US8597634B2 - Interferon alpha-2a modified by polyethylene glycol and methods of preparation thereof - Google Patents

Interferon alpha-2a modified by polyethylene glycol and methods of preparation thereof Download PDF

Info

Publication number
US8597634B2
US8597634B2 US12/676,511 US67651110A US8597634B2 US 8597634 B2 US8597634 B2 US 8597634B2 US 67651110 A US67651110 A US 67651110A US 8597634 B2 US8597634 B2 US 8597634B2
Authority
US
United States
Prior art keywords
ifn
ypeg
peg
pegylated
amino acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US12/676,511
Other languages
English (en)
Other versions
US20100239532A1 (en
Inventor
Weidong Zhou
Qingjiang Xiao
Li Sun
Tiebing Wang
Bin Liu
Song Lin
Min Liu
Fenghong Yin
Lu Zhuang
Lifang Lei
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Biosteed Gene Expression Tech Co Ltd
Original Assignee
Biosteed Gene Expression Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biosteed Gene Expression Tech Co Ltd filed Critical Biosteed Gene Expression Tech Co Ltd
Assigned to BIOSTEED GENE EXPRESSION TECH. CO., LTD. reassignment BIOSTEED GENE EXPRESSION TECH. CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LEI, LIFANG, LIN, SONG, LIU, BIN, LIU, MIN, SUN, LI, WANG, TIEBING, XIAO, QINGJIANG, YIN, FENGHONG, ZHOU, WEIDONG, ZHUANG, LU
Publication of US20100239532A1 publication Critical patent/US20100239532A1/en
Application granted granted Critical
Publication of US8597634B2 publication Critical patent/US8597634B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/555Interferons [IFN]
    • C07K14/56IFN-alpha
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to interferon ⁇ -2a modified by Y-shaped branched polyethylene glycol (PEG) at a single amino acid residue and the preparation thereof, as well as the use of the prepared PEGylated IFN- ⁇ 2a at a single amino acid residue in pharmaceutical field.
  • PEG polyethylene glycol
  • Interferons are a family of small molecule proteins or glycoproteins produced by eukaryotic cells in response to viral infection and other antigenic stimuli, which display broad-spectrum antiviral, antiproliferative and immunomodulatory effects. IFNs have been widely applied in the treatment of various conditions and diseases, such as viral infections, e.g. hepatitis B, hepatitis C and HIV; inflammatory disorders and diseases, e.g. multiple sclerosis, arthritis, asthma, cystic fibrosis and interstitial lung disease; and tumors e.g. myelomas, lymphomas, liver cancer, lung cancer, hairy-cell leukemia, and so on (Kenji Oritani, Paul W Kincade, et al.
  • viral infections e.g. hepatitis B, hepatitis C and HIV
  • inflammatory disorders and diseases e.g. multiple sclerosis, arthritis, asthma, cystic fibrosis and interstitial lung disease
  • tumors e.g. mye
  • Type I interferon and limitin a comparison of structures, receptors, and functions. Cytokine and Growth Factor Reviews, 12, 337-348, 2001; Yu-Sen Wang, Stephen Youngster, et al. Structural and biological characterization of PEGylated recombinant interferon alpha-2b and its therapeutic implications. Advance Drug Delivery Reviews, 54, 547-570, 2002).
  • IFNs are classified into four types according to their differences in chemical, immunological, and biological properties: interferon- ⁇ , ⁇ , ⁇ and ⁇ .
  • Interferon- ⁇ IFN- ⁇
  • Human IFNs- ⁇ are encoded by a multigene family consisting of about 20 genes, the encoded proteins sharing up to about 90% amino acid sequence homology (Henco K., Brosius F. J., et al. J. Mol. Biol., 185, 227-260, 1985).
  • Human IFN- ⁇ 2a is one of the subtypes of the ⁇ 2 subfamily of human IFN- ⁇ family, and is a single chain protein with various biological activities.
  • the single chain protein consists of 165 amino acid residues, as shown in SEQ ID No.1, in which the N-terminal amino acid is Cys with one free ⁇ -NH 2 group, and the residues in positions 23, 31, 49, 70, 83, 112, 121, 131, 133, 134 and 164 of the amino acid sequence are Lys, each of which contains one free ⁇ -NH 2 group.
  • IFNs are usually administered parenterally in clinical treatments.
  • the short in vivo half-life (2-4 h) and strong immunogenicity of IFNs result in a shorter dosing interval and a higher dosing frequency.
  • the polyethylene glycol (PEG) modification technology developed in recent years has provided a possible solution to the above problems.
  • PEG is an inert, nontoxic and biodegradable organic polymer, and is important in the fields of both biotechnology and pharmaceutics.
  • PEG modification technique is to link PEG to an active protein via covalent bond. After the PEGylation, the properties of the protein can be significantly improved, e.g. the prolongation of drug metabolic half-life, the reduction of immunogenicity, the increase of safety, the improvement of therapeutic efficacy, the decrease of dosing frequency, the increase of drug solubility/water solubility, the increase of resistance against proteolysis, the facilitation of drug controlled release and so on.
  • the properties of the protein can be significantly improved, e.g. the prolongation of drug metabolic half-life, the reduction of immunogenicity, the increase of safety, the improvement of therapeutic efficacy, the decrease of dosing frequency, the increase of drug solubility/water solubility, the increase of resistance against proteolysis, the facilitation of drug controlled release and so on.
  • PEGylated proteins have been applied clinically.
  • the PEGylated-bovine adenosine deaminase (Adagen) produced by ENZON Inc. was approved by FDA, and used to treat severe combined immunodeficiency disease (pegfamg013102LB).
  • Adagen the PEGylated-bovine adenosine deaminase
  • pegaspargase was also marketed in US (103411s5052lbl).
