric may be applied over first conductive plate 115 to create 325 second non-conductive layer 210 .
- a second conductive plate 120 is created 330 on second non-conductive layer 210 .
- second conductive plate 120 extends from second normal axis 130 towards first normal axis 125 .
- First conductive plate 115 and second conductive plate 120 form a pair of conductive plates that may be used by themselves as a capacitor.
- multiple pairs of conductive plates may be stacked by creating 315 another conductive layer over second conductive plate 120 , creating 320 another first conductive plate 115 , creating 325 another non-conductive layer, and creating 330 another second conductive plate 120 . This process may be repeated to create any desired quantity of conductive plates.
- a third non-conductive layer 215 may be applied over the topmost conductive plate (e.g., second conductive plate 120 ). Such an embodiment facilitates insulating the topmost conductive plate from accidental electrical contact.
- first conductive plates 115 are electrically coupled 335 to each other, and second conductive plates 120 are electrically coupled 340 to each other.
- first conductive plates 115 may be electrically coupled 335 by extending one or more first conductive vias 140 (shown in FIGS. 1 and 4 ) substantially along, or adjacent to, first normal axis 125 , such that the first conductive via 140 physically contacts first conductive plates 115 .
- second conductive plates 120 may be electrically coupled 340 by extending second conductive vias 145 (shown in FIGS. 1 and 4 ) substantially along, or adjacent to, second normal axis 130 .
- some embodiments facilitate creating multiple embedded capacitors 100 in a single PWB 105 .
- multiple embedded capacitors 100 may be stacked in PWB 105 .
- stacked embedded capacitors 100 are separated by one or more non-conductive layers. Such separation may reduce propagation of an electric charge from one embedded capacitor 100 to another.
- multiple sets of first conductive plates 115 and second conductive plates 120 may be created in different portions of the planar area 110 of PWB 105 .
- a conductive plate for each embedded capacitor 100 may be created 320 on first non-conductive layer 205 prior to creating 325 second non-conductive layer 210 .
- FIG. 4 is a plan view of a PWB 400 that includes a plurality of PWB-embedded capacitors 100 .
- a portion 405 of PWB 400 is allocated to electronic components 410 , such as memory devices, logic gates, and/or integrated circuits (ICs).
- Available areas in PWB 400 may be determined 305 (shown in FIG. 3 ) at least in part by identifying one or more portions of PWB 400 that are not allocated to electronic components 410 . Available areas may therefore represent portions of PWB 400 that are unused.
- Each embedded capacitor 100 occupies a portion of the planar area of PWB 400 and is mounted (e.g., soldered) to a surface of PWB 400 .
- first conductive plates 115 (shown in FIG. 1 ) of a first embedded capacitor 415 are electrically coupled to each other by first conductive vias 140 .
- Second conductive plates 120 (shown in FIG. 1 ) are electrically coupled to each other by second conductive vias 145 . Coupling conductive plates 115 , 120 with multiple vias 140 , 145 facilitates reducing the inductance of embedded capacitor 100 and may therefore enable the use of capacitor 100 at frequencies higher than the frequencies at which conventional capacitors are operable.
- First conductive vias 140 are electrically coupled to an electronic component 410 by a first conductor 420
- second conductive vias 145 are electrically coupled to the electronic component 410 by a second conductor 425
- first conductor 420 and second conductor 425 are traces extending across a portion of an internal non-conductive layer or a portion of the external surface of PWB 400 . Such traces may electrically couple any number of electronic components 410 and/or embedded capacitors 100 to each other.
- first embedded capacitor 415 stores an electric charge provided by first conductor 420 and/or second conductor 425 as an electric field between first conductive plates 115 and second conductive plates 120 .
- First embedded capacitor 415 may subsequently discharge an electric charge through first conductor 420 and/or second conductor 425 .
- Embedded capacitors 100 may have any shape suitable for use with the methods described herein.
- first embedded capacitor 415 is rectangular.
- a second embedded capacitor 435 is L-shaped, enabling second embedded capacitor 435 to provide substantially a maximum possible capacitance within an available area outside the portion 405 of PWB allocated to electronic components 410 .
- Embedded capacitors 100 may be created using materials that are similar or identical to the materials used to create PWB 400 . As a result, embedded capacitors 100 may exhibit thermal expansion that is similar or identical to the thermal expansion exhibited by PWB 400 . Accordingly, embedded capacitors 100 facilitate reducing the physical stress applied to first conductor 420 and second conductor 425 as the operating temperature of PWB 400 changes.
- FIG. 5 is a diagram of a cross-section of an alternate PWB 500 with a plurality of embedded capacitors 100 in accordance with one embodiment.
