US8513339B1 - Copolymerizable sulfur-containing adhesion promoters and compositions thereof - Google Patents
Copolymerizable sulfur-containing adhesion promoters and compositions thereof Download PDFInfo
- Publication number
- US8513339B1 US8513339B1 US13/529,183 US201213529183A US8513339B1 US 8513339 B1 US8513339 B1 US 8513339B1 US 201213529183 A US201213529183 A US 201213529183A US 8513339 B1 US8513339 B1 US 8513339B1
- Authority
- US
- United States
- Prior art keywords
- group
- thiol
- certain embodiments
- compound
- sulfur
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- HTFLPPGPJYPFTD-UHFFFAOYSA-N *.C.C=CP(=O)(O)O.O=P(O)(O)CCSCCOCCOCCSCCCOC1=NC(OCCCSCCOCCOCCS)=NC(OCCCSCCOCCOCCS)=N1.SCCOCCOCCSCCCOC1=NC(OCCCSCCOCCOCCS)=NC(OCCCSCCOCCOCCS)=N1 Chemical compound *.C.C=CP(=O)(O)O.O=P(O)(O)CCSCCOCCOCCSCCCOC1=NC(OCCCSCCOCCOCCS)=NC(OCCCSCCOCCOCCS)=N1.SCCOCCOCCSCCCOC1=NC(OCCCSCCOCCOCCS)=NC(OCCCSCCOCCOCCS)=N1 HTFLPPGPJYPFTD-UHFFFAOYSA-N 0.000 description 1
- FIMQITLKEXWVLH-UHFFFAOYSA-N *.C=CCOC1=NC(OCC=C)=NC(OCC=C)=N1.C=C[Si](OC)(OC)OC.CO[Si](CCSCCOCCOCCSCCCOC1=NC(OCCCSCCOCCOCCS)=NC(OCCCSCCOCCOCCS)=N1)(OC)OC.SCCOCCOCCS.SCCOCCOCCSCCCOC1=NC(OCCCSCCOCCOCCS)=NC(OCCCSCCOCCOCCS)=N1 Chemical compound *.C=CCOC1=NC(OCC=C)=NC(OCC=C)=N1.C=C[Si](OC)(OC)OC.CO[Si](CCSCCOCCOCCSCCCOC1=NC(OCCCSCCOCCOCCS)=NC(OCCCSCCOCCOCCS)=N1)(OC)OC.SCCOCCOCCS.SCCOCCOCCSCCCOC1=NC(OCCCSCCOCCOCCS)=NC(OCCCSCCOCCOCCS)=N1 FIMQITLKEXWVLH-UHFFFAOYSA-N 0.000 description 1
- 0 *.C=CCOCC(O)CCCCNCCN.SCCOCCOCCSCCCOC1=NC(OCCCSCCOCCOCCS)=NC(OCCCSCCOCCOCCS)=N1.[2H]C(O)[2H]CCCOC1=NC(OCCCOC([2H])[2H])=NC(OCCCSCCOCCOCCSCCCOCC(O)CCCCNCCN)=N1 Chemical compound *.C=CCOCC(O)CCCCNCCN.SCCOCCOCCSCCCOC1=NC(OCCCSCCOCCOCCS)=NC(OCCCSCCOCCOCCS)=N1.[2H]C(O)[2H]CCCOC1=NC(OCCCOC([2H])[2H])=NC(OCCCSCCOCCOCCSCCCOCC(O)CCCCNCCN)=N1 0.000 description 1
- BOVJMNMXEPJNOR-UHFFFAOYSA-N *.C=CP(=O)(OC)OC.COP(=O)(CCSCCOCCOCCSCCCOC1=NC(OCCCSCCOCCOCCS)=NC(OCCCSCCOCCOCCS)=N1)OC.SCCOCCOCCSCCCOC1=NC(OCCCSCCOCCOCCS)=NC(OCCCSCCOCCOCCS)=N1 Chemical compound *.C=CP(=O)(OC)OC.COP(=O)(CCSCCOCCOCCSCCCOC1=NC(OCCCSCCOCCOCCS)=NC(OCCCSCCOCCOCCS)=N1)OC.SCCOCCOCCSCCCOC1=NC(OCCCSCCOCCOCCS)=NC(OCCCSCCOCCOCCS)=N1 BOVJMNMXEPJNOR-UHFFFAOYSA-N 0.000 description 1
- PNCGXHQTYBDJJF-UHFFFAOYSA-N C=COCCCN.NCCCOCCSCCOCCOCCSCCCOC1=NC(OCCCSCCOCCOCCS)=NC(OCCCSCCOCCOCCS)=N1.SCCOCCOCCSCCCOC1=NC(OCCCSCCOCCOCCS)=NC(OCCCSCCOCCOCCS)=N1 Chemical compound C=COCCCN.NCCCOCCSCCOCCOCCSCCCOC1=NC(OCCCSCCOCCOCCS)=NC(OCCCSCCOCCOCCS)=N1.SCCOCCOCCSCCCOC1=NC(OCCCSCCOCCOCCS)=NC(OCCCSCCOCCOCCS)=N1 PNCGXHQTYBDJJF-UHFFFAOYSA-N 0.000 description 1
- PEFUZZMVDQZLPR-UHFFFAOYSA-N CC(C)C1=NC(C(C)C)=NC(C(C)C)=N1 Chemical compound CC(C)C1=NC(C(C)C)=NC(C(C)C)=N1 PEFUZZMVDQZLPR-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G75/00—Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
- C08G75/02—Polythioethers
- C08G75/0204—Polyarylenethioethers
- C08G75/0209—Polyarylenethioethers derived from monomers containing one aromatic ring
- C08G75/0213—Polyarylenethioethers derived from monomers containing one aromatic ring containing elements other than carbon, hydrogen or sulfur
- C08G75/0218—Polyarylenethioethers derived from monomers containing one aromatic ring containing elements other than carbon, hydrogen or sulfur containing oxygen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G75/00—Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
- C08G75/02—Polythioethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G75/00—Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
- C08G75/02—Polythioethers
- C08G75/0204—Polyarylenethioethers
- C08G75/0286—Chemical after-treatment
- C08G75/029—Modification with organic compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/36—Sulfur-, selenium-, or tellurium-containing compounds
- C08K5/37—Thiols
- C08K5/378—Thiols containing heterocyclic rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L81/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
- C08L81/02—Polythioethers; Polythioether-ethers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J181/00—Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur, with or without nitrogen, oxygen, or carbon only; Adhesives based on polysulfones; Adhesives based on derivatives of such polymers
- C09J181/02—Polythioethers; Polythioether-ethers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/10—Materials in mouldable or extrudable form for sealing or packing joints or covers
- C09K3/1031—Sealing waxes, e.g. sealing letters, bottles, or the like
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2190/00—Compositions for sealing or packing joints
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24273—Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
- Y10T428/24322—Composite web or sheet
- Y10T428/24331—Composite web or sheet including nonapertured component
Definitions
- the present disclosure relates to polymers in which adhesion promoters are copolymerized to a sulfur-containing polymer backbone and to compositions comprising the copolymerizable adhesion promoters that exhibit improved surface adhesion.
- Sulfur-containing polymers incorporating copolymerizable adhesion promoters and compositions thereof are disclosed.
- Sealants useful in aerospace and other applications must satisfy demanding mechanical, chemical, and environmental requirements.
- the sealants can be applied to a variety of surfaces including metal surfaces, primer coatings, intermediate coatings, finished coatings, and aged coatings.
- Adhesion promoters are typically added to sealant formulations to enhance adhesion of the various components to each other and to the surfaces to which the sealant is applied. Ways to provide improved adhesion while maintaining other advantageous properties of a sealant are continuously desired.
- Sulfur-containing polymers such as polythioethers and polysulfides are useful in aerospace applications.
- Examples of polythioethers and polysulfides are disclosed, for example, in U.S. Publication Nos. 2005/0010003, 2006/0270796, 2007/0287810, 2009/0326167, and 2010/036063.
- Copolymerizing adhesion promoters directly to a sulfur-containing polymer backbone ensures that the adhesion promoters are strongly coupled to the polymer network, which forms the structure of a cured sealant.
- Sulfur-containing polymers comprising copolymerizable adhesion promoters and compositions comprising such polymers are also disclosed.
- sulfur-containing compounds having the structure of Formula (1): B(—V′—S—R 1 —S-A′) z1 (—V′—S—R 1 —SH) z2 (1)
- sulfur-containing compounds comprising the reaction product of reactants comprising: (a) a polyfunctional compound having terminal groups that are reactive with thiol groups; (b) a dithiol; and (c) a compound having a terminal group that is reactive with a thiol group and a terminal group that promotes adhesion.
- compositions comprising: (a) at least one sulfur-containing compound provided by the present disclosure; (b) at least one thiol-terminated sulfur-containing polymer; and (c) at least one curing agent.
- sealants comprising at least one sulfur-containing compound provided by the present disclosure are provided.
- apertures sealed with a sealant comprising at least one sulfur-containing compound provided by the present disclosure are provided.
- methods of sealing an aperture comprising: (a) applying a sealant comprising at least one sulfur-containing compound provided by the present disclosure to at least one surface defining an aperture; (b) assembling the surfaces defining the aperture; and (c) curing the sealant to provide the cured aperture.
- any numerical range recited herein is intended to include all sub-ranges encompassed therein.
- a range of “1 to 10” is intended to include all sub-ranges between (and including) the recited minimum value of about 1 and the recited maximum value of about 10, that is, having a minimum value equal to or greater than about 1 and a maximum value of equal to or less than about 10.