  • the PEG modified interferon- ⁇ 2b (PEG IFN- ⁇ 2b, PEG-Intron) developed by Schering-Plough was approved by FDA for marketing in 2000 and the PEGylated interferon- ⁇ (PEG IFN- ⁇ 2a, Pegasys) produced by Hoffman-la Roche Ltd. was also approved for marketing in 2002, both of which are used to treat hepatitis (103964s5037lbl, pegsche011901LB).
  • the PEG modified human granulocyte colony-stimulating factor produced by Amgen Inc. PEG-filgrastim, Neulasta
  • the FDA also accepted the application for PEGylated human growth factor antagonist developed by Pharmacia.
  • the PEG combined TNF- ⁇ antibody fragment from Celltech and the PEG-TNF receptor from Amgen are tested in the advanced clinical trials.
  • the first PEG-organic molecule conjugate, PEGylated camptothecin has also entered phase II of clinical trial.
  • the PEG modified oligonucleotide (Pegaptanib, MacugenTM) was approved by FDA.
  • the in vivo metabolism of the PEG in the drug (or PEG itself) has already been clearly understood, and PEG has been proven to be a good and safe drug modifier without any adverse effect.
  • a PEG molecule modifies a protein by linking itself to the N-terminal ⁇ -amino group or ⁇ -amino group of an internal Lys residue in the protein molecule.
  • PEGs for protein modification: a linear chain molecule (EP 0593868), an U-shaped branched molecule (EP 0809996) and an Y-shaped branched molecule (CN1243779C).
  • a linear chain molecule EP 0593868
  • an U-shaped branched molecule EP 0809996
  • Y-shaped branched molecule CN1243779C
  • PEGs that can be linked to a protein drug normally need to derivatized, so that one or two terminal groups of the ends of PEGs can be chemically activated to possess a proper functional group which displays activity, and thus can form a stable covalent bond with, at least one functional group of the drug to be linked.
  • PEGs can be linked to ⁇ -NH 2 of a Lys residue within the protein peptide chain, or to ⁇ -NH 2 of the N-terminal amino acid residue of the protein peptide chain.
  • PEG-NHS is linked through nucleophilic substitution to ⁇ -NH 2 of the N-terminal amino acid or ⁇ -NH 2 of Lys in IFN- ⁇ .
  • the PEG-NHS mentioned in the above patent is a U-shaped branched PEG derivative (PEG 2 -NHS), the molecular formula thereof as below:
  • R and R′ are independently a low molecular weight alkyl group, n and n′ are from 600 to 1500, and the average molecular weight of the PEGs is from 26 KD to 66 KD.
  • the molecular formula of the PEG 2 -NHS-modified IFN- ⁇ is as below:
  • the obtained products are a mixture of non-PEGylated IFN- ⁇ , PEGylated IFNs- ⁇ at a single amino acid residue, and PEGylated IFNs- ⁇ at multiple amino acid residues.
  • the PEGylated IFN- ⁇ at a single amino acid residue can be isolated from the obtained products by an appropriate purification means.
  • IFN- ⁇ has one N-terminal amino acid and more than one Lys residues, namely several reactive sites for PEG 2 -NHS, so the isolated PEGylated IFNs- ⁇ at a single amino acid residue are a mixture of the isomers of the PEGylated IFNs- ⁇ at different single amino acid residues.
  • R is a low molecular weight alkyl group
  • R 1 , R 2 , R 3 and R 4 are H or low molecular weight alkyl groups
  • m is from 1 to the number of possible PEG modification positions in IFN
  • W is O or NH
  • x is from 1 to 1000
  • y and z are from 0 to 1000
  • x+y+z is from 3 to 1000
  • at least one of R 1 , R 2 , R 3 and R 4 is a low molecular weight alkyl group, Yu-Sen Wang et al (Yu-Sen Wang et al, Advanced Drug Delivery Reviews, 54: 547-570, 2002.
  • the PEG derivatives used in the present invention are novel branched, Y-shaped branched PEG derivatives, and their structures are different from those of the U-shaped branched PEGs.
  • the biggest difference between these two kinds of PEGs is that: two-branch PEG chains of the Y-shaped PEG derivatives according to the present invention are connected together through N atom, while the two-branch PEG chains of the U-shaped PEG derivatives in EP0809996 are connected together through C atom.
  • the molecular composition of the Y-shaped PEG derivatives according to the present invention is shown as below:
  • P a and P b are same or different PEGs; j is an integer from 1 to 12; R i is H, a substituted or unsubstituted C1-C12 alkyl group, a substituted aryl, an aralkyl or a heteroalkyl; X 1 and X 2 are independently linking groups, wherein X 1 is (CH 2 ) n , and X 2 is selected from the group consisting of (CH 2 ) n , (CH 2 ) n OCO, (CH 2 ) n NHCO, and (CH 2 ) n CO; n is an integer from 1 to 10; and F is a terminal group selected from the group consisting of a hydroxyl group, a carboxyl group, an ester group, acyl chloride, hydrazide, maleimide, pyridine disulfide, capable of reacting with an amino group, a hydroxyl group or a mercapto group of a therapeutic agent or a substrate
  • R and R′ are independently a C1-C4 alkyl group, preferably methyl; m and m′ denote the degree of polymerization and can be any integer; m+m′ is preferably from 600 to 1500; R i is H, a substituted or unsubstituted C1-C12 alkyl, a substituted aryl, an aralkyl, or a heteroalkyl group; j is an integer from 1 to 12; and F is a terminal group selected from the group consisting of a hydroxyl group, a carboxyl group, an ester group, carboxylic acid chloride, hydrazide, maleimide, pyridine disulfide, capable of reacting with an amino group, a hydroxyl group or a mercapto group of a therapeutic agent or a substrate to form a covalent bond.
  • the average total molecular weight of the PEG is from about 10000 to about 60000 Dalton, most preferably about 40000 Dalton.
  • R and R′ are independently a C1-C4 alkyl group, preferably methyl; m and m′ denote the degree of polymerization and can be any integer; m+m′ is preferably from 600 to 1500; j is an integer from 1 to 12; and the average total molecular weight of the PEG is about 40000 Dalton.