- PWB 500 has a top surface 505 and a bottom surface 510 , with a thickness 150 defined therebetween.
- a first embedded capacitor 515 occupies a planar area 520 within PWB 500 and extends from bottom surface 510 to approximately half the thickness 150 of PWB 500 .
- a second embedded capacitor 525 occupies substantially the same planar area 520 that is occupied by first embedded capacitor 515 .
- Second embedded capacitor 525 extends from top surface 505 approximately half the thickness 150 of PWB 500 but is not in direct contact with first embedded capacitor 515 .
- one or more layers of non-conductive material may separate second embedded capacitor 525 from first embedded capacitor 515 .
- First embedded capacitor 515 may occupy any portion of thickness 150
- second embedded capacitor 525 may extend approximately up to the remainder of thickness 150 .
- first embedded capacitor 515 extends through substantially all of thickness 150 , thereby occupying substantially all of PWB 500 .
- Second capacitor 525 is embedded within a second PWB (not shown) similar to PWB 500 , the conductive vias of first capacitor 515 are electrically coupled to the conductive vias of second capacitor 525 .
- second capacitor 525 may be mounted to top surface 505 of first capacitor 515
- bottom surface 510 of first capacitor 515 may be mounted to a PWB including electronic components, such as PWB 400 (shown in FIG. 4 ).
- Embodiments provided herein facilitate embedding within a PWB one or more multi-plate capacitors with multiple conductive vias. Such capacitors may be mounted to another PWB, and the attributes of such an embedded capacitor may be selected to achieve a desired capacitance. Further, multiple capacitors, each embedded in a PWB, may be stacked and mounted to a PWB that includes electronic components, such as integrated circuits, and the electronic components may be electrically coupled to the embedded capacitors. Accordingly, embodiments described herein enable inexpensively and efficiently packaging capacitors that exhibit low inductance and thermal properties similar to those of the PWBs to which the capacitors are mounted. Embodiments provided herein further facilitate creating a PWB-embedded capacitor of a shape and size that are based on unallocated area within a PWB to which the capacitor is to be mounted.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Production Of Multi-Layered Print Wiring Board (AREA)
- Structures For Mounting Electric Components On Printed Circuit Boards (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
Abstract
Description
Claims (20)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/040,841 US8717773B2 (en) | 2011-03-04 | 2011-03-04 | Multi-plate board embedded capacitor and methods for fabricating the same |
IN544DE2012 IN2012DE00544A (en) | 2011-03-04 | 2012-02-27 | |
JP2012044983A JP2012191203A (en) | 2011-03-04 | 2012-03-01 | Multi-plate board embedded capacitor and methods for fabricating the same |
CA2769923A CA2769923C (en) | 2011-03-04 | 2012-03-01 | Multi-plate board-embedded capacitor and methods for fabricating the same |
CN2012101543665A CN102711374A (en) | 2011-03-04 | 2012-03-02 | Multi-plate board-embedded capacitor and methods for fabricating the same |
AU2012201295A AU2012201295B2 (en) | 2011-03-04 | 2012-03-02 | Multi plate board embedded capacitor and methods for fabricating the same |
EP12158054.2A EP2496059A3 (en) | 2011-03-04 | 2012-03-05 | Multi-plate board-embedded capacitor and methods for fabricating the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/040,841 US8717773B2 (en) | 2011-03-04 | 2011-03-04 | Multi-plate board embedded capacitor and methods for fabricating the same |
Publications (2)
Publication Number | Publication Date |
---|---|
US20120224333A1 US20120224333A1 (en) | 2012-09-06 |
US8717773B2 true US8717773B2 (en) | 2014-05-06 |
Family
ID=45841250
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/040,841 Active 2031-04-26 US8717773B2 (en) | 2011-03-04 | 2011-03-04 | Multi-plate board embedded capacitor and methods for fabricating the same |
Country Status (7)
Country | Link |
---|---|
US (1) | US8717773B2 (en) |
EP (1) | EP2496059A3 (en) |