- the use of “or” means “and/or” unless specifically stated otherwise, even though “and/or” may be explicitly used in certain instances.
- a dash (“—”) that is not between two letters or symbols is used to indicate a point of bonding for a substituent or between two atoms.
- —CONH 2 is bonded to another chemical moiety through the carbon atom.
- Alkanediyl refers to a diradical of a saturated, branched or straight-chain, acyclic hydrocarbon group, having, for example, from 1 to 18 carbon atoms (C 1-18 ), from 1-14 carbon atoms (C 1-14 ), from 1-6 carbon atoms (C 1-6 ), from 1 to 4 carbon atoms (C 1-4 ), or from 1 to 3 hydrocarbon atoms (C 1-3 ). It can be appreciated that a branched alkanediyl has a minimum of three carbon atoms.
- the alkanediyl is C 2-14 alkanediyl, C 2-10 alkanediyl, C 2-8 alkanediyl, C 2-6 alkanediyl, C 2-4 alkanediyl, and in certain embodiments, C 2-3 alkanediyl.
- alkanediyl groups include methane-diyl (—CH 2 —), ethane-1,2-diyl (—CH 2 CH 2 —), propane-1,3-diyl and iso-propane-1,2-diyl (e.g., —CH 2 CH 2 CH 2 — and —CH(CH 3 )CH 2 —), butane-1,4-diyl (—CH 2 CH 2 CH 2 CH 2 —), pentane-1,5-diyl (—CH 2 CH 2 CH 2 CH 2 CH 2 —), hexane-1,6-diyl (—CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 —), heptane-1,7-diyl, octane-1,8-diyl, nonane-1,9-diyl, decane-1,10-diyl, dodecane-1,12-diyl, and the like.
- Alkanecycloalkane refers to a saturated hydrocarbon group having one or more cycloalkyl and/or cycloalkanediyl groups and one or more alkyl and/or alkanediyl groups, where cycloalkyl, cycloalkanediyl, alkyl, and alkanediyl are defined herein.
- each cycloalkyl and/or cycloalkanediyl group(s) is C 3-6 , C 5-6 , and in certain embodiments, cyclohexyl or cyclohexanediyl.
- each alkyl and/or alkanediyl group(s) is C 1-6 , C 1-4 , C 1-3 , and in certain embodiments, methyl, methanediyl, ethyl, or ethane-1,2-diyl.
- the alkanecycloalkane group is C 4-18 alkanecycloalkane, C 4-16 alkanecycloalkane, C 4-12 alkanecycloalkane, C 4-8 alkanecycloalkane, C 6-12 alkanecycloalkane, C 6-10 alkanecycloalkane, and in certain embodiments, C 6-9 alkanecycloalkane.
- alkanecycloalkane groups include 1,1,3,3-tetramethylcyclohexane and cyclohexylmethane.
- alkanecycloalkanediyl refers to a diradical of an alkanecycloalkane group.
- the alkanecycloalkanediyl group is C 4-18 alkanecycloalkanediyl, C 4-16 alkanecycloalkanediyl, C 4-12 alkanecycloalkanediyl, C 4-8 alkanecycloalkanediyl, C 6-12 alkanecycloalkanediyl, C 6-10 alkanecycloalkanediyl, and in certain embodiments, C 6-9 alkanecycloalkanediyl.
- alkanecycloalkanediyl groups include 1,1,3,3-tetramethylcyclohexane-1,5-diyl and cyclohexylmethane-4,4′-diyl.
- Alkenyl group refers to a group (R) 2 C ⁇ C(R) 2 or —RC ⁇ C(R) 2 where the alkenyl group is a terminal group and is bonded to a larger molecule.
- each R may be selected from, for example, hydrogen and C 1-3 alkyl.
- each R is hydrogen and an alkenyl group has the structure —CH ⁇ CH 2 .
- Alkoxy refers to a —OR group where R is alkyl as defined herein. Examples of alkoxy groups include methoxy, ethoxy, n-propoxy, isopropoxy, and n-butoxy. In certain embodiments, the alkoxy group is C 1-8 alkoxy, C 1-6 alkoxy, C 1-4 alkoxy, and in certain embodiments, C 1-3 alkoxy.
- Alkyl refers to a monoradical of a saturated, branched or straight-chain, acyclic hydrocarbon group having, for example, from 1 to 20 carbon atoms, from 1 to 10 carbon atoms, from 1 to 6 carbon atoms, from 1 to 4 carbon atoms, or from 1 to 3 carbon atoms.
- the alkyl group is C 2-6 alkyl, C 2-4 alkyl, and in certain embodiments, C 2-3 alkyl.
- alkyl groups include methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, tert-butyl, n-hexyl, n-decyl, tetradecyl, and the like.
- the alkyl group is C 2-6 alkyl, C 2-4 alkyl, and in certain embodiments, C 2-3 alkyl. It can be appreciated that a branched alkyl group has a minimum of three carbon atoms.
- Cycloalkanediyl refers to a diradical saturated monocyclic or polycyclic hydrocarbon group.
- the cycloalkanediyl group is C 3-12 cycloalkanediyl, C 3-8 cycloalkanediyl, C 3-6 cycloalkanediyl, and in certain embodiments, C 5-6 cycloalkanediyl.
- Examples of cycloalkanediyl groups include cyclohexane-1,4-diyl, cyclohexane-1,3-diyl, and cyclohexane-1,2-diyl.
- Cycloalkyl refers to a saturated monocyclic or polycyclic hydrocarbon monoradical group.
- the cycloalkyl group is C 3-12 cycloalkyl, C 3-8 cycloalkyl, C 3-6 cycloalkyl, and in certain embodiments, C 5-6 cycloalkyl.
- Heteroalkanediyl refers to an alkanediyl group in which one or more of the carbon atoms are replaced with a heteroatom, such as N, O, S, or P. In certain embodiments of heteroalkanediyl, the heteroatom is selected from N and O.
- Heterocycloalkanediyl refers to a cycloalkanediyl group in which one or more of the carbon atoms are replaced with a heteroatom, such as N, O, S, or P. In certain embodiments of heterocycloalkanediyl, the heteroatom is selected from N and O.
- a “Michael acceptor” refers to an activated alkene, such as an alkenyl group proximate to an electron-withdrawing group such as a ketone, nitro, halo, nitrile, carbonyl, or nitro group.
- Michael acceptors are well known in the art.
- a “Michael acceptor group” refers to an activated alkenyl group and an electron-withdrawing group.
- a Michael acceptor group is selected from a vinyl ketone, a vinyl sulfone, a quinone, an enamine, a ketimine, an aldimine, an oxazolidine, and an acrylate.
- Michael acceptors include acrylate esters, acrylonitrile, acrylamides, maleimides, alkyl methacrylates, cyanoacrylates.
- Other Michael acceptors include vinyl ketones, ⁇ , ⁇ -unsaturated aldehydes, vinyl phosphonates, acrylonitrile, vinyl pyridines, certain azo compounds, ⁇ -keto acetylenes and acetylene esters.
- a Michael acceptor group is derived from a vinyl ketone and has the structure of the formula —S(O) 2 —C(R) 2 ⁇ CH 2 , where each R is independently selected from hydrogen, fluorine, and C 1-3 alkyl. In certain embodiments, each R is hydrogen. In certain embodiments, a Michael acceptor or Michael acceptor group does not encompass acrylates.
- a “Michael acceptor compound” refers to a compound comprising at least one Michael acceptor. In certain embodiments, a Michael acceptor compound is divinyl sulfone, and a Michael acceptor group is vinylsulfonyl, e.g., —S(O) 2 —CH 2 ⁇ CH 2 .
- polymer refers to oligomers, homopolymers, and copolymers. Unless stated otherwise, molecular weights are number average molecular weights for polymeric materials indicated as “Mn” as determined, for example, by gel permeation chromatography using a polystyrene standard in an art-recognized manner.
- “Substituted” refers to a group in which one or more hydrogen atoms are each independently replaced with the same or different substituent(s).
- the substituent is selected from halogen, —S(O) 2 OH, —S(O) 2 , —SH, —SR where R is C 1-6 alkyl, —COOH, —NO 2 , —NR 2 where each R is independently selected from hydrogen and C 1-3 alkyl, —CN, ⁇ O, C 1-6 alkyl, —CF 3 , —OH, phenyl, C 2-6 heteroalkyl, C 5-6 heteroaryl, C 1-6 alkoxy, and —COR where R is C 1-6 alkyl.
- the substituent is chosen from —OH, —NH 2 , and C 1-3 alkyl.
- Copolymerizing adhesion promoters directly to a sulfur-containing polymer backbone can improve the adhesion of a composition such as a sealant composition. It will be appreciated that the general concept can be applied to any adhesion promoter and to any polymer.
- adhesion promoters provided by the present disclosure are copolymerized to the backbone of a sulfur-containing polymer such as a thiol-terminated sulfur-containing polymer, including, for example, thiol-terminated polythioethers and thiol-terminated polysulfides.
- an adhesion promoter is copolymerized to a thiol-terminated polythioether polymer.
- thiol-functional polythioethers are disclosed, for example, in U.S. Pat. No. 6,172,179.
- a thiol-functional polythioether comprises Permapol® P3.1E, available from PRC-DeSoto International Inc., Sylmar, Calif.
- an adhesion promoter is copolymerized to a polysulfide polymer.
- a polysulfide polymer can be any of the polymers disclosed, for example, in U.S. Pat. No. 4,623,711.
