US8629072B2 - Boron-free glass - Google Patents

Boron-free glass Download PDF

Info

Publication number
US8629072B2
US8629072B2 US12/911,382 US91138210A US8629072B2 US 8629072 B2 US8629072 B2 US 8629072B2 US 91138210 A US91138210 A US 91138210A US 8629072 B2 US8629072 B2 US 8629072B2
Authority
US
United States
Prior art keywords
weight
glass
class
resistance
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US12/911,382
Other languages
English (en)
Other versions
US20110098172A1 (en
Inventor
Peter Brix
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schott AG
Original Assignee
Schott AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43825244&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US8629072(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Schott AG filed Critical Schott AG
Assigned to SCHOTT AG reassignment SCHOTT AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BRIX, PETER
Publication of US20110098172A1 publication Critical patent/US20110098172A1/en
Application granted granted Critical
Publication of US8629072B2 publication Critical patent/US8629072B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
    • C03C3/112Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/20Compositions for glass with special properties for chemical resistant glass

Definitions

  • the invention relates to a boron-free glass, preferably a neutral glass, which can be melted without the addition of boron-containing raw materials.
  • neutral glass is understood to mean glasses with very good hydrolytic resistance and very good acid resistance. Since these glasses thus have a “neutral” action, in that they scarcely impart glass constituents to the solutions, they can be used inter alia as primary packaging material in the pharmaceutical industry, in particular for injection solutions.
  • Table 1 summarizes the classifications of glasses with respect to the chemical resistance to water, acids and alkalis in accordance with the various standards.
  • the known commercially available neutral glasses e.g. SCHOTT FIOLAX® 8412 and 8414 or SCHOTT DURAN® 8330 from Schott AG, Mainz, are classified in the group of borosilicate glasses, since they contain, more than 8% B 2 O 3 . These are glasses in hydrolytic class 1 and acid class 1 and in alkali class 2, referred to here for short as “1-1-2 glass”.
  • the raw material disodium tetraborate pentahydrate amounts to approximately half the total costs for raw materials.
  • the costs for the B 2 O 3 glass component from the raw material boron oxide are seven times higher than the costs for B 2 O 3 from the raw material disodium tetraborate pentahydrate.
  • the EU European Union
  • boric acid diboron trioxide
  • disodium tetraborate anhydrite disodium tetraborate decahydrate
  • disodium tetraborate pentahydrate as reprotoxic.
  • boron-free glasses are of interest as an alternative to the borosilicate glasses.
  • the glass it has to be possible for the glass to be produced in conventional melting units, i.e. the viscosity of the melt cannot be excessively high—the working point (temperature at which the viscosity is 10 4 dPas, also referred to as VA or T4) should by no means exceed the maximum value of 1320° C.
  • the working point temperature at which the viscosity is 10 4 dPas, also referred to as VA or T4
  • T4 should be as low as possible.
  • thermal expansion in the range of 20° C. to 300° C. is not especially important for use as primary pharmaceutical packaging material, a value of approximately 5.0 ⁇ 10 ⁇ 6 K ⁇ 1 should nevertheless be targeted, in order to set a resistance to thermal shocks comparable to that of the known neutral glasses such as SCHOTT FIOLAX® 8412.
  • glasses having this thermal expansion can also be used as so-called sealing glasses in electrical engineering, since some metals and alloys likewise lie in this expansion range and therefore stable glass/metal composites, e.g. leadthroughs, are possible.
  • Fe—Ni—Co alloys, such as VACON® having a coefficient of thermal expansion a in the range of 20° C. to 300° C.
  • glasses having a coefficient of expansion ⁇ 20/300 of between 5 and 6 ⁇ 10 ⁇ 6 K ⁇ 1 are required as sealing glasses for glass/metal seals.
  • WO 96/39362 discloses a glass for boron-free glass fibers, comprising 59 to 62% by weight SiO 2 , 20 to 24% by weight CaO, 12 to 15% by weight Al 2 O 3 , 1 to 4% by weight MgO, 0 to 0.5% by weight F 2 , 0.1 to 2% by weight Na 2 O, 0 to 0.9% by weight TiO 2 , 0 to 0.5% by weight Fe 2 O 3 , 0 to 2% by weight K 2 O and 0 to 0.5% by weight SO 3 .
  • a glass of this type is suitable for the production of continuous glass fibers, it does not satisfy the demands imposed on a neutral glass.
  • U.S. Pat. No. 5,508,237 discloses a flat glass display comprising an aluminosilicate glass which exhibits a weight loss of less than 2.5 mg/cm 2 after immersion for 24 hours in an aqueous 5% strength HCl solution at 95° C.
  • the glass contains 49 to 67% by weight SiO 2 and at least 6% by weight Al 2 O 3 , where Al 2 O 3 is 6 to 14% by weight in conjunction with 55 to 67% by weight SiO 2 and is 6 to 23% by weight in conjunction with 49 to 58% by weight SiO 2 .
  • the total content of SiO 2 and Al 2 O 3 is greater than 68%.
  • the glass further contains 0 to less than 8% by weight B 2 O 3 and at least one alkaline earth metal oxide, specifically 0 to 21% by weight BaO, 0 to 15% by weight SrO, 0 to 7.1% by weight CaO, 0 to 8% by weight MgO, where the total content of BaO+CaO+SrO+MgO is 12 to 30% by weight.