  • the present inventors used Y-shaped branched PEG derivatives (YPEG) to modify interferon- ⁇ 2a (IFN- ⁇ 2a), and isolated the YPEG-IFNs- ⁇ 2a, modified by YPEG at a single amino acid residue, by Q-Sepharose FF ion-exchange chromatography. Moreover, the isolated YPEG-IFNs- ⁇ 2a modified at a single amino acid residue were further separated by SP-Sepharose FF chromatography to obtain YPEG-IFN- ⁇ 2a wherein the YPEG is principally linked to the side chain ⁇ -NH 2 of Lys at position 134 in SEQ ID NO.1, which is called YPEG-IFN- ⁇ 2a(134).
  • YPEG Y-shaped branched PEG derivatives
  • the in vitro activity of the YPEG-IFN- ⁇ 2a(134) is significantly higher than that of the YPEG-IFN- ⁇ 2a in which the YPEG is linked to another amino acid position, and the half-life of the YPEG-IFN- ⁇ 2a(134) in serum is significantly longer than that of the unmodified IFN- ⁇ 2a.
  • the present invention provides PEGylated IFNs- ⁇ 2a at a single amino acid residue, the structure of which is as below:
  • P a and P b are same or different PEGs; j is an integer from 1 to 12; R i is H, a substituted or unsubstituted C1-C12 alkyl group, a substituted aryl, an aralkyl, or a heteroalkyl group; X 1 and X 2 are independently linking groups, wherein X 1 is (CH 2 ) n , and X 2 is selected from the group consisting of (CH 2 ) n , (CH 2 ) n OCO, (CH 2 ) n NHCO and (CH 2 ) n CO, wherein n is an integer from 1 to 10.
  • the structural formula of the PEGylated IFN- ⁇ 2a of the present invention is as below:
  • R and R′ are independently a C1-C4 alkyl group, preferably methyl; j is an integer from 1 to 12; m and m′ denote the degree of polymerization and can be any same or different integers; m+m′ is preferably from 600 to 1500.
  • a Y-shaped branched PEG molecule is linked to an IFN- ⁇ 2a molecule via one single amino acid residue.
  • the average molecular weight of the YPEG-IFNs- ⁇ 2a in formula (II) depends principally on the degree of polymerization, m and m′. Where m+m′ is preferably from 600 to 1500, the corresponding average molecular weight of the YPEG is from about 26000 to about 66000 Dalton.
  • the corresponding average molecular weight of the YPEG is from about 35000 to about 45000 Dalton.
  • m+m′ is preferably from 885 to 1030, the corresponding average molecular weight of the YPEG is from about 39000 to about 45000 Dalton.
  • m+m′ is most preferably 910, the corresponding average molecular weight of the YPEG is 40000 Dalton.
  • the ratio of m and m′ can be in a range from 0.5 to 1.5, preferably from 0.8 to 1.2.
  • a PEG molecule is linked to IFN- ⁇ 2a via an amido bond formed by ⁇ -amino group of the N-terminal amino acid or the side chain ⁇ -amino group of Lys residue of IFN- ⁇ 2a corresponding to position 23, 31, 49, 70, 83, 112, 121, 131, 133, 134, or 164 as shown in SEQ ID No.1.
  • a PEG molecule is linked to IFN- ⁇ 2a via an amido bond principally formed by the side chain ⁇ -amino group of Lys residue of IFN- ⁇ 2a corresponding to position 134 as shown in SEQ ID No. 1.
  • the IFN- ⁇ 2a of the present invention can be extracted from natural sources or obtained by the recombinant biotechnology.
  • the IFN- ⁇ 2a is human IFN- ⁇ 2a (hIFN- ⁇ 2a) having the amino acid sequence of SEQ ID No.1, which is extracted from natural sources or obtained by the recombinant biotechnology.
  • the human IFN- ⁇ 2a is recombinant human IFN- ⁇ 2a (rhIFN- ⁇ 2a).
  • the rhIFN- ⁇ 2a can be artificially synthesized, or be expressed from prokaryotic expression systems such as E.
  • IFN- ⁇ 2a may be expressed from eukaryotic yeast expression systems such as Pichia , or be expressed from insect cell expression systems or mammalian cell expression systems such as CHO.
  • the preparation methods of the natural or recombinant IFN- ⁇ 2a and the activity tests of IFN- ⁇ 2a and YPEG modified IFN- ⁇ 2a are known in prior art.
  • the YPEG-IFN- ⁇ 2a of the present invention can also be used clinically to treat tumors and viral infections, such as hepatitis, hairy-cell leukemia, cell-mediated lympholysis, Kaposi's sarcoma and so on.
  • tumors and viral infections such as hepatitis, hairy-cell leukemia, cell-mediated lympholysis, Kaposi's sarcoma and so on.
  • the YPEG-IFN- ⁇ 2a of the present invention is clearly improved, as compared to IFN- ⁇ 2a, in stability, solubility, half-life in serum and clinical therapeutic efficacy.
  • the YPEG-IFN- ⁇ 2a of the present invention can be administered to the patients in the form of a composition comprising a pharmaceutically effective amount of the YPEG-IFN- ⁇ 2a and a pharmaceutically acceptable carrier or excipient.
  • the present invention in another aspect, also provides a composition comprising a pharmaceutically effective amount of the PEGylated IFN- ⁇ 2a of the present invention and a pharmaceutically acceptable carrier or excipient.
  • the composition comprises mannitol, an amino acid, sodium chloride and sodium acetate, wherein the amino acid is preferably selected from the group consisting of aspartic acid, asparagine and glycine.
  • the present invention also provides the use of the PEGylated IFN- ⁇ 2a of the invention or the composition comprising the PEGylated IFN- ⁇ 2a of the invention in the preparation of a medicament for treating a disease in need of IFN- ⁇ 2a treatment.
  • the disease in need of IFN- ⁇ 2a treatment is selected from the group consisting of viral infections e.g. hepatitis B, hepatitis C, hepatitis D and condyloma acuminatum, tumors e.g.
  • hairy-cell leukemia chronic myeloid leukemia, low-grade malignant non Hodgkin's leukemia, cell-mediated lympholysis, Kaposi's sarcoma, multiple myeloma, malignant melanoma, cutaneous T-cell lymphoma, laryngeal papilloma, recurrent or metastatic renal cell carcinoma, inflammatory disorders and diseases e.g. multiple sclerosis, arthritis, asthma, cystic fibrosis and interstitial lung disease, and myeloproliferative diseases related thrombocythemia.