- an adhesion promoter useful for copolymerizing to a polymer backbone comprises a sulfur-containing compound having the structure of Formula (1): B(—V′—S—R 1 —S-A′) z1 (—V′—S—R 1 —SH) z2 (1)
- Compounds of Formula (1) comprise at least one terminal adhesion promoter moiety and at least two terminal thiol groups.
- the at least one adhesion promoter moiety provides adhesion to a surface and/or other constituent of a formulation of which it is a part, and the terminal thiol-groups react with a curing agent to form a polymer network.
- z2 is at least 2, and in certain embodiments, z2 is 2, 3, 4, and in certain embodiments z2 is 5.
- z1 is 1, 2, 3, and in certain embodiments, z1 is 4.
- a compound of Formula (1) is trivalent, such that z is 3, in certain embodiments, a compound of Formula (1) is tetravalent such that z is 4, and in certain embodiments, z is 5, and in certain embodiments, z is 6.
- R 1 is selected from C 2-6 alkanediyl and —[—(CHR 3 ) s —X—] q —(CHR 3 ) r —.
- R 1 is —[—(CHR 3 ) s —X—] q —(CHR 3 ) r —, and in certain embodiments X is —O— and in certain embodiments, X is —S—.
- R 1 is —[—(CHR 3 ) s —X—] q —(CHR 3 ) r —
- p is 2, r is 2, q is 1, and X is —S—
- p is 2, q is 2, r is 2, and X is —O—
- p is 2, r is 2, q is 1, and X is —O—.
- each R 3 is hydrogen, and in certain embodiments, at least one R 3 is methyl.
- each R 1 is the same, and in certain embodiments, at least one R 1 is different.
- the terminal group that is reactive with a thiol group in compound A is selected from an alkenyl group, an isocyanate group, an epoxy group, and a Michael acceptor group.
- the terminal group that is reactive with a thiol group in compound A is an alkenyl group, an isocyanate group, an epoxy group, and in certain embodiments, a Michael acceptor group.
- a terminal group that promotes adhesion is selected from a silane, a phosphonate, an amine, a carboxylic acid, and a phosphonic acid.
- a terminal group that promotes adhesion is a silane group, a phosphonate group, an amine group, a carboxylic acid group, and in certain embodiments, a phosphonic acid group.
- —V is a moiety comprising a terminal group that is reactive with a thiol group.
- —V is —R 10 —CH ⁇ CH 2 , wherein R 10 is selected from C 1-6 alkanediyl, substituted C 1-6 alkanediyl, C 1-6 heteroalkanediyl, and substituted C 1-6 heteroalkanediyl.
- R 10 is selected from C 1-6 alkanediyl, substituted C 1-6 alkanediyl, C 1-6 heteroalkanediyl, and substituted C 1-6 heteroalkanediyl.
- the structure of —V is not limited. In certain embodiments, each —V may be the same, and in certain embodiments, at least one —V may be different.
- Each A′ independently represents a moiety formed by the reaction of a compound A with a thiol group, wherein compound A is a compound having a terminal group that is reactive with a thiol group and a terminal group that promotes adhesion.
- groups that are reactive with thiol groups include alkenyl groups, isocyanate groups, epoxy groups, and Michael acceptor groups.
- Groups that promote adhesion are well-known in the art. Examples of groups that promote adhesion include silane groups, phosphonate groups, amine groups, including primary and secondary amines, carboxylic acid groups, and phosphonic acid groups.
- each A′ may be the same or, in certain embodiments, at least one A′ may be different.
- each A′ may comprise the same adhesion promoting group, and in certain embodiments, at least one of the adhesion promoting groups may be different.
- an adhesion promoting group may be a silane group, which may have the structure —Si(R 4 ) y1 (OR 5 ) y2 wherein y1 is selected from 0, 1, and 2; y2 is selected from 1, 2, and 3; and the sum of y1 and y2 is 3; each R 4 is independently selected from C 1-4 alkyl; and each R 5 is independently selected from C 1-4 alkyl.
- an adhesion promoting group may be a phosphonate group, which may have the structure —P( ⁇ O)(OR 6 ) 2 wherein each R 6 is independently selected from C 1-4 alkyl.
- an adhesion promoting group may be a phosphonic acid group, which has the structure —P( ⁇ O)(OR 6 ) 2 wherein each R 6 is hydrogen.
- an adhesion promoting group may be a primary amine, and in certain embodiments, a secondary amine.
- an adhesion promoting group may be a carboxylic acid group.
- A is selected from
- a group that is reactive with a thiol group is a Michael acceptor group.
- a Michael acceptor group comprises a moiety in which an electron withdrawing group such as a ketone or a sulfone is proximate to a terminal alkenyl group.
- Michael acceptor groups include vinyl ketones, vinyl sulfones, quinones, enamines, aldimines, ketimines, and acrylates.
- Other examples of electron withdrawing groups include a hindered secondary amine group, a tertiary amine group, an aziridinyl group, a urea group, a carbamate group, a carbodiimide group, and a halogen group. Accordingly, in such embodiments, compound A comprises a Michael acceptor group and a group that promotes adhesion.
- each -A′ is the same and is selected from Formula (2a), Formula (3a), Formula (4a), and Formula (5a): —CH 2 —CH 2 —R 4 —Si(R 5 ) y1 (OR 6 ) y2 (2a) —CH 2 —CH 2 —R 7 —P( ⁇ O)(OR 8 ) 2 (3a) —CH 2 —CH 2 —R 9 —NH 2 (4a) —CH 2 —CH 2 —R 10 —COOH (5a) where R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , and R 10 are as defined for Formulae (2)-(5).
- each -A′ is the same and is a moiety of Formula (2a), a moiety of Formula (3a), a moiety of Formula (4a), and in certain embodiments, a moiety of Formula (5a).
- compound A comprises the reaction products of (a) a compound of the formula HS—R 10 —S-D, wherein R 10 is selected from C 1-10 alkanediyl, substituted C 1-10 alkanediyl, C 1-10 heteroalkanediyl, and substituted C 1-10 heteroalkanediyl; and D comprises a terminal group that promotes adhesion; and (b) a compound having terminal Michael acceptor group and a terminal group that is reactive with a thiol group.
- a terminal Michael acceptor group is a vinyl sulfone and a terminal group that is reactive with a thiol group is selected from an alkenyl group and an epoxy group.
- compound A is divinyl sulfone.
- a compound having a terminal Michael acceptor group and a terminal group that promotes adhesion has the formula CH 2 ⁇ S(O) 2 —CH 2 —S—R 10 —S-D.
- Such compounds may be reacted with a polythiol, such as a trithiol, a tetrathiol, a pentathiol, a hexathiol, or a combination of any of the foregoing.
- Polythiols can have the structure B(—V) z wherein each —V is a moiety having a terminal thiol group and z is an integer from 3 to 6. Examples of suitable polythiols are disclosed in U.S. Publication No. 2011/0319559.
- each -A′ is the same and is selected from Formula (2b), Formula (3b), Formula (4b), and Formula (5b): —(CH 2 ) 2 —S(O) 2 —(CH 2 ) 2 —S—R 4 —Si(R 5 ) y1 (OR 6 ) y2 (2b) —(CH 2 ) 2 —S(O) 2 —(CH 2 ) 2 —S—R 7 —P( ⁇ O)(OR 8 ) 2 (3b) —(CH 2 ) 2 —S(O) 2 —(CH 2 ) 2 —S—R 9 —NH 2 (4b) —(CH 2 ) 2 —S(O) 2 —(CH 2 ) 2 —S—R 10 —COOH (5b) where R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , and R 10 are as defined for Formulae (2)-(5).
- each -A′ is the same and is a moiety of Formula (2b), a moiety of Formula (3b), a moiety of Formula (4b), and in certain embodiments, a moiety of Formula (5b).
- B represents a core of a z-valent, polyfunctional compound B(—V) z , where z is an integer from 3 to 6. In certain embodiments, z is 3, z is 4, z is 5, and in certain embodiments z is 6. In certain embodiments, a polyfunctional compound is trifunctional. In certain embodiments, a polyfunctional compounds is triallyl cyanurate (TAC) where B has the structure:
- each —V has the structure —O—CH 2 —CH ⁇ CH 2 .
- polyfunctional compound B(—V) z has a molecular weight less than 800 Daltons, less than 600 Daltons, less than 400 Daltons and in certain embodiments, less than 200 Daltons.
- Polyfunctional compounds B(—V) z in which z is at least 3 may be any of the polyfunctionalizing agents useful in polymer chemistry.
- Polyfunctionalizing agents having mixed functionality i.e., agents that include moieties (typically separate moieties), that react with both thiol and vinyl groups, may also be employed.
- Other useful polyfunctionalizing agents include trimethylolpropane trivinyl ether, and the polythiols described in U.S. Pat. No. 4,366,307, U.S. Pat. No. 4,609,762, and U.S. Pat. No. 5,225,472, each of which is incorporated by reference in its entirety. Combinations of polyfunctionalizing agents having the same terminal groups such as thiol groups or allyl groups may also be used.
- Each —V is a moiety comprising a terminal group that is reactive with a thiol group such as, for example, an alkenyl group, an epoxy group, or a Michael acceptor group.
- a thiol group such as, for example, an alkenyl group, an epoxy group, or a Michael acceptor group.
- each —V is the same, and in certain embodiments, at least one —V is different.
- —V is selected from C 3-8 alkene-1-yl and C 3-8 heteroalkene-1-yl, where the one or more hetero groups is selected from —O— and —S—.
- Each —V′— represents a moiety formed by the reaction of a moiety —V with a thiol group.