  • the glass firstly does not have a sufficient acid resistance and secondly contains at least strontium oxide or barium oxide and possibly also boron oxide. It is therefore not suitable as boron-free neutral glass.
  • DE 10 2004 036 523 A1 discloses a glass substrate for a display which consists of a glass comprising 40 to 70% by weight SiO 2 , 2 to 25% by weight Al 2 O 3 , 0 to 20% by weight B 2 O 3 , 0 to 10% by weight MgO, 0 to 15% by weight CaO, 0 to 10% by weight SrO, 0 to 30% by weight BaO, 0 to 10% by weight ZnO, 0 to 25% by weight R 2 O (Li 2 O, Na 2 O, K 2 O), 0.4% by weight As 2 O 3 , 0 to 3% by weight Sb 2 O 3 and 0.01 to 1% by weight SnO 2 .
  • the glass is intended to be suitable for the production of flat glass using the downdraw method.
  • the SiO 2 content is preferably 57 to 64% by weight.
  • the glass has to have a sufficient flowability, and for this reason preferably 5 to 15% by weight B 2 O 3 , particularly preferably 7.5 to 11% by weight B 2 O 3 , are added.
  • the glass preferably further contains strontium oxide and barium oxide.
  • a glass of this type is therefore not suitable as boron-free neutral glass which, in addition to a high acid resistance, also has to have a high hydrolytic resistance and alkali resistance.
  • U.S. Pat. No. 5,854,153 discloses a glass substrate for an electronic display, wherein the glass contains 42 to 62% by weight SiO 2 , 16.5 to 28% by weight Al 2 O 3 , 0 to 4% by weight B 2 O 3 , 3 to 10% by weight Na 2 O, 1 to 11% by weight K 2 O, 0 to 6% by weight MgO, 9.5 to 24% by weight CaO, 0.2 to 8% by weight SrO, 0 to 16% by weight BaO and 0 to 4% by weight ZrO 2 and has a total alkali metal content of 4 to 16% by weight.
  • a glass of this type does not have a sufficient chemical resistance.
  • EP 1 074 521 A2 discloses a boron-free glass composition for a filter medium, comprising 62 to 68 mol % SiO 2 , 2 to 6 mol % Al 2 O 3 , 10 to 16 mol % Na 2 O, 0 to 6 mol % K 2 O, 0 to 6 mol % Li 2 O, 3 to 10 mol % CaO, 0 to 8 mol % MgO, 0 to 3 mol % BaO, 2 to 6 mol % ZnO, 0 to 2 mol % TiO 2 and 0 to 2 mol % F 2 , where the total alkali metal content is less than 18 mol %.
  • the glass is particularly suitable for the production of HEPA clean-room filters which consist of glass fibers.
  • the glass has to have a relatively good acid resistance, although special emphasis is not placed on the hydrolytic resistance and the alkali resistance.
  • the known glass has an excessively low aluminium oxide content and an excessively high alkali metal content to be suitable as boron-free neutral glass.
  • WO 2008/143999 A1 discloses an alkali metal aluminosilicate glass comprising 64 to 68 mol % SiO 2 , 12 to 16 mol % Na 2 O, 8 to 12 mol % Al 2 O 3 , 0 to 3 mol % B 2 O 3 , 2 to 5 mol % K 2 O, 4 to 6 mol % MgO and 0 to 5 mol % CaO.
  • the total content of SiO 2 +B 2 O 3 +CaO is between 66 and 69 mol % and the total content of Na 2 O+K 2 O+B 2 O 3 +MgO+CaO+SrO is greater than 10 mol %.
  • the total content of MgO+CaO+SrO is between 5 and 8 mol %.
  • the difference resulting from the total content of Na 2 O+B 2 O 3 less the Al 2 O 3 content should be greater than 2 mol %, and the difference of Na 2 O ⁇ Al 2 O 3 should be between 2 and 6 mol %.
  • the difference resulting from the total content of Na 2 O+K 2 O less the Al 2 O 3 content should be between 4 and 10 mol %.
  • the glass has an excessively high content of sodium oxide and potassium oxide to be suitable as neutral glass.
  • a first object of the invention is to disclose a glass which is free of boron oxide, has a sufficient chemical resistance, such that it is ideally suitable as neutral glass.
  • the object of the invention is further achieved by a glass containing at least the following constituents (in % by weight, based on oxide):
  • unavoidable impurity is understood to mean an impurity as can arise unavoidably as a result of impure raw materials. Depending on the purity of the raw materials used, this is understood to mean an impurity of at most 1% by weight, in particular of at most 0.5% by weight and further particularly preferably 0.1% by weight.
  • the glasses according to the invention are boron-free, strontium-free and barium-free and have a high chemical resistance.
  • the hydrolytic resistance is in class 1, whereas the alkali resistance and the acid resistance are in class 1 or 2.
  • the glasses according to the invention preferably have a working point T4 (temperature at which the glass melt has a viscosity of 10 4 dPas) of less than 1320° C., further preferably of less than 1300° C., particularly preferably of less than 1260° C.
  • T4 temperature at which the glass melt has a viscosity of 10 4 dPas
  • the glasses according to the invention are distinguished by a good streak and bubble quality and a high devitrification stability.
  • the glasses according to the invention can be produced at a much lower cost than known neutral glasses based on borosilicate glasses.
  • the coefficient of thermal expansion ⁇ 20/300 is in the preferred range of about 5 ⁇ 10 ⁇ 6 K ⁇ 1 .
  • the glasses according to the invention have a minimum SiO 2 content of 65% by weight, which is a prerequisite for a high acid resistance. If the maximum content of 72% by weight is exceeded, the working point rises to values above 1320° C., and the melt would thus be too tough to be producible economically in conventional melting units.
  • Aluminium oxide has a stabilizing effect and increases the chemical resistance by virtue of the fact that alkali metal and alkaline earth metal ions are incorporated permanently in the glass structure.