  • the PEG moiety of activated YPEG derivatives such as PEG N-hydroxyl succinimidyl ester (YPEG-NHS) is covalently linked to an amino (—NH 2 ) group of the protein through nucleophilic substitution, wherein the amino group includes N-terminal ⁇ -amino group and an ⁇ -amino group of Lys residue of the protein.
  • YPEG-NHS PEG N-hydroxyl succinimidyl ester
  • reaction conditions are mild, the pH is in a range from 4.5 to 9.5, the temperature is between 0-25° C., and stirring or other blending measures are necessary.
  • pH is in a range from 4.5 to 9.5
  • temperature is between 0-25° C.
  • stirring or other blending measures are necessary.
  • All YPEGs with different molecular weights can be linked to IFN- ⁇ 2a using the above method.
  • the products include IFNs- ⁇ 2a modified at a single amino acid residue (YPEG-IFN- ⁇ 2a), IFNs- ⁇ 2a modified at two amino acid residues (YPEG 2 -IFN- ⁇ 2a) and IFNs- ⁇ 2a modified at multiple amino acid residues (YPEG n -IFN- ⁇ 2a), wherein the products modified at a single amino acid residue can be the predominant products by adjusting the reaction condition.
  • the YPEG-IFNs- ⁇ 2a modified by PEG at a single amino acid residue
  • a method such as cation exchange chromatography, anion exchange chromatography, or exclusion chromatography
  • the IFNs- ⁇ 2a modified by PEG at different single amino acid residues can be further resolved to obtain the YPEG-IFN- ⁇ 2a in which the YPEG is linked at a specific position.
  • Conventional purification methods include cation exchange chromatography, anion exchange chromatography, hydrophobic interaction chromatography and exclusion chromatography. Characteristic analysis can be performed by a known method in the art, e.g.
  • the mass spectroscopy, the polyacrylamide gel electrophoresis and the high-performance liquid exclusion chromatography can be used to analyze the molecular weight of the products, so as to distinguish the products modified by PEG at a single amino acid residue from those modified by PEG at two or multiple amino acid residues and unmodified IFN- ⁇ 2a.
  • the above mentioned purification methods can also be used to further resolve the products modified by PEG at a single amino acid residue to obtain different isomers with the PEG modification at different single positions.
  • the in vitro biological activities of all kinds of the PEG modified products can be measured according to any known assay for IFN-activity, e.g. cytopathic effect inhibition.
  • the PEG moieties in the different isomers have different effects on maintaining the active domains of IFNs, resulting in the great differences in the biological activities of different isomers.
  • the in vitro activities of IFNs are remarkably decreased after PEG modification.
  • the in vitro specific activity of the isolates of three peaks obtained by ion exchange chromatography have been measured, and the results indicate that the isolate of peak 3 (SP2) has significantly higher specific activity than the isolates of other peaks and PEGASYS (Hoffmann-La Roche, Basel, Switzerland), and has significantly longer half-life in serum than unmodified IFN- ⁇ 2a.
  • the Y-branched PEG-linked peptide of the SP2 was sequenced using Edman degradation, and the results showed that the primary component of SP2 was YPEG-IFN- ⁇ 2a(134).
  • the present invention also provides the preparation and purification methods for YPEG-IFN- ⁇ 2a, comprising:
  • R and R′ are independently a C1-C4 alkyl group, preferably methyl; j is an integer from 1 to 12; m and m′ denote the degree of polymerization and can be any integer; and m+m′ is preferably from 600 to 1500;
  • step (b) capturing the reaction products in step (a) with an anion exchange resin, preferably Q Sepharose FF, and eluting the products in an anion gradient, preferably in a chloride ion gradient, to obtain modified products;
  • an anion exchange resin preferably Q Sepharose FF
  • step (c) eluting the reaction products captured in step (b) with a cation exchange resin, preferably SP Sepharose FF, in a cation gradient, preferably in a sodium ion gradient, and collecting each peak separately:
  • a cation exchange resin preferably SP Sepharose FF
  • FIG. 1 SDS-PAGE of 3 batches of IFN- ⁇ 2a modified with YPEG (40 KD). The concentration of the separation gel was 12%, and Coomassie brilliant blue R-250 was used as staining dye. Lanes 1-2: 20060804; Lanes 3-4: 20060807-1; Lanes 5-6: 20060807-2.
  • FIG. 2 The resolving profile of YPEG-IFN- ⁇ 2a modification isomers by SP-Sepharose FF.
  • FIG. 3 Silver-stained SDS-PAGE (12%) of the YPEG-IFN- ⁇ 2a samples purified through SP-Sepharose FF. Lanel: molecular weight marker; Lanes 2, 4, 6, 8, blank; Lanes 3, 5, 7, 9, corresponding respectively to peaks 1 to 4 in the elution profile.
  • FIG. 4 Apparent molecular weights of the YPEG-IFN- ⁇ 2a modification isomers in silver-stained SDS-PAGE.
  • Lane 1 molecular weight marker (GE Lifesciences);
  • Lane 2 YPEG-IFN- ⁇ 2a SP3, 0.4 ⁇ g;
  • Lane 3 YPEG-IFN- ⁇ 2a SP2, 0.4 ⁇ g;
  • Lane 4. YPEG-IFN- ⁇ 2a SP1, 0.4 ⁇ g.
  • FIG. 5 The molecular weights of the YPEG-IFN- ⁇ 2a samples purified through SP-Sepharose FF by MALDI-TOF MS.
  • YPEG-IFN- ⁇ 2a SP1 corresponds to the sample in lane 4 of FIG. 4
  • YPEG-IFN- ⁇ 2a SP2 corresponds to the sample in lane 3 of FIG. 4
  • YPEG-IFN- ⁇ 2a SP3 corresponds to the sample in lane 2 of FIG. 4 .
  • FIG. 6 The molecular weight of YPEG-NHS (40 KD) by MALDI-TOF MS.
  • FIG. 7 The serum concentration of the drug and 2′, 5′-A concentration after a single s.c. injection of 30 ⁇ g ⁇ kg ⁇ 1 YPEG-rhIFN- ⁇ 2a SP2 into Crab-eating Macaque ( Macaca fascicularis ).