- —V comprises a terminal alkenyl group selected from C 3-8 alkene-1-yl and C 3-8 heteroalkene-1-yl, and V′ is selected from C 3-8 alkanediyl and C 3-8 heteroalkanediyl.
- a sulfur-containing adhesion promoter comprises the reaction products of reactants comprising: (a) a polyfunctional sulfur-containing compound having terminal groups that are reactive with thiol groups; (b) a dithiol; and (c) a compound having a terminal group that is reactive with a thiol group and a terminal second group that promotes adhesion.
- the reaction products comprise one or more compounds of Formula (1).
- a polyfunctional compound having terminal groups reactive with thiol groups has the structure B(—V) z where z is an integer from 3 to 6, and B and —V are as defined herein.
- each —V comprises a terminal alkenyl group.
- a dithiol has the structure of Formula (6): HS—R 1 —SH (6)
- R 1 is —[—(CHR 3 ) s —X—] q —(CHR 3 ) r —.
- X is selected from —O— and —S—, and thus —[—(CHR 3 ) s —X—] q —(CHR 3 ) r — in Formula (6) is —[(—CH 2 —) p —O—] q —(CH 2 ) r — or —[(—CH 2 —) p —S—] q —(CH 2 ) r —.
- p and r are equal, such as where p and r are both two.
- R 1 is selected from C 2-6 alkanediyl and —[—(CHR 3 ) s —X—] q —(CHR 3 ) r —.
- R 1 is —[—(CHR 3 ) s —X—] q —(CHR 3 ) r —, and in certain embodiments X is —O—, and in certain embodiments, X is —S—.
- R 1 is —[—(CHR 3 ) s —X—] q —(CHR 3 ) r —
- p is 2, r is 2, q is 1, and X is —S—
- p is 2, q is 2, r is 2, and X is —O—
- p is 2, r is 2, q is 1, and X is —O—.
- each R 3 is hydrogen, and in certain embodiments, at least one R 3 is methyl.
- each R 1 is the same, and in certain embodiments, at least one R 1 is different.
- dithiols examples include, for example, 1,2-ethanedithiol, 1,2-propanedithiol, 1,3-propanedithiol, 1,3-butanedithiol, 1,4-butanedithiol, 2,3-butanedithiol, 1,3-pentanedithiol, 1,5-pentanedithiol, 1,6-hexanedithiol, 1,3-dimercapto-3-methylbutane, dipentenedimercaptan, ethylcyclohexyldithiol (ECHDT), dimercaptodiethylsulfide, methyl-substituted dimercaptodiethylsulfide, dimethyl-substituted dimercaptodiethylsulfide, dimercaptodioxaoctane, 1,5-dimercapto-3-oxapentane, and a combination of any of the foregoing
- a polythiol may have one or more pendant groups selected from a lower (e.g., C 1-6 ) alkyl group, a lower alkoxy group, and a hydroxyl group.
- Suitable alkyl pendant groups include, for example, C 1-6 linear alkyl, C 3-6 branched alkyl, cyclopentyl, and cyclohexyl.
- Suitable dithiols include dimercaptodiethylsulfide (DMDS) (in Formula (6), R 1 is —[(—CH 2 —) p —X—] q —(CH 2 ) r —, wherein p is 2, r is 2, q is 1, and X is —S—); dimercaptodioxaoctane (DMDO) (in Formula (6), R 1 is —[(—CH 2 —) p —X—] q —(CH 2 ) r —, wherein p is 2, q is 2, r is 2, and X is —O—); and 1,5-dimercapto-3-oxapentane (in Formula (6), R 1 is —[(—CH 2 —) p —X—] q —(CH 2 ) r —, wherein p is 2, r is 2, q is 1, and X is —O—).
- DMDS dim
- dithiols that include both heteroatoms in the carbon backbone and pendant alkyl groups, such as methyl groups.
- Such compounds include, for example, methyl-substituted DMDS, such as HS—CH 2 CH(CH 3 )—S—CH 2 CH 2 —SH, HS—CH(CH 3 )CH 2 —S—CH 2 CH 2 —SH and dimethyl substituted DMDS, such as HS—CH 2 CH(CH 3 )—S—CHCH 3 CH 2 —SH and HS—CH(CH 3 )CH 2 —S—CH 2 CH(CH 3 )—SH.
- DMDS such as HS—CH 2 CH(CH 3 )—S—CH 2 CH 2 —SH, HS—CH(CH 3 )CH 2 —S—CH 2 CH(CH 3 )—SH.
- the terminal group that is reactive with a thiol group is selected from an alkenyl group, an isocyanate group, an epoxy group, and a Michael acceptor group; and the terminal group that promotes adhesion is selected from a silane, a phosphonate, an amine, a carboxylic acid, and a phosphonic acid.
- a compound having a first group that is reactive with a thiol group and a second group that promotes adhesion is a vinyl silane.
- a vinyl silane has the structure of Formula (2): CH 2 ⁇ CH 2 —R 4 —Si(R 5 ) y1 (OR 6 ) y2 (2)
- a vinyl silane is selected from trimethoxy(vinyl)silane, ethoxydimethoxy(vinyl)silane, diethoxy(methoxy)(vinyl)silane, triethoxy(vinyl)silane, and a combination of any of the foregoing.
- a compound having a terminal group that is reactive with a thiol group and a terminal group that promotes adhesion is a vinyl phosphonate.
- a vinyl phosphonate has the structure of Formula (3): CH 2 ⁇ CH 2 —R 7 —P( ⁇ O)(OR 8 ) 2 (3)
- a vinyl phosphonate is selected from vinylphosphonic acid, dimethyl vinylphosphonate, ethyl methyl vinylphosphonate, diethyl vinylphosphonate, and a combination of any of the foregoing.
- a vinyl amine has the structure of Formula (4): CH 2 ⁇ CH 2 —R 9 —NH 2 (4) where R 9 is selected from C 1-10 alkanediyl, substituted C 1-10 alkanediyl, C 1-10 heteroalkanediyl, and substituted C 1-10 heteroalkanediyl.
- a vinyl amine comprises the reaction products of reactants comprising a vinyl epoxide and a diamine.
- the vinyl epoxide has the structure of Formula (7):
- the diamine has the structure of Formula (8): NH 2 —R 12 —NH 2 (8) where R 12 is C 1-6 alkanediyl.
- a diamine is selected from N-(aminomethyl)methanediamine, N 1 -(2-aminoethyl)ethane-1,2-diamine, and a combination thereof.
- the compound having a terminal group that is reactive with a thiol group and a terminal group that promotes adhesion is a vinyl carboxylic acid and has the structure of Formula (5): CH 2 ⁇ CH 2 —R 10 —COOH (5) where R 10 is C 1-6 alkanediyl.
- a vinyl carboxylic acid is selected from but-3-enoic acid, pent-4-enoic acid, and hex-5-enoic acid.
- the terminal group that is reactive with a thiol group is a Michael acceptor group; and the terminal group that promotes adhesion is selected from a silane, a phosphonate, an amine, a carboxylic acid, and a phosphonic acid.
- the compound may be prepared by reacting (a) a thiol-terminated compound of the formula HS—R—S-D, wherein R is selected from C 1-10 alkanediyl, substituted C 1-10 alkanediyl, C 1-10 heteroalkanediyl, and substituted C 1-10 heteroalkanediyl; and D comprises a group that promotes adhesion; with (b) a compound comprising a group that is reactive with a thiol group and a Michael acceptor group.
- a compound comprising a group that is reactive with a thiol group and a Michael acceptor group is a vinyl sulfone.
- a compound comprising a group that is reactive with a thiol group and a Michael acceptor group is divinyl sulfone.
- the polyfunctionalizing agent and the dithiol may be reacted to form a thiol-terminated intermediate.
- the molar ratios of the reactants are appropriately selected.
- one mole of a trifunctional compound such as TAC can be reacted with three moles of a dithiol such as DMDO to provide a trifunctional, thiol-terminated intermediate.
- a trifunctional, thiol-terminated intermediate may subsequently be reacted with a compound comprising a group that is reactive with a thiol group and a group that promotes adhesion.
- the molar ratio of the intermediate and a compound comprising a group that is reactive with a thiol group and a group that promotes adhesion may be selected to provide a polyfunctional compound having a desired average adhesion promoter functionality.
- a polyfunctional compound having a desired average adhesion promoter functionality For example, to obtain an average adhesion promoter functionality of about one, about one mole of polyfunctional intermediate is reacted with about one mole of a compound comprising a terminal group that is reactive with a thiol group and a terminal group that promotes adhesion.
- sulfur-containing compounds comprising adhesion promoting groups
- the compounds comprise at least one terminal group that promotes adhesion and at least two terminal thiol groups capable of reacting with a curing agent and thereby be incorporated into the backbone of the polymer network, e.g., copolymerized.
- the sulfur-containing compound comprises, on average, a single adhesion promoting group per molecule, and in certain embodiments, an average of two adhesion promoting groups per molecule.
- a sulfur-containing adhesion promoter comprises the reaction products of reactants comprising TAC, DMDO, and a vinyl silane selected from trimethoxy(vinyl)silane, ethoxydimethoxy(vinyl)silane, diethoxy(methoxy)(vinyl)silane, and triethoxy(vinyl) silane.
- a sulfur-containing adhesion promoter comprises the reaction products of reactants comprising TAC, DMDO, and a vinyl phosphonate selected from vinylphosphonic acid, dimethyl vinylphosphonate, ethyl methyl vinylphosphonate, and diethyl vinylphosphonate.