  • the glass according to the invention has an aluminium oxide content of 11 to 17% by weight, preferably of 14 to 17% by weight, further preferably of 15 to 17% by weight.
  • the tendency towards crystallization and the evaporation of gas components would accordingly increase at the high melting temperatures in the tank furnace.
  • the disadvantageous effect of excessively high contents would be an increase in the processing and melting temperatures.
  • alkali metal oxides results in lower melting temperatures but also in an increase in the coefficient of thermal expansion, and therefore only relatively small amounts are used.
  • the Na 2 O content is preferably 0.5 to 8% by weight, further preferably 1 to 8% by weight, further preferably 2 to 8% by weight, particularly preferably 2 to 6% by weight.
  • the glasses according to the invention can contain 0 to 2% by weight, preferably 0.1 to 2% by weight, Li 2 O.
  • Na 2 O As an alternative or in addition to Na 2 O, it is also possible in principle to use the other two alkali metal oxides Li 2 O and K 2 O, although Na 2 O is preferred for reasons of cost. In addition, K 2 O-containing melts sometimes lead to increased corrosion of the tank blocks. Finally, all naturally occurring potassium-containing raw materials contain the radioactive isotope 40 K, which is undesirable for some electrotechnical applications.
  • the K 2 O content is restricted to 0 to 2% by weight, if no Na 2 O is used, preferably to 0.1 to 2% by weight.
  • the glasses In order to increase the thermal expansion and reduce the viscosity of the melt (so-called flux), the glasses contain the two alkaline earth metal oxides MgO and CaO. Glasses which are particularly chemically resistant and stable against devitrification are obtained if the ratio of CaO to MgO (based on % by weight) is between 1.4 and 1.8. Expressed in molar fractions, the ratio of CaO to MgO should be 1.0 to 1.6. If the (weight) ratio CaO/MgO is greater than 1.4, it is possible to use the inexpensive raw materials dolomite and limestone, without it being necessary to additionally use the expensive raw material MgCO 3 (or even more expensive magnesium-containing raw materials). Since MgO reduces T4 much more effectively than CaO, the ratio CaO/MgO should not exceed the value of 1.8.
  • the CaO content is preferably 7.1 to 12% by weight, further preferably 8 to 12% by weight, particularly preferably 8 to 11% by weight.
  • the alkaline earth metal oxides SrO and BaO are preferably not added, since these components are not entirely toxicologically harmless and, particularly when the glass is used as primary pharmaceutical packaging material, cloudy precipitations can occur with solutions of some specific, usually sulphur-containing, active substances (sulphates, sulphones and the like).
  • Lead oxide PbO is preferably not used for toxicological reasons.
  • the ZnO content can preferably be 3 to 4% by weight. Further preferred ranges are 4 to 10% by weight and 6 to 10% by weight.
  • ZnO acts as a flux.
  • a disadvantage associated with the use of this component is the tendency towards evaporation with subsequent condensation of the evaporation products, which, particularly in the float method, can lead to undesirable glass defects on the surface of the glass particles.
  • the glasses according to the invention can further contain 0 to 10% by weight, preferably 1 to 10% by weight, TiO 2 .
  • TiO 2 can improve the hydrolytic resistance of the glasses and always bring about increased absorption of UV radiation. However, this component also results in increased batch prices and is undesirable as a glass component in some applications. In addition, the formation of a brown colour is often observed, and this has a disruptive effect for some applications. This colouring becomes more and more pronounced as the amount of iron oxide entrained in the glass via the raw materials or the reuse of cullet increases. Depending on the application, titanium oxide is not used at all.
  • the glasses according to the invention can further contain 0.0 to 10% by weight, if appropriate 1 to 10% by weight, ZrO 2 .
  • zirconium oxide greatly improves the alkali resistance of the glasses, although this is not of particularly great relevance for most applications. It is also possible not to use zirconium oxide at all, since its use increases the batch costs, impairs the melting behaviour of the batch particularly in compositions containing small amounts of alkali metals and increases the viscosity of the melt, and it is undesirable as a heavy metal in some applications.
  • the glasses according to the invention can contain 0.01 to 2% by weight, preferably 0.1 to 1.5% by weight, refining agents for large-scale production.
  • chlorides or fluorides as refining agent tends to impair the acid resistance of the glass.
  • chlorides in neutral glasses can have the effect that chloride evaporates upon each heating operation and then condenses on the glass products.
  • fluorides reduces the working point T4
  • this also slightly impairs the acid resistance. Evaporation and condensation phenomena can also appear as a result of the addition of chloride.
  • the stability of the tank furnace can be impaired by fluoride additions.
  • the amount of chloride and fluoride added as refining agent is restricted to at most 1.5% by weight chloride or fluoride.
  • the glasses according to the invention are suitable as boron-free neutral glasses, which can completely replace conventional boron-containing neutral glasses.