  • FIG. 8 The analysis of Trypsinase Peptide Mapping of the trypsin digested (Oh) YPEG-IFN- ⁇ 2a SP2 sample by HPLC-RP C 18 .
  • the retention time of YPEG-IFN- ⁇ 2a SP2 was 62.105 min, the elution peak at 71.882 min was the solvent background, and elution peaks at 2-3 min were trypsin.
  • FIG. 9 The analysis of Trypsinase Peptide Mapping of the trypsin digested (48 h) YPEG-IFN- ⁇ 2a SP2 sample by HPLC-RP C 18 . Solvent peak at 71.581 min was detected, corresponding to the solvent peak at 71.882 min in the trypsin digested (Oh) sample. No substrate protein peak (62.105 min) was detected between 59.5 min and 62.5 min, demonstrating the sample was substantially completely digested.
  • FIG. 10 Sephacryl S-100 HR separation profile of the YPEG modified peptides from the trypsin completely digested YPEG-IFN- ⁇ 2a SP2 sample.
  • the final concentration of IFN- ⁇ 2a was 4 mg/ml, and the reaction molar ratio of IFN- ⁇ 2a and YPEG was 1:2.
  • the reaction system was kept under 0-25° C. for 2 h with stirring.
  • the PEGylated IFNs- ⁇ 2a were then generated, and the reaction was stopped by adding glacial acetic acid (Shantou Xilong Chemical Co., Ltd.) to make pH ⁇ 4.0.
  • a sample was subjected for SDS-PAGE.
  • the reaction system was diluted 50 times with water and then 0.2 ⁇ m filtered before stored at 4° C. for further use.
  • Q-Sepharose FF Chromatography was used to separate the remaining PEG and PEG hydrolates, IFNs- ⁇ 2a modified by YPEG at multiple amino acid residues, IFNs- ⁇ 2a modified by YPEG at a single amino acid residue and the unmodified IFN- ⁇ 2a.
  • UV detection wavelength was set at 280 nm.
  • the target products were primarily the products modified by PEG at a single amino acid residue, YPEG-IFNs- ⁇ 2a, with a yield rate of 20-40%.
  • Q-Sepharose FF Chromatography was used to separate the remaining PEG and PEG hydrolates, IFNs- ⁇ 2a modified by YPEG at multiple amino acid residues, IFNs- ⁇ 2a modified by YPEG at a single amino acid residue and the unmodified IFN- ⁇ 2a.
  • UV detection wavelength was set at 280 nm. The entire sample stored at 4° C.
  • the target products were primarily the products modified by PEG at a single amino acid residue, YPEG-IFNs- ⁇ 2a, with a yield rate of 35-50%.
  • FIG. 1 shows SDS-PAGE results for 3 batches of IFNs- ⁇ 2a modified with YPEG (40 KD). It can be seen from FIG. 1 that under the condition, the PEG modification rate of rhIFN- ⁇ 2a was between 35-50% and remained stable. The primary modified products were modified by PEG at a single amino acid residue, and there were also some products modified by PEG at multiple amino acid residues.
  • the Q-Sepharose FF captured YPEG-IFN- ⁇ 2a sample was adjusted to pH 5.0 with 20% acetic acid, then diluted 15 times with 5 mM NaAc/HAc (pH5.0, Shantou Xilong Chemical Co., Ltd.). The sample was loaded at 0.5 mg/ml loading capacity to SP-Sepharose FF 100 ml (GE Healthcare) column ( ⁇ 18 mm ⁇ 394 mm).
  • the column was equilibrated with 3 CV of 5 mM NaAc/HAc (pH5.0), and then eluted with 2.5 CV of the gradient of 0%-30% 5 mM NaAc/HAc-70 mM NaCl (pH5.0), following with 50 CV of the gradient of 30%-100% 5 mM NaAc/HAc-70 mM NaCl (pH5.0).
  • YPEG-IFN- ⁇ 2a was resolved as 4 elution peaks by SP-Sepharose FF 100 ml. The samples were collected according to these peaks and then tested by SDS-PAGE with silver staining respectively.
  • peak 1 resolved by SP-Sepharose FF was primarily the products modified by YPEG at multiple amino acid residues (YPEG n -IFN- ⁇ 2a).
  • Peak 2 by SP-Sepharose FF was primarily the products modified by PEG at a single amino acid residue (YPEG-IFN- ⁇ 2a), and also contained some products modified by PEG at multiple amino acid residues.
  • Peak 3 and peak 4 by SP-Sepharose FF were both the products modified by PEG at a single amino acid residue.
  • Peaks 2-4 resolved by SP-Sepharose FF were isomers modified with YPEG at different single positions, and were named respectively as YPEG-IFN- ⁇ 2a SP1, YPEG-IFN- ⁇ 2a SP2 and YPEG-IFN- ⁇ 2a SP3.
  • the resolution profile and silver-stained SAD-PAGE results were shown in FIG. 2 and FIG. 3 respectively.
  • YPEG-IFN- ⁇ 2a SP1-3 Every sample of YPEG-IFN- ⁇ 2a SP1-3 was supplemented with sodium chloride, sodium acetate, mannitol, aspartic acid and was sterilized with 0.22 ⁇ m filter before stored at 4° C. for further use.
  • concentrations of YPEG-IFN- ⁇ 2a modification isomers were determined by Kjeldahl method.
  • the apparent molecular weights of YPEG-IFN- ⁇ 2a modification isomers were determined by SDS-PAGE. The method was according to Laemmli et al (Nature 227: 680, 1970). The concentration of the gel was 7.5%, and the gel was visualized by silver staining. The apparent molecular weights of YPEG-IFN- ⁇ 2a modification isomers were almost the same, about 120 KD ( FIG. 4 ).
  • MALDI-TOF MS (Autoflex TOF/TOF system, Bruker Daltonics, Germany) was used to determine the molecular weights of YPEG-rHuIFN- ⁇ 2a modification isomers.
  • Sinapinic acid (SA, C 11 H 12 O 5 , M.W. 224.22, lot number: 2006 236870 002, Bruker Daltonics, Germany) was used as matrix.
  • Protein Calibration Standard II Part No. 207234, Bruker Daltonics, Germany
  • the MS molecular weights of YPEG-IFN- ⁇ 2a modification isomers were almost the same, about 59000 Dalton ( FIG. 5 ).
  • the purity of YPEG-IFN- ⁇ 2a modification isomers was determined by HPLC-SE.
  • HPLC column was TSK G4000 SW XL ( ⁇ 7.8 mm ⁇ 300 mm, TOSOH), the sample loading volume was 20 ⁇ l (about 10 ⁇ g protein), the mobile phase was 0.1M PBNa-0.1M NaCl (pH7), the flow rate was 0.8 ml/min, and the detection wavelength was set at 280 nm.
  • the YPEG-IFN- ⁇ 2a SP2 was a single main peak, with a purity more than 99%.
  • the action mechanism of IFN is partially to induce the production of 2′,5′-AS (2′,5′-oligoadenylate synthetase), which in turn exerts its antiviral effects.