- a sulfur-containing adhesion promoter comprises the reaction products of reactants comprising TAC, DMDO, and a diamine selected from N-(aminomethyl)methanediamine and N 1 -(2-aminoethyl)ethane-1,2-diamine.
- Sulfur-containing adhesion promoters provided by the present disclosure may be used in compositions, such as compositions formulated as sealants useful in the aerospace industry.
- compositions such as sealants provided by the present disclosure comprise (a) at least one sulfur-containing compound provided by the present disclosure; (b) at least one thiol-terminated sulfur-containing polymer; and (c) at least one curing agent.
- a thiol-terminated sulfur-containing polymer is selected from a thiol-terminated polythioether, a thiol-terminated polysulfide, and a combination thereof.
- a thiol-terminated sulfur-containing polymer comprises a thiol-terminated polythioether.
- a thiol-terminated polythioether may comprise a mixture of different polythioethers and the polythioethers may have the same or different functionality of thiol groups.
- a thiol-terminated polythioether has an average functionality from 2 to 6, from 2 to 4, from 2 to 3, and in certain embodiments, from 2.05 to 2.8.
- a thiol-terminated polythioether may be selected from a difunctional sulfur-containing polymer, a trifunctional sulfur-containing polymer, and a combination thereof.
- thiol-functional polythioethers examples include Permapol® P3.1E available from PRC-DeSoto International Inc., Sylmar, Calif.
- a thiol-terminated polythioether comprises (a) a backbone comprising a structure having the Formula (12): —R 1 —[—S—(CH 2 ) 2 —O—[—R 2 —O—] m —(CH 2 ) 2 —S—R 1 ] n — (12) where (i) each R 1 is independently selected from a C 2-10 n-alkanediyl group, a C 3-6 branched alkanediyl group, a C 6-8 cycloalkanediyl e group, a C 6-10 alkanecycloalkanediyl group, a heterocyclic group, a —[(—CH 2 —) p —X—] q —(CH 2 ) r — group, and a —[(—CH 2 —) p —X—] q —(CH 2 ) r — group in which at least one —
- a thiol-terminated polythioether is selected from a thiol-terminated polythioether of Formula (13), a thiol-terminated polythioether of Formula (13a), and a combination thereof: HS—R 1 —[—S—(CH 2 ) p —O—(R 2 —O) m —(CH 2 ) 2 —S—R 1 —] n —SH (13) ⁇ HS—R 1 —[—S—(CH 2 ) p —O—(R 2 —O) m —(CH 2 ) 2 —S—R 1 —] n —S—V′— ⁇ z B (13a)
- R 1 in Formula (13) and in Formula (13a) is —[(—CH 2 —) p —X—] q —(CH 2 ) r —, where p is 2, X is —O—, q is 2, r is 2, R 2 is ethanediyl, m is 2, and n is 9.
- R 1 is selected from C 2-6 alkanediyl and —[—(CHR 3 ) s —X—] q —(CHR 3 ) r —.
- R 1 is —[—(CHR 3 ) s —X—] q —(CHR 3 ) r —, and in certain embodiments X is —O— and in certain embodiments, X is —S—.
- R 1 is —[—(CHR 3 ) s —X—] q —(CHR 3 ) r —, p is 2, r is 2, q is 1, and X is —S—; in certain embodiments, p is 2, q is 2, r is 2, and X is —O—; and in certain embodiments, p is 2, r is 2, q is 1, and X is —O—.
- each R 3 is hydrogen, and in certain embodiments, at least one R 3 is methyl.
- each R 1 is the same, and in certain embodiments, at least one R 1 is different.
- thiol-functional polythioethers examples include difunctional, that is, linear polymers having two thiol end groups, or polyfunctional, that is, branched polymers have three or more thiol end groups.
- Suitable thiol-functional polythioethers are commercially available, for example, as Permapol® P3.1E from PRC-DeSoto International Inc., Sylmar, Calif.
- Suitable thiol-functional polythioethers may be produced by reacting a divinyl ether or mixtures of divinyl ethers with an excess of dithiol or a mixtures of dithiols.
- dithiols suitable for use in preparing such thiol-functional polythioethers include those having Formula (6), other dithiols disclosed herein, or combinations of any of the dithiols disclosed herein.
- Suitable divinyl ethers include, for example, divinyl ethers have Formula (14): CH 2 ⁇ CH—O—(—R 2 —O—) m —CH ⁇ CH 2 (14) where R 2 in Formula (14) is selected from a C 2-6 n-alkanediyl group, a C 3-6 branched alkanediyl group, a C 6-8 cycloalkanediyl group, a C 6-10 alkanecycloalkanediyl group, and —[(—CH 2 —) p —O—] q —(—CH 2 —) r —, where p is an integer ranging from 2 to 6, q is an integer from 1 to 5, and r is an integer from 2 to 10.
- R 2 is a C 2-6 n-alkanediyl group, a C 3-6 branched alkanediyl group, a C 6-8 cycloalkanediyl group, a C 6-10 alkanecycloalkanediyl group, and in certain embodiments, —[(—CH 2 —) p —O—] q —(—CH 2 —) r —.
- Suitable divinyl ethers include, for example, compounds having at least one oxyalkanediyl group, such as from 1 to 4 oxyalkanediyl groups, i.e., compounds in which m in Formula (14) is an integer ranging from 1 to 4. In certain embodiments, m in Formula (14) is an integer ranging from 2 to 4. It is also possible to employ commercially available divinyl ether mixtures that are characterized by a non-integral average value for the number of oxyalkanediyl units per molecule. Thus, m in Formula (14) can also take on rational number values ranging from 0 to 10.0, such as from 1.0 to 10.0, from 1.0 to 4.0, or from 2.0 to 4.0.
- Suitable divinyl ethers include, for example, divinyl ether, ethylene glycol divinyl ether (EG-DVE) (R 2 in Formula (14) is ethanediyl and m is 1), butanediol divinyl ether (BD-DVE) (R 2 in Formula (14) is butanediyl and m is 1), hexanediol divinyl ether (HD-DVE) (R 2 in Formula (14) is hexanediyl and m is 1), diethylene glycol divinyl ether (DEG-DVE) (R 2 in Formula (4) is ethanediyl and m is 2), triethylene glycol divinyl ether (R 2 in Formula (14) is ethanediyl and m is 3), tetraethylene glycol divinyl ether (R 2 in Formula (14) is ethanediyl and m is 4), cyclohexanedimethanol divinyl
- divinyl ethers in which R 2 in Formula (14) is C 3-6 branched alkanediyl may be prepared by reacting a polyhydroxy compound with acetylene.
- divinyl ethers of this type include compounds in which R 2 in Formula (14) is an alkyl-substituted methanediyl group such as —CH(CH 3 )— (for example Pluriol® blends such as Pluriol®E-200 divinyl ether (BASF Corp., Parsippany, N.J.), for which R 2 in Formula (14) is ethanediyl and m is 3.8) or an alkyl-substituted ethanediyl (for example —CH 2 CH(CH 3 )— such as DPE polymeric blends including DPE-2 and DPE-3 (International Specialty Products, Wayne, N.J.)).
- divinyl ethers include compounds in which R 2 in Formula (14) is polytetrahydrofuryl (poly-THF) or polyoxyalkanediyl, such as those having an average of about 3 monomer units.
- Two or more types of polyvinyl ether monomers of Formula (14) may be used.
- two dithiols of Formula (6) and one polyvinyl ether monomer of Formula (14), one dithiol of Formula (6) and two polyvinyl ether monomers of Formula (14), two dithiols of Formula (6) and two divinyl ether monomers of Formula (14), and more than two compounds of one or both formulas may be used to produce a variety of thiol-functional polythioethers.
- a polyvinyl ether monomer comprises 20 to less than 50 mole percent of the reactants used to prepare a thiol-functional polythioether, and, in certain embodiments, 30 to less than 50 mole percent.
- relative amounts of dithiols and divinyl ethers are selected to yield terminal thiol groups.
- a dithiol of Formula (6) or a mixture of at least two different dithiols of Formula (6) are reacted with of a divinyl ether of Formula (14) or a mixture of at least two different divinyl ethers of Formula (14) in relative amounts such that the molar ratio of thiol groups to vinyl groups is greater than 1:1, such as 1.1 to 2.0:1.0.
- the reaction between compounds of dithiols and divinyl ethers may be catalyzed by a free radical catalyst.
- Suitable free radical catalysts include, for example, azo compounds, for example azobisnitriles such as azo(bis)isobutyronitrile (AIBN); organic peroxides such as benzoyl peroxide and t-butyl peroxide; and inorganic peroxides such as hydrogen peroxide.
- the catalyst may be a free-radical catalyst, an ionic catalyst, or ultraviolet radiation. In certain embodiments, the catalyst does not comprise acidic or basic compounds, and does not produce acidic or basic compounds upon decomposition.
- free-radical catalysts examples include azo-type catalyst, such as Vazo®-57 (Du Pont), Vazo®-64 (Du Pont), Vazo®-67 (Du Pont), V-70® (Wako Specialty Chemicals), and V-65B® (Wako Specialty Chemicals).
- azo-type catalyst such as Vazo®-57 (Du Pont), Vazo®-64 (Du Pont), Vazo®-67 (Du Pont), V-70® (Wako Specialty Chemicals), and V-65B® (Wako Specialty Chemicals).
- alkyl peroxides such as t-butyl peroxide.
- the reaction may also be effected by irradiation with ultraviolet light either with or without a cationic photoinitiating moiety.