JP (1) | JP2012191203A (en) |
CN (1) | CN102711374A (en) |
AU (1) | AU2012201295B2 (en) |
CA (1) | CA2769923C (en) |
IN (1) | IN2012DE00544A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8963615B1 (en) | 2013-01-31 | 2015-02-24 | General Electric Company | Automatic bipolar signal switching |
CN113785668A (en) * | 2019-01-18 | 2021-12-10 | 维纳米技术公司 | Integrated printed circuit board and method of manufacturing the same |
US10984957B1 (en) * | 2019-12-03 | 2021-04-20 | International Business Machines Corporation | Printed circuit board embedded capacitor |
CN112435984B (en) * | 2020-11-24 | 2022-09-06 | 复旦大学 | Semiconductor substrate, preparation method and electronic component |
CN113503939A (en) * | 2021-08-23 | 2021-10-15 | 石河子大学 | Non-contact type box material level real-time monitoring system |
Citations (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5103283A (en) * | 1989-01-17 | 1992-04-07 | Hite Larry R | Packaged integrated circuit with in-cavity decoupling capacitors |
US5774326A (en) * | 1995-08-25 | 1998-06-30 | General Electric Company | Multilayer capacitors using amorphous hydrogenated carbon |
US6252760B1 (en) * | 1999-05-26 | 2001-06-26 | Sun Microsystems, Inc. | Discrete silicon capacitor |
US6344951B1 (en) * | 1998-12-14 | 2002-02-05 | Alps Electric Co., Ltd. | Substrate having magnetoresistive elements and monitor element capable of preventing a short circuit |
US6410960B1 (en) * | 1993-05-21 | 2002-06-25 | Semiconductor Energy Laboratory Co., Ltd. | Hybrid integrated circuit component |
US20020085334A1 (en) * | 2000-12-29 | 2002-07-04 | Intel Corporation | Multiple tier array capacitor and methods of fabrication therefor |
US6459561B1 (en) * | 2001-06-12 | 2002-10-01 | Avx Corporation | Low inductance grid array capacitor |
EP1260998A1 (en) | 2000-11-16 | 2002-11-27 | TDK Corporation | Electronic component-use substrate and electronic component |
US20040118602A1 (en) | 2002-12-24 | 2004-06-24 | Samsung Electro-Mechanics Co., Ltd. | Printed circuit board with embedded capacitors and manufacturing method thereof |
US20040184219A1 (en) * | 2003-03-19 | 2004-09-23 | Ngk Spark Plug Co., Ltd. | Assembly of semiconductor device, interposer and substrate |
US20050121224A1 (en) * | 2003-12-05 | 2005-06-09 | Optimum Care International Tech. Inc. | Circuit board having deposit holes |
US6907658B2 (en) * | 2001-06-26 | 2005-06-21 | Intel Corporation | Manufacturing methods for an electronic assembly with vertically connected capacitors |
US6909593B2 (en) * | 1999-10-18 | 2005-06-21 | Murata Manufacturing Co., Ltd. | Multi-layer capacitor, wiring board, and high-frequency circuit |
US6961230B2 (en) * | 2003-06-20 | 2005-11-01 | Ngk Spark Plug Co., Ltd. | Capacitor, capacitor equipped semiconductor device assembly, capacitor equipped circuit substrate assembly and electronic unit including semiconductor device, capacitor and circuit substrate |
EP1695947A1 (en) | 2005-01-26 | 2006-08-30 | E.I.Du pont de nemours and company | Multi-component LTCC substrate with a core of high dielectric constant ceramic material and processes for the development thereof |
US20070121273A1 (en) * | 2005-11-30 | 2007-05-31 | Hiroshi Yamamoto | Built-in capacitor type wiring board and method for manufacturing the same |
US20070234539A1 (en) | 2006-04-05 | 2007-10-11 | Samsung Electro-Mechanics Co., Ltd. | Method for manufacturing capacitor embedded in PCB |
US20070290321A1 (en) | 2006-06-14 | 2007-12-20 | Honeywell International Inc. | Die stack capacitors, assemblies and methods |
US20080157701A1 (en) * | 2006-11-23 | 2008-07-03 | Denso Corporation | Electric discharge lamp control unit with sealing structure |
US20080239685A1 (en) * | 2007-03-27 | 2008-10-02 | Tadahiko Kawabe | Capacitor built-in wiring board |
US20100244585A1 (en) * | 2009-03-26 | 2010-09-30 | General Electric Company | High-temperature capacitors and methods of making the same |
US20110084607A1 (en) * | 2009-10-13 | 2011-04-14 | National Semiconductor Corporation | Integrated driver system architecture for light emitting diodes (LEDS) |
US8125761B2 (en) * | 2008-02-22 | 2012-02-28 | Industrial Technology Research Institute | Capacitor devices with co-coupling electrode planes |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6224685A (en) * | 1985-07-24 | 1987-02-02 | 臼井 一紀 | Capacitor built-in wiring board |