  • 2′,5′-AS catalyzes the synthesis of 2′,5′-A (2′,5′-oligoadenylate) from ATP in the presence of Poly(I) ⁇ Poly(C) agar (The activity of 2′,5′-AS can be represented by the concentration of the synthesized 2′,5′-A).
  • 2′,5′-AS in the samples are absorbed and activated by Poly(I) ⁇ Poly(C) agarose, then catalyzes the substrate ATP to generate 2′,5′-A.
  • a mixture of 125 I labeled 2′,5′-A, anti-2′,5′-A serum and secondary antibody is added into the sample which then is incubated and centrifugated to separate the mixture. The supernatant is discarded and a Gamma Counter is used to measure the radioactivity of the sediment. The binding rate of the initially added 125 I labeled 2′,5′-A is calculated. Four-parameter Logistic regression is used to generate standard curve, and then the concentration of the 2′,5′-AS-induced 2′,5′-A product in an unknown sample could be estimated.
  • a single s.c. injection of 7.5, 30 or 120 ⁇ g ⁇ kg ⁇ 1 YPEG-IFN- ⁇ 2a SP2 was given to Crab-eating Macaque.
  • 1 ml of venous blood was taken from the hind leg opposite to the injected side at the time before, 1 h, 2 h, 4 h, 8 h, 10 h, 12 h, 24 h, 48 h, 72 h, 96 h, 168 h, 240 h, and 312 h after administration.
  • rhIFN- ⁇ 2a 7.5 ⁇ g ⁇ kg ⁇ 1
  • 1 ml of blood was taken at the time before, 0.5 h, 1 h, 2 h, 3 h, 4 h, 5 h, 6 h, 8 h, and 24 h after administration.
  • the blood samples were centrifugated at 2000 rpm for 10 min under low temperature, then the serum was separated immediately and stored at ⁇ 20° C. for further analysis.
  • the quantitative double sandwich immunoassay was used.
  • a monoclonal antibody specific to the recombinant human IFN- ⁇ was pre-coated on microtiter plate.
  • the standard and the samples were pipetted into the microtiter wells, wherein the rhIFN- ⁇ 2a or YPEG-IFN- ⁇ 2a SP2 would bind to the immobilized antibody.
  • the plate was washed to remove unbound substances, and then anti-human IFN- ⁇ IgG (secondary antibody) was added into the wells. After the reaction was complete, the plate was washed and the horseradish peroxidase (HRP) was added into the wells.
  • HRP horseradish peroxidase
  • the color generated by adding HRP substrate solution into each well was proportional to the amount of the bound IFN- ⁇ 2a or YPEG-IFN- ⁇ 2a SP2 in the first step.
  • the reaction was stopped and the color intensity was measured.
  • the higher the OD value of absorbance the higher the concentration of IFN- ⁇ 2a or YPEG-IFN- ⁇ 2a SP2 in the sample.
  • the standard curves were plotted for IFN- ⁇ 2a and YPEG-IFN- ⁇ 2a SP2 respectively so as to measure the serum drug concentration in the blood samples.
  • the plate was incubated under room temperature for 1 h and washed 4 times. 100 ⁇ l TMB substrate was added into each well, and kept under room temperature in the dark for 15 min. 100 ⁇ l stop solution was added to each well, and mixed gently to stop the reaction. The absorbance OD value at 450 nm was measured with a microplate reader within 5 min to determine the concentration of each sample.
  • the in vitro biological activity of each YPEG-IFN- ⁇ 2a modification isomers was estimated using cytopathic effect inhibition assay. According to the method described in Determination Method of Interferon Activity ( Pharmacopoeia of the People's Republic of China, 2005, Volume 3, Appendix X C), interferon protects human amniotic cells (WISH) from the damage caused by vesicular stomatitis virus (VSV). Crystal violet was used to stain survived WISH cells, and the absorbance OD value was measured at 570 nm. The interferon protection effect curve was plotted for WISH cells, so as to determine the in vitro biological activity of interferons.
  • WISH human amniotic cells
  • VSV vesicular stomatitis virus
  • YPEG-IFN- ⁇ 2a SP2 The solvent system of YPEG-IFN- ⁇ 2a SP2 was changed to 50 mM NH 4 HCO 3 (pH8.0) by ultrafiltration with 5K ultrafilter (Millipore, polyethersulfone material), and the protein concentration was determined to be 4.02 mg/ml using UV spectroscopy.
  • TPCK Trypsin Promega was dissolved (0.5 ⁇ g/ ⁇ l) in the solution provided by the manufacturer. Samples were added according to Table 3:
  • the reaction system was kept in a water bath at 37° C. for 48 h, then 1.52 ml of 20% acetic acid was added to stop the reaction. A small amount of sample was taken for HPLC-RP C18 peptide mapping.
  • the instrument for analysis was Waters HPLC system, with a controller of type 600, 2487 double wavelength detector, and the software for data processing was Empower 2.
  • the HPLC analytical column was Jupiter C18 (particle diameter 5 ⁇ m, pore diameter 300 ⁇ , ( ⁇ 4.6 ⁇ 150 mm, produced by Phenomenex, USA).
  • Mobile phase A was 0.1% TFA/H 2 O
  • Mobile phase B was 0.1% TFA/90% ACN/H 2 O
  • the flow rate was 1 mL/min
  • the detection wavelength was set at 214 nm. Please refer to Table 4 for the elution gradients, and the results were shown in FIG. 8-9 .
  • sample from the first elution peak was collected (sample number: YPEG-IFN- ⁇ 2a S100-1, FIG. 10 ), and the solvent system was changed to 5 mM PBNa (pH 7) with 5K ultrafilter. Vacuum freeze-drying was done.
  • the N-terminal amino acids of the freeze-dried sample were determined using Edman degradation, and the sequence of the 7 amino acids at the N-terminus of the sample was XYSPXAW (Table 5), wherein X denotes ⁇ -amino acid cysteine (Cys), a non- ⁇ -amino acid or another modified amino acid that cannot be detected using Edman degradation.
  • X denotes ⁇ -amino acid cysteine (Cys), a non- ⁇ -amino acid or another modified amino acid that cannot be detected using Edman degradation.
  • SEQ ID NO: 1 it can be determined that the YPEG-IFN- ⁇ 2a SP2 was primarily the product modified by YPEG at