- Thiol-functional polythioethers provided by the present disclosure may be prepared by combining at least one compound of Formula (6) and at least one compound of Formula (14) followed by addition of an appropriate catalyst, and carrying out the reaction at a temperature from 30° C. to 120° C., such as 70° C. to 90° C., for a time from 2 to 24 hours, such as 2 to 6 hours.
- thiol-terminated polythioethers may comprise a polyfunctional polythioether, i.e., may have an average functionality of greater than 2.0.
- Suitable polyfunctional thiol-terminated polythioethers include, for example, those having the structure of Formula (15): B(-A—SH) z (15) wherein: (i) A comprises a structure of Formula (15), (ii) B denotes a z-valent residue of a polyfunctionalizing agent; and (iii) z has an average value of greater than 2.0, and, in certain embodiments, a value between 2 and 3, a value between 2 and 4, a value between 3 and 6, and in certain embodiments, is an integer from 3 to 6.
- Polyfunctionalizing agents suitable for use in preparing such polyfunctional thiol-functional polymers include trifunctionalizing agents, that is, compounds where z is 3.
- Suitable trifunctionalizing agents include, for example, triallyl cyanurate (TAC), 1,2,3-propanetrithiol, isocyanurate-containing trithiols, and combinations thereof, as disclosed in U.S. Publication No. 2010/0010133 at paragraphs [0102]-[0105], the cited portion of which is incorporated herein by reference.
- Other useful polyfunctionalizing agents include trimethylolpropane trivinyl ether, and the polythiols described in U.S. Pat. Nos. 4,366,307; 4,609,762; and 5,225,472. Mixtures of polyfunctionalizing agents can also be used.
- thiol-functional polythioethers suitable for use in embodiments provided by the present disclosure may have a wide range of average functionality.
- trifunctionalizing agents may afford average functionalities from 2.05 to 3.0, such as from 2.1 to 2.6.
- Wider ranges of average functionality may be achieved by using tetrafunctional or higher functionality polyfunctionalizing agents.
- Functionality may also be affected by factors such as stoichiometry, as will be understood by those skilled in the art.
- Thiol-functional polythioethers having a functionality greater than 2.0 may be prepared in a manner similar to the difunctional thiol-functional polythioethers described in U.S. Publication No. 2010/0010133.
- polythioethers may be prepared by combining (i) one or more dithiols described herein, with (ii) one or more divinyl ethers described herein, and (iii) one or more polyfunctionalizing agents. The mixture may then be reacted, optionally in the presence of a suitable catalyst, to afford a thiol-functional polythioether having a functionality greater than 2.0.
- a thiol-terminated polythioether comprises the reaction product of reactants comprising:
- Thiol-terminated polythioethers provided by the present disclosure represent thiol-terminated polythioethers having a molecular weight distribution.
- thiol-terminated polythioethers useful in compositions can exhibit a number average molecular weight ranging from 500 Daltons to 20,000 Daltons, in certain embodiments, from 2,000 Daltons to 5,000 Daltons, and in certain embodiments, from 3,000 Daltons to 4,000 Daltons.
- thiol-terminated polythioethers useful in compositions provided by the present disclosure exhibit a polydispersity (M w /M n ; weight average molecular weight/number average molecular weight) ranging from 1 to 20, and in certain embodiments, from 1 to 5.
- the molecular weight distribution of thiol-terminated polythioethers may be characterized by gel permeation chromatography.
- a thiol-terminated sulfur-containing polymer comprises a thiol-terminated polysulfide.
- polysulfide refers to a polymer that contains one or more disulfide linkages, i.e., —[S—S]— linkages, in the polymer backbone and/or in the terminal or pendant positions on the polymer chain. Often, a polysulfide polymer will have two or more sulfur-sulfur linkages. Suitable polysulfides are commercially available from Akzo Nobel under the name Thioplast®. Thioplast® products are available in a wide range of molecular weights ranging, for example, from less than 1,100 to over 8,000, with molecular weight being the average molecular weight in grams per mole.
- a polysulfide has a number average molecular weight of 1,000 to 4,000.
- the crosslink density of these products also varies, depending on the amount of crosslinking agent used.
- the —SH content, i.e., mercaptan or thiol content, of these products can also vary.
- the mercaptan content and molecular weight of the polysulfide can affect the cure speed of the polymer, with cure speed increasing with molecular weight.
- a polysulfide as previously described comprising thiol-terminated polysulfide comprises a polymeric mixture comprising: (a) from 90 mole percent to 25 mole percent of mercaptan terminated disulfide polymer of the formula HS(RSS) m R′SH; and (b) from 10 mole percent to 75 mole percent of diethyl formal mercaptan terminated polysulfide polymer of the formula HS(RSS) n RSH, wherein R is —C 2 H 4 —O—CH 2 —O—C 2 H 4 —; R′ is a divalent member selected from alkyl of from 2 to 12 carbon atoms, alkyl thioether of from 4 to 20 carbon atoms, alkyl ether of from 4 to 20 carbon atoms and one oxygen atom, alkyl ether of from 4 to 20 carbon atoms and from 2 to 4 oxygen atoms each of which is separated from the other
- R′ in the above formula is —CH 2 —CH 2 —; —C 2 H 4 —O—C 2 H 4 —; —C 2 H 4 —S—C 2 H 4 —; —C 2 H 4 —O—C 2 H 4 —O—C 2 H 4 —; or —CH 2 —C 6 H 4 —CH 2 —.
- a polysulfide comprises a thiol-terminated polysulfide such as those commercially available from Akzo Nobel under the name Thioplast® and from Toray under the name Thiokol®-LP.
- a curing agent may be selected that is reactive with the terminal groups of the sulfur-containing polymer and the sulfur-containing compound.
- a sulfur-containing polymer and a sulfur-containing compound provided by the present disclosure comprise the same groups reactive with the curing agent.
- both a sulfur-containing polymer and a sulfur-containing compound provided by the present disclosure comprise reactive thiol groups, and the curing agent comprises reactive alkenyl groups, epoxy groups, isocyanate groups, or Michael acceptor groups.
- a sulfur-containing compound provided by the present disclosure may be present in an amount from 0.1 wt % to 15 wt % of a composition, such as 0.1 to less than 5 wt %, 0.1 to less than 2 wt %, and in certain embodiments, 0.1 to less than 1 wt %, based on the total dry weight of the composition.
- compounds provided by the present disclosure comprise, in addition to the one or more sulfur-containing compounds provided by the present disclosure, one or more additional adhesion promoters.
- a one or more additional adhesion promoter may be present in an amount from 0.1 wt % to 15 wt % of a composition, such as 0.1 to less than 5 wt %, 0.1 to less than 2 wt %, and in certain embodiments, 0.1 to less than 1 wt %, based on the total dry weight of the composition.
- adhesion promoters examples include phenolics, such as Methylon® phenolic resin, and organosilanes, such as epoxy, mercapto or amino functional silanes, such as Silquest® A-187 and Silquest® A-1100.
- organosilanes such as epoxy, mercapto or amino functional silanes, such as Silquest® A-187 and Silquest® A-1100.
- Other useful adhesion promoters are known in the art.
- a composition provided by the present disclosure comprises an ethylenically unsaturated silane, such as, for example, a sulfur-containing ethylenically unsaturated silane, which can improve the adhesion of a cured sealant to a metal substrate.
- an ethylenically unsaturated silane such as, for example, a sulfur-containing ethylenically unsaturated silane, which can improve the adhesion of a cured sealant to a metal substrate.
- sulfur-containing ethylenically unsaturated silane refers to a molecular compound that comprises, within the molecule, (i) at least one sulfur (S) atom, (ii) at least one, in some cases at least two, ethylenically unsaturated carbon-carbon bonds, such as a carbon-carbon double bonds (C ⁇ C); and (iii) at least one silane group, —Si(—R) m (—OR) 3-m , where each R is independently selected from hydrogen, alkyl, cycloalkyl, aryl, and others, and m is selected from 0, 1, and 2. Examples of ethylenically unsaturated silanes are disclosed in U.S. Publication no. 2012/0040104, which is incorporated herein by reference.
- a sulfur-containing ethylenically unsaturated silane which is suitable for use in a composition provided by the present disclosure, comprises the reaction products of reactants comprising (i) a mercaptosilane, and (ii) a polyene.
- mercaptosilane refers to a molecular compound that comprises, within the molecule, (i) at least one mercapto (—SH) group, and (ii) at least one silane group.
- Suitable mercaptosilanes include, for example, those having a structure HS—R′—Si(—R) m (—OR) 3-m , where R and m are defined as for a silane group, and R′ is a divalent organic group.
- Examples of mercaptosilanes which are suitable for use in preparing the sulfur-containing ethylenically unsaturated silanes include ⁇ -mercaptopropyltrimethoxysilane, ⁇ -mercaptopropyltriethoxysilane, ⁇ -mercaptopropylmethyldimethoxysilane, ⁇ -mercaptopropylmethyldiethoxysilane, mercaptomethyltrimethoxysilane mercaptomethyltriethoxysilane, and combinations of any of the foregoing.
- a polyene used to prepare sulfur-containing ethylenically unsaturated silanes comprises a triene, which refers to a compound containing three carbon-carbon double bonds, such as, for example, triallyl cyanurate and triallyl isocyanurate.
- a polyene comprises a triene, such as one or more of the foregoing triallyl compounds, and a mercaptosilane and triene are reacted together in relative amounts such that the resulting reaction product theoretically comprises an average of at least two ethylenically unsaturated groups per molecule.
- an ethylenically unsaturated silane comprises the reaction products of ⁇ -mercaptopropyltrimethoxysilane and triallyl cyanurate.