  • Preferred uses of the glasses according to the invention are:
  • Table 2 summarizes the composition in % by weight of various glasses according to the invention as Examples B1 to B3.
  • the glasses B4, B5 have a similar composition, but are no longer in acid class 1.
  • ⁇ 20/300 in 10 ⁇ 6 /K the glass transformation temperature Tg in ° C.
  • the softening point T7.6 in ° C. the working point T4 in ° C.
  • the hydrolytic resistance H is given as base-equivalent acid consumption in mg Na 2 O/g glass grit
  • the acid resistance of the material removal value S after acid attack is given in mg/dm 2
  • the alkali resistance L in the form of the material removal value upon alkali attack is given in mg/dm 2 .
  • Table 3 shows the glass compositions of glasses B1 to B5 in mol %.
  • the glasses were melted by melting conventional raw materials in an inductively heated Pt/Rh crucible (Pt20Rh) at 1650° C. The melting operation lasted for three to four hours. For homogenization, the melt was then stirred for one hour at 1600° C. and then left to stand at this temperature for two hours without stirring, in order to allow any bubbles present to rise to the surface. The melt was cooled at a defined cooling rate of 30 K/h.
  • the glass B1 was melted for thirty minutes at 1500° C. and heat-conditioned for five hours in a gradient furnace. No defined devitrification was observed in the temperature range of 1150° C. to 1423° C.
  • the glasses B1, B2, B3 and B5 all have a hydrolytic resistance in class 1.
  • the acid resistance of the glasses B1 to B3 is also in class 1, as is the alkali resistance.
  • the glasses B2, B3 have a relatively high working point, and this makes it harder to produce these glasses economically.
  • the glass B5 corresponds to the glass B1, although in the case of B5 1% Na 2 O was introduced as refining agent in the form of sodium chloride, NaCl. B5 and B1 have a similarly good bubble quality, so far as this can be perceived when the glass is produced as laboratory glass.
  • the glass B4 shows that the addition of fluorides makes it possible to lower both the softening point T7.6 and the working point T4.
  • the acid resistance is impaired slightly, and is already in acid resistance class 2.
  • fluorides similarly to the use of chlorides, can lead to evaporation and condensation phenomena owing to the high volatility during hot moulding and may possibly reduce the stability of the tank furnace. Owing to the action of aqueous or other solutions, fluorides can also be transferred from the glass into the liquid, where they bring about undesirable reactions with the ingredients.
  • the fluoride content should therefore be kept as low as possible and the upper limit of 1.5% by weight should not be exceeded.
  • Table 4 shows V1 to V4 as comparative examples, which have compositions known in the literature and have been melted on a laboratory scale.
  • V1 is taken from Salama S. N., Salman S. M. and Gharid S., J. Non-Cryst. Solids, 1987, Vol. 93, No. 1, page 203.
  • V2 is taken from Zdaniewski W., J. Am. Ceram. Soc., 1975, Vol. 58, No. 5-6, page 163.
  • V3 is Example 2 from U.S. Pat. No. 5,508,237.
  • V4 is Example 6 from U.S. Pat. No. 5,508,237.
  • the glasses were melted by melting conventional raw materials in an inductively heated Pt/Rh crucible (Pt20Rh) at 1650° C. The melting operation lasted for three to four hours. For homogenization, the melt was then stirred for one hour at 1600° C. and then left to stand at this temperature for two hours without stirring, in order to allow any bubbles present to rise to the surface. The melt was cooled at a defined cooling rate of 30 K/h. The other properties are given in the same units as in Table 2.
  • V1 and V2 are very stable against attack by water but are a far cry from the aim of acid class 1 (weight loss up to 0.7 mg/dm 2 ) or of acid class 2 (weight loss up to 1.5 mg/dm 2 ).
  • the melt of V3 was very tough, and for this reason no suitable glass block could be cast.
  • V4 is a glass which is free of boron oxide and has a hydrolytic and acid resistance in class 1 and an alkali resistance in class 2.
  • the working point T4 at above 1320° C., is too high for economic production in commercial melting units.
  • high SrO and BaO contents are undesirable for neutral glasses, since there is the risk of precipitations with sulphur-containing medicaments (sulphones, sulphates and the like).
  • Table 5 shows further Comparative Examples G1 to G17 of aluminosilicate glasses, with the composition in % by weight.
  • Some of these glasses contain relatively large proportions of TiO 2 and/or ZrO 2 because these are known to have a positive effect on the glass resistance of other glasses.
  • the examples show that hydrolytically stable glasses can be obtained in this way, in particular if the component TiO 2 is present in relatively large proportions. It is also possible to obtain glasses having an alkali resistance in class 1, particularly if the component ZrO 2 is present in relatively large proportions.
  • the glasses with these components irrespective of whether they are present individually or together, do not reach the required acid class 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
US12/911,382 2009-10-28 2010-10-25 Boron-free glass Active 2031-04-08 US8629072B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102009051852A DE102009051852B4 (de) 2009-10-28 2009-10-28 Borfreies Glas und dessen Verwendung
DE102009051852.5 2009-10-28
DE102009051852 2009-10-28