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Virology (AREA)
  • Molecular Biology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Communicable Diseases (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Toxicology (AREA)
  • Pulmonology (AREA)
  • Oncology (AREA)
  • Epidemiology (AREA)
  • Rheumatology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Immunology (AREA)
  • Pain & Pain Management (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Medicinal Preparation (AREA)
US12/676,511 2007-09-04 2007-09-04 Interferon alpha-2a modified by polyethylene glycol and methods of preparation thereof Active 2027-11-20 US8597634B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2007/002643 WO2009030065A1 (zh) 2007-09-04 2007-09-04 聚乙二醇修饰的干扰素α2a及其制备方法和应用

Publications (2)

Publication Number Publication Date
US20100239532A1 US20100239532A1 (en) 2010-09-23
US8597634B2 true US8597634B2 (en) 2013-12-03

Family

ID=40428421

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/676,511 Active 2027-11-20 US8597634B2 (en) 2007-09-04 2007-09-04 Interferon alpha-2a modified by polyethylene glycol and methods of preparation thereof

Country Status (12)

Country Link
US (1) US8597634B2 (ko)
EP (1) EP2196475B1 (ko)
KR (1) KR101483814B1 (ko)
CN (1) CN101636411B (ko)
BR (1) BRPI0721988B1 (ko)
CA (1) CA2698396C (ko)
DK (1) DK2196475T3 (ko)
ES (1) ES2386575T3 (ko)
PL (1) PL2196475T3 (ko)
PT (1) PT2196475E (ko)
WO (1) WO2009030065A1 (ko)
ZA (1) ZA201001555B (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CL2008002399A1 (es) 2007-08-16 2009-01-02 Pharmaessentia Corp Conjugado sustancialmente puro que posee una porcion polimerica, una porcion proteica (interferon alfa 2b) y un ligante alifatico de 1 a 10 atomos de carbono, util en el tratamiento de las hepatitis b o c.
ES2382124T3 (es) * 2007-09-04 2012-06-05 Biosteed Gene Expression Tech. Co., Ltd. Interferón alfa 2b modificado con polietilenglicol y método de preparación y aplicaciones de este
CN101636411B (zh) 2007-09-04 2013-01-09 厦门伯赛基因转录技术有限公司 聚乙二醇修饰的干扰素α2a及其制备方法和应用
RU2622077C2 (ru) * 2011-09-05 2017-06-09 Ханми Сайенс Ко., Лтд. Фармацевтическая композиция для лечения рака, содержащая конъюгат интерферона-альфа
CA2964390A1 (en) 2014-11-06 2016-05-12 Pharmaessentia Corporation Dosage regimen for pegylated interferon
CN116120424A (zh) * 2022-06-06 2023-05-16 江苏靶标生物医药研究所有限公司 一种干扰素α2b可溶性重组表达和分离纯化方法及其应用

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4179337A (en) 1973-07-20 1979-12-18 Davis Frank F Non-immunogenic polypeptides
EP0593868A1 (en) 1992-08-26 1994-04-27 F. Hoffmann-La Roche Ag PEG-interferon conjugates
EP0809996A2 (en) 1996-05-31 1997-12-03 F. Hoffmann-La Roche Ag Interferon conjugates
US5762923A (en) * 1995-04-06 1998-06-09 Hoffmann-La Roche Inc. Stabilized interferon alpha solutions
CN1243779A (zh) 1998-07-31 2000-02-09 东莞中镇鞋材有限公司 纤维板及其制造方法
US6042822A (en) * 1993-11-10 2000-03-28 Enzon, Inc. Interferon polymer conjugates
US20020172661A1 (en) * 2001-04-09 2002-11-21 Chiron Corporation HSA- free formulations of interferon-beta
US6610830B1 (en) * 1980-07-01 2003-08-26 Hoffman-La Roche Inc. Microbial production of mature human leukocyte interferons
WO2003076490A1 (fr) 2002-03-13 2003-09-18 Beijing Jiankai Technology Co., Ltd. Derive polymere hydrophile a ramification de type y et procede de preparation d'un composite medical contenant le compose precite
US20040223950A1 (en) * 2002-11-15 2004-11-11 Doris Brugger Positional isomers of pegylated alpha interferon
US20060223145A1 (en) * 2002-11-01 2006-10-05 Lohray Braj B Method for producing recombinant human interferon alpha 2b polypeptide in pichia pastoris
WO2009030066A1 (fr) 2007-09-04 2009-03-12 Biosteed Gene Expression Tech. Co., Ltd. Interféron alpha 2b modifié par du polyethylèneglycol et procédé de préparation et applications associés
WO2009030065A1 (zh) 2007-09-04 2009-03-12 Biosteed Gene Expression Tech. Co., Ltd. 聚乙二醇修饰的干扰素α2a及其制备方法和应用

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4179337A (en) 1973-07-20 1979-12-18 Davis Frank F Non-immunogenic polypeptides
US6610830B1 (en) * 1980-07-01 2003-08-26 Hoffman-La Roche Inc. Microbial production of mature human leukocyte interferons
EP0593868A1 (en) 1992-08-26 1994-04-27 F. Hoffmann-La Roche Ag PEG-interferon conjugates
US5382657A (en) 1992-08-26 1995-01-17 Hoffmann-La Roche Inc. Peg-interferon conjugates
US6042822A (en) * 1993-11-10 2000-03-28 Enzon, Inc. Interferon polymer conjugates
US5762923A (en) * 1995-04-06 1998-06-09 Hoffmann-La Roche Inc. Stabilized interferon alpha solutions
EP0809996A2 (en) 1996-05-31 1997-12-03 F. Hoffmann-La Roche Ag Interferon conjugates
CN1243779A (zh) 1998-07-31 2000-02-09 东莞中镇鞋材有限公司 纤维板及其制造方法
US20020172661A1 (en) * 2001-04-09 2002-11-21 Chiron Corporation HSA- free formulations of interferon-beta
WO2003076490A1 (fr) 2002-03-13 2003-09-18 Beijing Jiankai Technology Co., Ltd. Derive polymere hydrophile a ramification de type y et procede de preparation d'un composite medical contenant le compose precite
US20050180946A1 (en) * 2002-03-13 2005-08-18 Shishan Ji Hydrophilic polymer derivative with y type branch and preparation method of it medical cpmposite comprising above compund
US20060223145A1 (en) * 2002-11-01 2006-10-05 Lohray Braj B Method for producing recombinant human interferon alpha 2b polypeptide in pichia pastoris
US20040223950A1 (en) * 2002-11-15 2004-11-11 Doris Brugger Positional isomers of pegylated alpha interferon
WO2009030066A1 (fr) 2007-09-04 2009-03-12 Biosteed Gene Expression Tech. Co., Ltd. Interféron alpha 2b modifié par du polyethylèneglycol et procédé de préparation et applications associés
WO2009030065A1 (zh) 2007-09-04 2009-03-12 Biosteed Gene Expression Tech. Co., Ltd. 聚乙二醇修饰的干扰素α2a及其制备方法和应用
US20110158943A1 (en) 2007-09-04 2011-06-30 Weidong Zhou Interferon alpha 2b modified by polyethylene glycol, the preparation and use thereof

Non-Patent Citations (24)