- compositions provided by the present disclosure contain an essentially stoichiometric equivalent amount of thiol groups to “ene” groups in order to obtain a cured sealant having acceptable sealant properties as described herein upon exposure of the composition to actinic radiation.
- “essentially stoichiometric equivalent” means that the number of thiol groups and “ene” groups present in the compositions differ by no more than 10% from each other, in some cases, no more than 5% or, in some cases, no more than 1% or no more than 0.1%. In some cases, the number of thiol groups and “ene” groups present in the composition are equal.
- the source of “ene” groups can include the ethylenically unsaturated silane itself (if used) as well as the other polyene(s) included in the composition.
- an ethylenically unsaturated silane is present in an amount such that 0.1 to 30, such as 1 to 30, or, in some cases, 10 to 25 percent of the total number of ethylenically unsaturated groups present in the composition are part of an ethylenically unsaturated silane molecule, based on the number of ethylenically unsaturated groups in the composition.
- methods provided by the present disclosure comprise exposing an uncured sealant composition to actinic radiation to provide a cured sealant.
- the composition particularly when the cured sealant is to be formed by exposure of the previously described uncured sealant composition to UV radiation, the composition also comprises a photoinitiator.
- a photoinitiator absorbs ultraviolet radiation and transforms it into a radical that initiates polymerization.
- Photoinitiators are classified in two major groups based upon a mode of action, either or both of which may be used in the compositions described herein.
- Cleavage-type photoinitiators include acetophenones, ⁇ -aminoalkylphenones, benzoin ethers, benzoyl oximes, acylphosphine oxides and bisacylphosphine oxides and mixtures thereof.
- Abstraction-type photoinitiators include benzophenone, Michler's ketone, thioxanthone, anthraquinone, camphorquinone, fluorone, ketocoumarin and mixtures thereof.
- Non-limiting examples of suitable photoinitiators include benzil, benzoin, benzoin methyl ether, benzoin isobutyl ether benzophenol, acetophenone, benzophenone, 4,4′-dichlorobenzophenone, 4,4′-bis(N,N′-dimethylamino)benzophenone, diethoxyacetophenone, fluorones, e.g., the H-Nu series of initiators available from Spectra Group Ltd., 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-isopropylthixantone, ⁇ -aminoalkylphenone, e.g., 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-1-butanone, acylphosphine oxides, e.g., 2,6-dimethylbenzoyldlphenyl phosphine oxide,
- a composition described herein comprise 0.01 up to 15 percent by weight of photoinitiator or, in some embodiments, 0.01 up to 10 percent by weight, or, in yet other embodiments, 0.01 up to 5 percent by weight of photoinitiator based on the total weight of the composition.
- methods comprise exposing an uncured sealant composition to actinic radiation to provide a cured sealant.
- a thiol-ene reaction which forms the cured sealant, can be carried out by irradiating an uncured composition comprising: (a) a thiol-terminated polythioether (such as any of those described above); (b) a sulfur-containing adhesion promoter, and (c) a polyene comprising a polyvinyl ether and/or a polyallyl compound as described above, with actinic radiation.
- actinic radiation encompasses electron beam (EB) radiation, ultraviolet (UV) radiation, and visible light.
- a thiol-ene reaction is effected by irradiating the composition with UV light and, in such cases, as mentioned above; the composition often further comprises a photoinitiator, among other optional ingredients.
- Ultraviolet radiation from any suitable source which emits ultraviolet light having a wavelength ranging from, for example, 180 nm to 400 nm, may be employed to initiate the thiol-ene reaction described above and thereby form the cured sealant.
- Suitable sources of ultraviolet light are generally known and include, for example, mercury arcs, carbon arcs, low pressure mercury lamps, medium pressure mercury lamps, high pressure mercury lamps, swirl-flow plasma arcs and ultraviolet light emitting diodes. Certain embodiments of the compositions can exhibit an excellent degree of cure in air at relatively low energy exposure in ultraviolet light.
- compositions provided by the present disclosure may be cured using actinic radiation.
- compositions comprising polythioether compositions curable using actinic radiation are disclosed in U.S. Publication no. 2012/0040104.
- Such compositions may include, in addition to a sulfur-containing compound (adhesion promoter) provided by the present disclosure, and one or more sulfur-containing polymers such as thiol-terminated sulfur-containing polymers, a polyene such as a polyvinyl ether including, for example, a polyvinyl ether of Formula (14).
- compositions provided by the present disclosure are UV curable, as will be understood by those skilled in the art, other curing chemistries may also be employed with the use of one or more appropriate curing agents.
- curing agent refers to a compound that can be added to a composition provided by the present disclosure to accelerate the curing or gelling of the composition. Curing or cure can refer to the point at which the sealant achieves a cure hardness of 30 Durometer as measured according to ASTM D2240. Any suitable curing agent can be used.
- a curing agent comprises an oxidizing agent that oxidizes terminal mercaptan groups to form disulfide bonds.
- Suitable oxidizing curing agents include, for example, lead dioxide, manganese dioxide, calcium dioxide, sodium perborate monohydrate, calcium peroxide, zinc peroxide, dichromate and epoxy.
- Other suitable curing agents may contain reactive functional groups that are reactive with the functional groups in the sulfur-containing polymers disclosed herein. Examples include polythiols such as polythioethers; polyisocyanates such as isophorone, diisocyanate, and hexamethylene diisocyanate including mixtures thereof and including isocyanurate derivatives thereof; and polyepoxides.
- polyepoxides examples include hydantoin diepoxide, bisphenol-A epoxides, bisphenol-F epoxides, Novolac type epoxides, aliphatic polyepoxides, and any of the epoxidized unsaturated and phenolic resins.
- polyepoxide refers to a compound having a 1,2-epoxy equivalent greater than one and includes monomers, oligomers, and polymers.
- compositions provided by the present disclosure comprise one or more curing agents such as an iso-epoxy, an isocyanate, and a combination thereof.
- compositions provided by the present disclosure may include one or more catalysts.
- compositions provided by the present disclosure may comprise one or more different types of filler.
- suitable fillers include those commonly known in the art, including inorganic fillers, such as carbon black and calcium carbonate (CaCO 3 ), silica, polymer powders, and lightweight fillers.
- Suitable lightweight fillers include, for example, those described in U.S. Pat. No. 6,525,168.
- a composition includes 5 wt % to 60 wt % of the filler or combination of fillers, 10 wt % to 50 wt %, and in certain embodiments, from 20 wt % to 40 wt %, based on the total dry weight of the composition.
- compositions provided by the present disclosure may further include one or more colorants, thixotropic agents, accelerators, fire retardants, adhesion promoters, solvents, masking agents, or a combination of any of the foregoing.
- fillers and additives employed in a composition may be selected so as to be compatible with each other as well as the polymeric component, curing agent, and or catalyst.
- compositions provided by the present disclosure include low density filler particles.
- low density when used with reference to such particles means that the particles have a specific gravity of no more than 0.7, in certain embodiments no more than 0.25, and in certain embodiments, no more than 0.1.
- Suitable lightweight filler particles often fall within two categories—microspheres and amorphous particles.
- the specific gravity of microspheres may range from 0.1 to 0.7 and include, for example, polystyrene foam, microspheres of polyacrylates and polyolefins, and silica microspheres having particle sizes ranging from 5 to 100 microns and a specific gravity of 0.25 (Eccospheres®).
- alumina/silica microspheres having particle sizes in the range of 5 to 300 microns and a specific gravity of 0.7
- Aluminum silicate microspheres having a specific gravity of from about 0.45 to about 0.7 Z-Light®
- calcium carbonate-coated polyvinylidene copolymer microspheres having a specific gravity of 0.13 Dualite® 6001AE
- calcium carbonate coated acrylonitrile copolymer microspheres such as Dualite® E135, having an average particle size of about 40 ⁇ m and a density of 0.135 g/cc (Henkel).
- Suitable fillers for decreasing the specific gravity of the composition include, for example, hollow microspheres such as Expancel® microspheres (available from AkzoNobel) or Dualite® low density polymer microspheres (available from Henkel).
- compositions provided by the present disclosure include lightweight filler particles comprising an exterior surface coated with a thin coating, such as those described in U.S. Publication No. 2010/0041839 at paragraphs [0016]-[0052], the cited portion of which is incorporated herein by reference.
- a low density filler comprises less than 2 wt % of a composition, less than 1.5 wt %, less than 1.0 wt %, less than 0.8 wt %, less than 0.75 wt %, less than 0.7 wt % and in certain embodiments, less than 0.5 wt % of a composition, where wt % is based on the total dry solids weight of the composition.
- compositions provided by the present disclosure comprise at least one filler that is effective in reducing the specific gravity of the composition.
- the specific gravity of a composition is from 0.8 to 1, 0.7 to 0.9, from 0.75 to 0.85, and in certain embodiments, is 0.8.
- the specific gravity of a composition is less than about 0.9, less than about 0.8, less than about 0.75, less than about 0.7, less than about 0.65, less than about 0.6, and in certain embodiments, less than about 0.55.
- a thiol-terminated sulfur-containing polymer including a combination of thiol-terminated sulfur-containing polymers comprises from about 50 wt % to about 90 wt % of a composition, from about 60 wt % to about 90 wt %, from about 70 wt % to about 90 wt %, and in certain embodiments, from about 80 wt % to about 90 wt % of the composition, where wt % is based on the total dry solids weight of the composition.