Publications (2)

Publication Number Publication Date
US20110098172A1 US20110098172A1 (en) 2011-04-28
US8629072B2 true US8629072B2 (en) 2014-01-14

Family

ID=43825244

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/911,382 Active 2031-04-08 US8629072B2 (en) 2009-10-28 2010-10-25 Boron-free glass

Country Status (7)

Country Link
US (1) US8629072B2 (ja)
EP (1) EP2338847B1 (ja)
JP (1) JP5336455B2 (ja)
KR (1) KR101343767B1 (ja)
CN (1) CN102050572B (ja)
DE (1) DE102009051852B4 (ja)
TW (1) TWI448443B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140005027A1 (en) * 2010-12-08 2014-01-02 Schott Ag Boron-free universal glass
US10077208B2 (en) 2014-03-13 2018-09-18 Corning Incorporated Glass article and method for forming the same

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8598056B2 (en) 2010-10-06 2013-12-03 Corning Incorporated Alkali-free glass compositions having high thermal and chemical stability
US10350139B2 (en) 2011-10-25 2019-07-16 Corning Incorporated Pharmaceutical glass packaging assuring pharmaceutical sterility
BR112014009921B1 (pt) 2011-10-25 2020-12-29 Corning Incorporated composições de vidro com uma melhor durabilidade química e mecânica
US9850162B2 (en) 2012-02-29 2017-12-26 Corning Incorporated Glass packaging ensuring container integrity
WO2013063292A1 (en) 2011-10-25 2013-05-02 Corning Incorporated Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients
RU2691186C2 (ru) 2011-10-25 2019-06-11 Корнинг Инкорпорейтед Щелочноземельные алюмосиликатные стеклянные композиции с улучшенной химической и механической стойкостью
US9517966B2 (en) 2011-10-25 2016-12-13 Corning Incorporated Glass compositions with improved chemical and mechanical durability
US11497681B2 (en) 2012-02-28 2022-11-15 Corning Incorporated Glass articles with low-friction coatings
US10737973B2 (en) 2012-02-28 2020-08-11 Corning Incorporated Pharmaceutical glass coating for achieving particle reduction
MX2014010334A (es) 2012-02-28 2014-09-22 Corning Inc Articulos de vidrio con revestimientos de baja friccion.
US11179295B2 (en) 2012-02-29 2021-11-23 Corning Incorporated Glass packaging ensuring container integrity
FR2988465B1 (fr) * 2012-03-20 2014-03-14 Eurokera Porte de four
US10273048B2 (en) 2012-06-07 2019-04-30 Corning Incorporated Delamination resistant glass containers with heat-tolerant coatings
WO2013185018A1 (en) * 2012-06-07 2013-12-12 Corning Incorporated Delamination resistant glass containers
US9034442B2 (en) 2012-11-30 2015-05-19 Corning Incorporated Strengthened borosilicate glass containers with improved damage tolerance
JP2014037343A (ja) 2012-07-18 2014-02-27 Nippon Electric Glass Co Ltd 医薬品容器用ガラス及びこれを用いたガラス管
US10117806B2 (en) * 2012-11-30 2018-11-06 Corning Incorporated Strengthened glass containers resistant to delamination and damage
US9707154B2 (en) 2013-04-24 2017-07-18 Corning Incorporated Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients
US9700485B2 (en) 2013-04-24 2017-07-11 Corning Incorporated Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients
US9603775B2 (en) 2013-04-24 2017-03-28 Corning Incorporated Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients
US9839579B2 (en) 2013-04-24 2017-12-12 Corning Incorporated Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients
US9717649B2 (en) 2013-04-24 2017-08-01 Corning Incorporated Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients
US9717648B2 (en) 2013-04-24 2017-08-01 Corning Incorporated Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients
US9707153B2 (en) 2013-04-24 2017-07-18 Corning Incorporated Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients
US9713572B2 (en) 2013-04-24 2017-07-25 Corning Incorporated Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients
US9707155B2 (en) 2013-04-24 2017-07-18 Corning Incorporated Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients
US9849066B2 (en) 2013-04-24 2017-12-26 Corning Incorporated Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients
US9700486B2 (en) 2013-04-24 2017-07-11 Corning Incorporated Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients
KR101615525B1 (ko) * 2013-05-08 2016-04-26 코닝정밀소재 주식회사 유기발광소자용 광추출 기판, 그 제조방법 및 이를 포함하는 유기발광소자
JP6455799B2 (ja) * 2013-06-06 2019-01-23 日本電気硝子株式会社 医薬品容器用ガラス管及び医薬品容器
CN106458707B (zh) * 2014-05-21 2019-12-06 Agc株式会社 无碱浮法平板玻璃及无碱浮法平板玻璃的制造方法
CA2959666C (en) 2014-09-05 2021-03-16 Corning Incorporated Glass articles and methods for improving the reliability of glass articles
EP3206998B1 (en) 2014-11-26 2021-09-08 Corning Incorporated Methods for producing strengthened and durable glass containers
JP6627779B2 (ja) * 2014-12-10 2020-01-08 日本電気硝子株式会社 医薬品容器用ガラス及び医薬容器用ガラス管
DE102015113558A1 (de) * 2015-08-17 2017-02-23 Schott Ag Lichtleiterplatte und optische Anzeige mit Hinterleuchtung
DE102015116097B4 (de) 2015-09-23 2017-09-21 Schott Ag Chemisch beständiges Glas und dessen Verwendung
EP3150564B1 (en) 2015-09-30 2018-12-05 Corning Incorporated Halogenated polyimide siloxane chemical compositions and glass articles with halogenated polylmide siloxane low-friction coatings
DE102016101090A1 (de) 2015-11-26 2017-06-01 Schott Ag Thermisch vorgespanntes Glaselement und seine Verwendungen
CN106495494A (zh) * 2016-10-20 2017-03-15 广西大学 一种手机屏幕及其制备方法
DE102017203997B3 (de) * 2017-03-10 2018-07-26 Schott Ag Verfahren zur Herstellung von Rohren aus alkalireichen, bariumfreien Aluminosilicatgläsern, alkalireiches BaO-freies Aluminosilicatglasrohr und seine Verwendung
CN107935385A (zh) * 2017-11-30 2018-04-20 滕州市耀海玻雕有限公司 一种隔热型复合防火玻璃及其制备方法
DE102018116460A1 (de) * 2018-07-06 2020-01-09 Schott Ag Hoch beständige und chemisch vorspannbare Gläser
DE102018133413A1 (de) * 2018-12-21 2020-06-25 Schott Ag Chemisch beständige, Bor- und Alkali-freie Gläser
WO2020138063A1 (ja) * 2018-12-27 2020-07-02 日本電気硝子株式会社 医薬品容器用ガラス、これを用いた医薬品容器用ガラス管及び医薬品容器
CA3130390A1 (en) * 2019-03-15 2020-09-24 Nadja Teresia Lonnroth Chemically durable aluminosilicate glass compositions and glass articles formed therefrom
CN112250306B (zh) * 2020-10-22 2022-07-19 淄博宝特化工科技有限公司 一种高温高压耐酸碱瓷釉及其制备方法