JPH0479203A (en) * | 1990-07-20 | 1992-03-12 | Tdk Corp | Multilayer board with built-in lc resonator |
JPH05205966A (en) * | 1992-01-24 | 1993-08-13 | Murata Mfg Co Ltd | Multilayer capacitor |
JP3651925B2 (en) * | 1994-04-27 | 2005-05-25 | 京セラ株式会社 | Manufacturing method of multilayer capacitor substrate |
JPH0878804A (en) * | 1994-09-07 | 1996-03-22 | Nikon Corp | Wiring substrate |
JP4945842B2 (en) * | 2000-04-05 | 2012-06-06 | イビデン株式会社 | Printed wiring board and printed wiring board manufacturing method |
JP2001237144A (en) * | 2001-01-25 | 2001-08-31 | Matsushita Electric Ind Co Ltd | Laser trimmable capacitor and its manufacturing method |
JP2004235374A (en) * | 2003-01-29 | 2004-08-19 | Kyocera Corp | Capacitor-incorporated substrate and chip type capacitor |
US20070002551A1 (en) * | 2005-07-01 | 2007-01-04 | Hon Hai Precision Industry Co., Ltd. | Printed circuit board assembly |
JP2009032741A (en) * | 2007-07-24 | 2009-02-12 | Nec Saitama Ltd | Circuit board, circuit board device, cellular phone, and board connecting method |
JP2010052970A (en) * | 2008-08-27 | 2010-03-11 | Murata Mfg Co Ltd | Ceramic composition, ceramic green sheet, and ceramic electronic component |
-
2011
- 2011-03-04 US US13/040,841 patent/US8717773B2/en active Active
-
2012
- 2012-02-27 IN IN544DE2012 patent/IN2012DE00544A/en unknown
- 2012-03-01 JP JP2012044983A patent/JP2012191203A/en active Pending
- 2012-03-01 CA CA2769923A patent/CA2769923C/en active Active
- 2012-03-02 AU AU2012201295A patent/AU2012201295B2/en active Active
- 2012-03-02 CN CN2012101543665A patent/CN102711374A/en active Pending
- 2012-03-05 EP EP12158054.2A patent/EP2496059A3/en active Pending
Patent Citations (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5103283A (en) * | 1989-01-17 | 1992-04-07 | Hite Larry R | Packaged integrated circuit with in-cavity decoupling capacitors |
US6410960B1 (en) * | 1993-05-21 | 2002-06-25 | Semiconductor Energy Laboratory Co., Ltd. | Hybrid integrated circuit component |
US5774326A (en) * | 1995-08-25 | 1998-06-30 | General Electric Company | Multilayer capacitors using amorphous hydrogenated carbon |
US6344951B1 (en) * | 1998-12-14 | 2002-02-05 | Alps Electric Co., Ltd. | Substrate having magnetoresistive elements and monitor element capable of preventing a short circuit |
US6252760B1 (en) * | 1999-05-26 | 2001-06-26 | Sun Microsystems, Inc. | Discrete silicon capacitor |
US6909593B2 (en) * | 1999-10-18 | 2005-06-21 | Murata Manufacturing Co., Ltd. | Multi-layer capacitor, wiring board, and high-frequency circuit |
EP1260998A1 (en) | 2000-11-16 | 2002-11-27 | TDK Corporation | Electronic component-use substrate and electronic component |
US20020085334A1 (en) * | 2000-12-29 | 2002-07-04 | Intel Corporation | Multiple tier array capacitor and methods of fabrication therefor |
US6459561B1 (en) * | 2001-06-12 | 2002-10-01 | Avx Corporation | Low inductance grid array capacitor |
US6907658B2 (en) * | 2001-06-26 | 2005-06-21 | Intel Corporation | Manufacturing methods for an electronic assembly with vertically connected capacitors |
US20040118602A1 (en) | 2002-12-24 | 2004-06-24 | Samsung Electro-Mechanics Co., Ltd. | Printed circuit board with embedded capacitors and manufacturing method thereof |
US20040184219A1 (en) * | 2003-03-19 | 2004-09-23 | Ngk Spark Plug Co., Ltd. | Assembly of semiconductor device, interposer and substrate |
US6961230B2 (en) * | 2003-06-20 | 2005-11-01 | Ngk Spark Plug Co., Ltd. | Capacitor, capacitor equipped semiconductor device assembly, capacitor equipped circuit substrate assembly and electronic unit including semiconductor device, capacitor and circuit substrate |
US20050121224A1 (en) * | 2003-12-05 | 2005-06-09 | Optimum Care International Tech. Inc. | Circuit board having deposit holes |
EP1695947A1 (en) | 2005-01-26 | 2006-08-30 | E.I.Du pont de nemours and company | Multi-component LTCC substrate with a core of high dielectric constant ceramic material and processes for the development thereof |
US20070121273A1 (en) * | 2005-11-30 | 2007-05-31 | Hiroshi Yamamoto | Built-in capacitor type wiring board and method for manufacturing the same |