* Cited by examiner, † Cited by third party
Title
Chamow et al., "Modification of CD4 Immunoadhesin with Monomethoxypoly(ethylene glycol) Aldehyde via Reductive Alkylation," Bioconjugate Chemistry. vol. 5, No. 2 pp. 133-140 (1994).
Delgado et al., "The Uses and Properties of PEG-Linked Proteins," Critical Reviews in Therapeutic Drug Carrier Systems. vol. 9 pp. 249-304 (1992).
Grace et al., "Structural and Biologic Characterization of Pegylated Recombinant IFN-alpha2b," Journal of Interferon and Cytokine Research. vol. 21, No. 12 pp. 1103-1115 (2001).
Grace et al., "Structural and Biologic Characterization of Pegylated Recombinant IFN-α2b," Journal of Interferon and Cytokine Research. vol. 21, No. 12 pp. 1103-1115 (2001).
Henco et al., "Structural relationship of human interferon alpha genes and pseudogenes," J. Mol. Biol. vol. 185 pp. 227-260 (1985).
Inoue et al., "A highly enhanced thrombopoietic activity by polyethylene glycol-modified recombinant human interleukin-6," J. Lab. Clin. Med. vol. 124 pp. 529-536 (1994).
International Preliminary Report on Patentability corresponding to International Patent Application No. PCT/CN2007/002643 dated Mar. 9, 2010.
International Preliminary Report on Patentability corresponding to International Patent Application No. PCT/CN2007/002644 dated Mar. 9, 2010.
International Search Report corresponding to International Patent Application No. PCT/CN2007/002643 mailed on Jun. 12, 2008.
International Search Report corresponding to International Patent Application No. PCT/CN2007/002644 mailed on Jun. 12, 2008.
Katre et al., "Chemical modification of recombinant interleukin 2 by polyethylene glycol increases its potency in the murine Meth A sarcoma model," PNAS. vol. 84 pp. 1487-1491 (1987).
Katre, "The conjugation of proteins with polyethylene glycol and other polymers: Altering properties of proteins to enhance their therapeutic potential," Advanced Drug Delivery Reviews. vol. 10 pp. 91-114 (1993).
Monfardini et al., "A Branched Monomethoxypoly(ethylene glycol) for Protein Modification," Bioconjugate Chem. vol. 6, No. 1 pp. 62-69 (1995).
Official Action corresponding to U.S. Appl. No. 12/676,525 dated Jul. 27, 2012.
Official Action corresponding to U.S. Appl. No. 12/676,525 dated May 23, 2013.
Official Action corresponding to U.S. Appl. No. 12/676,525 dated May 3, 2011.
Official Action corresponding to U.S. Appl. No. 12/676,525 dated Sep. 15, 2011.
Oritani et al., "Type I interferons and limitin: a comparison of structures, receptors, and functions," Cytokine and Growth Factor Reviews. vol. 12 pp. 337-348 (2001).
Satake-Ishikawa et al., "Chemical Modification of Recombinant Human Granulocyte Colony-Stimulating Factor by Polyethylene Glycol Increases its Biological Activity in vivo," Cell Structure and Function. vol. 17 pp. 157-160 (1992).
Tsutsumi et al., "Chemical Modification of Natural Human Necrosis Factor-alpha with Polyethylene Glycol Increases Its Anti-tumor Potency," Jpn. J. Cancer Research. vol. 85 pp. 9-12 (1994).
Tsutsumi et al., "Chemical Modification of Natural Human Necrosis Factor-α with Polyethylene Glycol Increases Its Anti-tumor Potency," Jpn. J. Cancer Research. vol. 85 pp. 9-12 (1994).
UniProtKB Accession No. Q86UP4 (Jun. 1, 2003). *
Wang et al, "Identification of the Major Positional Isomer of Pegylated Interferon Alpha-2b," Biochemistry. vol. 39, No. 35 pp. 10634-10640 (2000).
Wang et al., "Structural and biological characterization of pegylated recombinant interferon alpha-2b and its therapeutic implications," Advanced Drug Delivery Reviews. vol. 54 pp. 547-570 (2002).

Also Published As

Publication number Publication date
CA2698396C (en) 2014-01-21
WO2009030065A8 (zh) 2009-09-11
EP2196475A1 (en) 2010-06-16
KR101483814B1 (ko) 2015-01-16
DK2196475T3 (da) 2012-09-17
PT2196475E (pt) 2012-09-07
EP2196475A4 (en) 2010-10-20
KR20100063108A (ko) 2010-06-10
EP2196475B1 (en) 2012-06-06
WO2009030065A1 (zh) 2009-03-12
PL2196475T3 (pl) 2012-10-31
ES2386575T3 (es) 2012-08-23
CN101636411B (zh) 2013-01-09
US20100239532A1 (en) 2010-09-23
CA2698396A1 (en) 2009-03-12
CN101636411A (zh) 2010-01-27
BRPI0721988A2 (pt) 2016-10-18
BRPI0721988B1 (pt) 2021-07-27
ZA201001555B (en) 2010-11-24

Similar Documents

Publication Publication Date Title
US8597635B2 (en) Interferon alpha-2B modified by polyethylene glycol and methods of preparation thereof
Ramon et al. PEGylated interferon-α2b: a branched 40K polyethylene glycol derivative
TWI364295B (en) Polymer conjugates of cytokines, chemokines, growth factors, polypeptide hormones and antagonists thereof with preserved receptor-binding activity
KR101238517B1 (ko) 생물학적 효능이 향상된 인터페론-베타의 중합체 접합체
US7893019B2 (en) G-CSF site-specific mono-conjugates
US20060029573A1 (en) Pegylated interferon alpha-1b
JP2001526238A (ja) 実質的に純粋なヒスチジン結合タンパク質−ポリマー結合体
US8597634B2 (en) Interferon alpha-2a modified by polyethylene glycol and methods of preparation thereof
US8530417B2 (en) Y-shaped polyethylene glycol modified G-CSF, the preparation and use thereof
CN102617736A (zh) 由一种位置异构体表示的稳定的干扰素α聚乙二醇缀合物
US9840546B2 (en) Double-stranded polyethylene glycol modified growth hormone, preparation method and application thereof
Behi et al. Optimization of PEGylation reaction time and molar ratio of rhG-CSF toward increasing bioactive potency of monoPEGylated protein

Legal Events

Date Code Title Description
AS Assignment

Owner name: BIOSTEED GENE EXPRESSION TECH. CO., LTD., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZHOU, WEIDONG;XIAO, QINGJIANG;SUN, LI;AND OTHERS;REEL/FRAME:024269/0257

Effective date: 20100309

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 8