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU631471A1 (ru) 1977-04-15 1978-11-05 Белорусский Ордена Трудового Красного Знамени Политехнический Институт Стекло
US4403043A (en) * 1981-08-31 1983-09-06 Hoya Corporation Glass for photoetching mask
JPH0397640A (ja) 1989-06-21 1991-04-23 Ceramiques & Composites 強化されたガラス状マトリックスを有する複合材料及びその製造方法
JPH05163034A (ja) 1991-12-12 1993-06-29 Nippon Electric Glass Co Ltd 模様入り結晶化ガラスの製造方法
US5508237A (en) 1994-03-14 1996-04-16 Corning Incorporated Flat panel display
WO1996039362A1 (en) 1995-06-06 1996-12-12 Owens Corning Boron-free glass fibers
US5902665A (en) * 1996-08-30 1999-05-11 Onda Techno Glass substrate for magnetic disks
JPH11240733A (ja) 1998-02-27 1999-09-07 Asahi Glass Co Ltd 基板用のガラス組成物
US6087282A (en) * 1998-07-10 2000-07-11 Jeneric/Pentron Incorporated Non-greening porcelain compositions
EP1074521A2 (en) 1999-08-03 2001-02-07 Johns Manville Corporation Boron-free glass composition and filtration media
US6313052B1 (en) * 1998-02-27 2001-11-06 Asahi Glass Company Ltd. Glass for a substrate
US6335300B1 (en) * 1998-03-02 2002-01-01 Saint-Gobain Glass France Glass sheet designed to be heat tempered
US20050026767A1 (en) 2003-07-29 2005-02-03 Hironori Takase Glass substrate for display and manufacturing method thereof
US20050250639A1 (en) 2004-05-07 2005-11-10 Friedrich Siebers Lithium-aluminosilicate flat float glass
US7273668B2 (en) * 2003-06-06 2007-09-25 Hoya Corporation Glass composition including zirconium, chemically strengthened glass article, glass substrate for magnetic recording media, and method of producing glass sheet
WO2008143999A1 (en) 2007-05-18 2008-11-27 Corning Incorporated Down-drawable, chemically strengthened glass for cover plate
DE102007036774A1 (de) 2007-08-03 2009-02-05 S.D.R. Biotec Verfahrenstechnik Gmbh Thermischbeständige Glasfasern
US20090103040A1 (en) 2006-06-30 2009-04-23 Asahi Glass Company, Limited Liquid crystal display panel

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5854153A (en) 1997-01-09 1998-12-29 Corning Incorporated Glasses for display panels

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU631471A1 (ru) 1977-04-15 1978-11-05 Белорусский Ордена Трудового Красного Знамени Политехнический Институт Стекло
US4403043A (en) * 1981-08-31 1983-09-06 Hoya Corporation Glass for photoetching mask
JPH0397640A (ja) 1989-06-21 1991-04-23 Ceramiques & Composites 強化されたガラス状マトリックスを有する複合材料及びその製造方法
US5221645A (en) 1989-06-21 1993-06-22 Ceramiques Et Composites Composite shaped articles comprising reinforced vitreous matrices
JPH05163034A (ja) 1991-12-12 1993-06-29 Nippon Electric Glass Co Ltd 模様入り結晶化ガラスの製造方法
US5508237A (en) 1994-03-14 1996-04-16 Corning Incorporated Flat panel display
WO1996039362A1 (en) 1995-06-06 1996-12-12 Owens Corning Boron-free glass fibers
US5902665A (en) * 1996-08-30 1999-05-11 Onda Techno Glass substrate for magnetic disks
US6313052B1 (en) * 1998-02-27 2001-11-06 Asahi Glass Company Ltd. Glass for a substrate
JPH11240733A (ja) 1998-02-27 1999-09-07 Asahi Glass Co Ltd 基板用のガラス組成物
US7153798B2 (en) * 1998-03-02 2006-12-26 Saint-Gobain Glass France Glass sheet designed to be heat tempered
US6335300B1 (en) * 1998-03-02 2002-01-01 Saint-Gobain Glass France Glass sheet designed to be heat tempered
US6087282A (en) * 1998-07-10 2000-07-11 Jeneric/Pentron Incorporated Non-greening porcelain compositions
EP1074521A2 (en) 1999-08-03 2001-02-07 Johns Manville Corporation Boron-free glass composition and filtration media
US6277777B1 (en) 1999-08-03 2001-08-21 Johns Manville International, Inc. Boron-free glass composition and filtration media
US7273668B2 (en) * 2003-06-06 2007-09-25 Hoya Corporation Glass composition including zirconium, chemically strengthened glass article, glass substrate for magnetic recording media, and method of producing glass sheet
US20050026767A1 (en) 2003-07-29 2005-02-03 Hironori Takase Glass substrate for display and manufacturing method thereof
DE102004036523A1 (de) 2003-07-29 2005-03-31 Nippon Electric Glass Co., Ltd., Otsu Glassubstrat für ein Display und dessen Herstellungsverfahren
JP2005320234A (ja) 2004-05-07 2005-11-17 Schott Ag 化学的に及び熱的に焼戻し可能な高熱安定性アルミノケイ酸リチウム平板フロートガラス
US20050250639A1 (en) 2004-05-07 2005-11-10 Friedrich Siebers Lithium-aluminosilicate flat float glass
US20090103040A1 (en) 2006-06-30 2009-04-23 Asahi Glass Company, Limited Liquid crystal display panel
WO2008143999A1 (en) 2007-05-18 2008-11-27 Corning Incorporated Down-drawable, chemically strengthened glass for cover plate
DE102007036774A1 (de) 2007-08-03 2009-02-05 S.D.R. Biotec Verfahrenstechnik Gmbh Thermischbeständige Glasfasern
CA2704911A1 (en) 2007-08-03 2009-02-12 S.D.R. Biotec Verfahrenstechnik Gmbh Thermally resistant glass fibers
JP2010535145A (ja) 2007-08-03 2010-11-18 エス.ディー.アール.バイオテック ヴェルファウレンステクニック ゲーエムベーハー 耐熱性ガラス繊維
US20110236684A1 (en) 2007-08-03 2011-09-29 S.D.R. Biotec Verfahrenstechnik Gmbh Thermally resistant glass fibers