US20070234539A1 (en) | 2006-04-05 | 2007-10-11 | Samsung Electro-Mechanics Co., Ltd. | Method for manufacturing capacitor embedded in PCB |
US20070290321A1 (en) | 2006-06-14 | 2007-12-20 | Honeywell International Inc. | Die stack capacitors, assemblies and methods |
US20080157701A1 (en) * | 2006-11-23 | 2008-07-03 | Denso Corporation | Electric discharge lamp control unit with sealing structure |
US20080239685A1 (en) * | 2007-03-27 | 2008-10-02 | Tadahiko Kawabe | Capacitor built-in wiring board |
US8125761B2 (en) * | 2008-02-22 | 2012-02-28 | Industrial Technology Research Institute | Capacitor devices with co-coupling electrode planes |
US20100244585A1 (en) * | 2009-03-26 | 2010-09-30 | General Electric Company | High-temperature capacitors and methods of making the same |
US20110084607A1 (en) * | 2009-10-13 | 2011-04-14 | National Semiconductor Corporation | Integrated driver system architecture for light emitting diodes (LEDS) |
Non-Patent Citations (1)
Title |
---|
European Search Report dated Sep. 5, 2013. |
Also Published As
Publication number | Publication date |
---|---|
AU2012201295B2 (en) | 2015-05-14 |
CA2769923C (en) | 2020-01-07 |
JP2012191203A (en) | 2012-10-04 |
CA2769923A1 (en) | 2012-09-04 |
US20120224333A1 (en) | 2012-09-06 |
CN102711374A (en) | 2012-10-03 |
IN2012DE00544A (en) | 2015-06-05 |
EP2496059A2 (en) | 2012-09-05 |
AU2012201295A1 (en) | 2012-09-20 |
EP2496059A3 (en) | 2013-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008258619A (en) | Wiring structure of laminated capacitor | |
CA2769923C (en) | Multi-plate board-embedded capacitor and methods for fabricating the same | |
US9281126B2 (en) | Multilayer ceramic capacitor and board for mounting the same | |
CN107665770A (en) | Multi-layer capacitor and the plate with multi-layer capacitor | |
JP6280244B2 (en) | Embedded package substrate capacitor with configurable / controllable equivalent series resistance | |
US7791896B1 (en) | Providing an embedded capacitor in a circuit board | |
US9773725B2 (en) | Coreless multi-layer circuit substrate with minimized pad capacitance | |
US9635752B2 (en) | Printed circuit board and electronic device | |
JP4933318B2 (en) | Printed circuit board assembly and inverter using the printed circuit board assembly | |
JP4854345B2 (en) | Capacitor sheet and electronic circuit board | |
KR100769536B1 (en) | Embedded capacitor device having a common coupling area | |
US20150201496A1 (en) | Radio module and relevant manufacturing method | |
CN106879168A (en) | A kind of printed circuit board (PCB), PCBA board and electronic equipment | |
US7733627B2 (en) | Structure of embedded capacitor | |
EP2670212B1 (en) | A half bridge induction heating generator and a capacitor assembly for a half bridge induction heating generator | |
CN202269094U (en) | Printed circuit board module group and electronic equipment | |
JP5882001B2 (en) | Printed wiring board | |
JP5464110B2 (en) | Voltage conversion module | |
KR20060115284A (en) | Multilayer pcb and the manufacturing method thereof | |
CN218041898U (en) | Anti-static printed circuit board and battery charging equipment | |
JP2007242879A (en) | Subunit substrate | |
JP2020013925A (en) | Circuit board and semiconductor module | |
JP2017212431A (en) | Capacitor and circuit board including the same | |
JP2010278602A (en) | Laminated dielectric filter | |
JP2003060326A (en) | Terminal structure of high-frequency electronic equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: GENERAL ELECTRIC COMPANY, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ABAWI, DANIEL Z.;REEL/FRAME:025904/0193 Effective date: 20110304 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551) Year of fee payment: 4 |
|
AS | Assignment |
Owner name: BAKER HUGHES, A GE COMPANY, LLC, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GENERAL ELECTRIC COMPANY;REEL/FRAME:051698/0346 Effective date: 20170703 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
AS | Assignment |
Owner name: BAKER HUGHES, A GE COMPANY, LLC, TEXAS Free format text: CHANGE OF NAME;ASSIGNOR:BAKER HUGHES, A GE COMPANY, LLC;REEL/FRAME:062748/0526 Effective date: 20200413 |