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
S.N. Salama et al., Thermal Conductivity Of Some Silicate Glasses and Their Respective Crystalline Products, 1987, pp. 203-214.
Taiwan IPO Search Report for Patent Application No. 099135448; Jul. 2013; 1 page.
W. Zdaniewski, DTA and X-Ray Analysis Study of Nucleation and Crystallization of MgO-Al2O3-SiO2 Glasses Containing ZrO2, TiO2, and CeO2, May-Jun. 1975, pp. 163-169.

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140005027A1 (en) * 2010-12-08 2014-01-02 Schott Ag Boron-free universal glass
US9096461B2 (en) * 2010-12-08 2015-08-04 Schott Ag Boron-free universal glass
US10077208B2 (en) 2014-03-13 2018-09-18 Corning Incorporated Glass article and method for forming the same
US10710927B2 (en) 2014-03-13 2020-07-14 Corning Incorporated Glass article and method for forming the same

Also Published As

Publication number Publication date
KR20110046379A (ko) 2011-05-04
DE102009051852A1 (de) 2011-05-05
JP2011093792A (ja) 2011-05-12
EP2338847A1 (de) 2011-06-29
JP5336455B2 (ja) 2013-11-06
TWI448443B (zh) 2014-08-11
DE102009051852B4 (de) 2013-03-21
US20110098172A1 (en) 2011-04-28
KR101343767B1 (ko) 2013-12-19
CN102050572A (zh) 2011-05-11
TW201130773A (en) 2011-09-16
CN102050572B (zh) 2013-05-08
EP2338847B1 (de) 2018-10-31

Similar Documents

Publication Publication Date Title
US8629072B2 (en) Boron-free glass
JP5798195B2 (ja) ホウ素フリー汎用ガラス
JP6877113B2 (ja) 化学的に安定なガラス及びその使用
CN1872749B (zh) 高透过玻璃板及高透过玻璃板的制造方法
JP5977841B2 (ja) ガラス組成物、化学強化用ガラス組成物、強化ガラス物品、およびディスプレイ用カバーガラス
JP5764084B2 (ja) ガラス組成物、化学強化用ガラス組成物、強化ガラス物品、ディスプレイ用のカバーガラスおよび強化ガラス物品の製造方法
WO2016017558A1 (ja) 高透過ガラス
US20130186140A1 (en) Lithium aluminosilicate glass with high modulus of elasticity, and method for producing same
JP2005518325A (ja) ホウケイ酸ガラスの生産方法
CN103449718B (zh) 一种玻璃组合物及由其制成的高强度平板玻璃、制法和应用
CN101244889A (zh) 一种无氟环保乳浊玻璃材料及其制造方法
JP2011173748A (ja) Las系結晶性ガラスの製造方法
CN109133612A (zh) 一种高铝硅酸盐玻璃用复合澄清剂
US5827790A (en) Unleaded transparent vitreous glass composition and articles
JP2006525213A (ja) 特に、基板を製作するためのソーダライムシリカガラス組成物
EP0683758B1 (en) Unleaded transparent vitreous glass composition and articles
JP5092564B2 (ja) ディスプレイ装置用基板ガラス

Legal Events

Date Code Title Description
AS Assignment

Owner name: SCHOTT AG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BRIX, PETER;REEL/FRAME:025579/0702

Effective date: 20101122

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8