- a thiol-terminated polythioether including a combination of thiol-terminated polythioethers comprises from about 50 wt % to about 90 wt % of a composition, from about 60 wt % to about 90 wt %, from about 70 wt % to about 90 wt %, and in certain embodiments, from about 80 wt % to about 90 wt % of the composition, where wt % is based on the total dry solids weight of the composition.
- a composition may also include any number of additives as desired.
- suitable additives include plasticizers, pigments, surfactants, adhesion promoters, thixotropic agents, fire retardants, masking agents, and accelerators (such as amines, including 1,4-diaza-bicyclo[2.2.2]octane, DABCO®), and combinations of any of the foregoing.
- the additives may be present in a composition in an amount ranging, for example, from about 0% to 60% by weight. In certain embodiments, additives may be present in a composition in an amount ranging from about 25% to 60% by weight.
- compositions provided by the present disclosure may be used, for example, in sealants, coatings, encapsulants, and potting compositions.
- a sealant includes a composition capable of producing a film that has the ability to resist operational conditions, such as moisture and temperature, and at least partially block the transmission of materials, such as water, fuel, and other liquid and gases.
- a coating composition includes a covering that is applied to the surface of a substrate to, for example, improve the properties of the substrate such as the appearance, adhesion, wettability, corrosion resistance, wear resistance, fuel resistance, and/or abrasion resistance.
- a potting composition includes a material useful in an electronic assembly to provide resistance to shock and vibration and to exclude moisture and corrosive agents.
- sealant compositions provided by the present disclosure are useful, e.g., as aerospace sealants and as linings for fuel tanks.
- compositions such as sealants
- multi-pack compositions such as two-pack compositions, wherein one package comprises one or more thiol-terminated polythioethers provided by the present disclosure and a second package comprises one or more polyfunctional sulfur-containing epoxies provided by the present disclosure.
- Additives and/or other materials may be added to either package as desired or necessary. The two packages may be combined and mixed prior to use.
- the pot life of the one or more mixed thiol-terminated polythioethers and epoxies is at least 30 minutes, at least 1 hour, at least 2 hours, and in certain embodiments, more than 2 hours, where pot life refers to the period of time the mixed composition remains suitable for use as a sealant after mixing.
- compositions, including sealants, provided by the present disclosure may be applied to any of a variety of substrates.
- substrates to which a composition may be applied include metals such as titanium, stainless steel, and aluminum, any of which may be anodized, primed, organic-coated or chromate-coated; epoxy; urethane; graphite; fiberglass composite; Kevlar®; acrylics; and polycarbonates.
- compositions provided by the present disclosure may be applied to a coating on a substrate, such as a polyurethane coating.
- compositions provided by the present disclosure may be applied directly onto the surface of a substrate or over an underlayer by any suitable coating process known to those of ordinary skill in the art.
- curable compositions of the present disclosure develop adhesion strength within 24 hours to 30 hours, and 90% of full adhesion strength develops from 2 days to 3 days, following mixing and application to a surface.
- full adhesion strength as well as other properties of cured compositions of the present disclosure becomes fully developed within 7 days following mixing and application of a curable composition to a surface.
- Cured compositions such as cured sealants exhibit properties acceptable for use in aerospace applications.
- sealants used in aviation and aerospace applications exhibit the following properties: peel strength greater than 20 pounds per linear inch (pli) on Aerospace Material Specification (AMS) 3265B substrates determined under dry conditions, following immersion in JRF for 7 days, and following immersion in a solution of 3% NaCl according to AMS 3265B test specifications; tensile strength between 300 pounds per square inch (psi) and 400 psi; tear strength greater than 50 pounds per linear inch (pli); elongation between 250% and 300%; and hardness greater than 40 Durometer A.
- AMS Aerospace Material Specification
- AMS 3265B cured sealant properties appropriate for aviation and aerospace applications are disclosed in AMS 3265B, the entirety of which is incorporated herein by reference. It is also desirable that when cured, curable compositions of the present disclosure used in aviation and aircraft applications exhibit a percent volume swell not greater than 25% following immersion for one week at 60° C. (140° F.) and ambient pressure in JRF type 1. Other properties, ranges, and/or thresholds may be appropriate for other sealant applications.
- compositions provided by the present disclosure are fuel-resistant.
- fuel resistant means that a composition, when applied to a substrate and cured, can provide a cured product, such as a sealant, that exhibits a percent volume swell of not greater than 40%, in some cases not greater than 25%, in some cases not greater than 20%, in yet other cases not more than 10%, after immersion for one week at 140° F. (60° C.) and ambient pressure in Jet Reference Fluid (JRF) Type I according to methods similar to those described in ASTM D792 (American Society for Testing and Materials) or AMS 3269 (Aerospace Material Specification).
- JRF Jet Reference Fluid
- Jet Reference Fluid JRF Type I as employed for determination of fuel resistance, has the following composition: toluene: 28 ⁇ 1% by volume; cyclohexane (technical): 34 ⁇ 1% by volume; isooctane: 38 ⁇ 1% by volume; and tertiary dibutyl disulfide: 1 ⁇ 0.005% by volume (see AMS 2629, issued Jul. 1, 1989, ⁇ 3.1.1 etc., available from SAE (Society of Automotive Engineers)).
- compositions provide a cured product, such as a sealant, exhibiting an elongation of at least 100% and a tensile strength of at least 400 psi when measured in accordance with the procedure described in AMS 3279, ⁇ 3.3.17.1, test procedure AS5127/1, ⁇ 7.7.
- compositions provide a cured product, such as a sealant, that exhibits a lap shear strength of greater than 200 psi and in some cases at least 400 psi when measured according to the procedure described in SAE AS5127/1 paragraph 7.8.
- compositions provided by the present disclosure provide a cured sealant having a lap shear strength of >200 psi, such as at least 220 psi, or, in certain embodiments, at least 250 psi, when measured according to Paragraph 7.8 of AS 5127/1.
- a cured sealant comprising a composition provided by the present disclosure meets or exceeds the requirements for aerospace sealants as set forth in AMS 3277.
- Curable compositions of the present disclosure can exhibit a T g when cured of ⁇ 55° C. or less, in certain embodiments, ⁇ 60° C. or less, and in certain embodiments ⁇ 65° C. or less.
- the glass transition temperature, T g can be measured by differential scanning calorimetry.
- a method for sealing an aperture comprises (a) applying a sealant composition provided by the present disclosure to one or more surfaces defining an aperture, (b) assembling the surfaces defining the aperture, and (c) curing the sealant, to provide a sealed aperture.
- a composition may be cured under ambient conditions, where ambient conditions refer to a temperature from 20° C. to 25° C. In certain embodiments, a composition may be cured under conditions encompassing a temperature from a 0° C. to 100° C. In certain embodiments, a composition may be cured at a higher temperature such as at least 30° C., at least 40° C., and in certain embodiments, at least 50° C. In certain embodiments, a composition may be cured at room temperature, e.g., 25° C. In certain embodiments, a composition may be cured upon exposure to actinic radiation such as ultraviolet radiation. As will also be appreciated, the methods may be used to seal apertures on aerospace vehicles including aircraft and aerospace vehicles.
- Apertures including apertures of aerospace vehicles, sealed with compositions provided by the present disclosure are also disclosed.
- Comparative Composition 1 The components of Comparative Composition 1 are shown in Table 1.
- Composition 2 The components of Composition 2 are shown in Table 2.
- Composition 3 The components of Composition 3 are shown in Table 3.
- Composition 4 The components of Composition 4 are shown in Table 4.
- Composition 5 The components of Composition 5 are shown in Table 5.
- Composition 6 The components of Composition 6 are shown in Table 6.
- the mixed compositions of Examples 6-8, 10, and 11 were individually poured onto an anodized aluminum panel (Mil-227725), and placed under UV light for 90 seconds, after which time the compositions had cured to a tack-free solid.
- the compositions were cured using a Phoseon Firefly curing unit, available from Phoseon Technology, Hillsboro, Oreg.
- the cured panels were maintained at ambient conditions for a predetermined number of days, after which time, adhesion was measured as percent of cohesive failure.
- An adhesion scale ranging from 0 to 5 was assigned to each test, with a value of 5 being 100% cohesive failure and a value of 0 being 100% adhesive failure. (Note that the adhesion test method is not a standardized test).
- Adhesion Composition Promoter Anodized Comparative Composition none 3 1, Example 6 Composition 2, Example 7 1 5 Composition 3, Example 8 2 4 Composition 5, Example 10 4 5 Composition 6, Example 11 5 5
- compositions comprising copolymerizable sulfur-containing adhesion promoters provided by the present disclosure exhibit enhanced adhesion to anodized aluminum substrates compared to similar compositions without a copolymerizable sulfur-containing adhesion promoter.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Emergency Medicine (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Sealing Material Composition (AREA)
- Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Epoxy Resins (AREA)
Priority Applications (17)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/529,183 US8513339B1 (en) | 2012-06-21 | 2012-06-21 | Copolymerizable sulfur-containing adhesion promoters and compositions thereof |
AU2013277251A AU2013277251B2 (en) | 2012-06-21 | 2013-06-19 | Copolymerizable sulfur-containing adhesion promoters and compositions thereof |
RU2015101728A RU2624019C2 (ru) | 2012-06-21 | 2013-06-19 | Сополимеризуемые серосодержащие усилители адгезии и композиции, их содержащие |
KR1020157001222A KR101686355B1 (ko) | 2012-06-21 | 2013-06-19 | 공중합가능한 황-함유 접착 촉진제 및 이의 조성물 |
CA2877155A CA2877155C (en) | 2012-06-21 | 2013-06-19 | Copolymerizable sulfur-containing adhesion promoters and compositions thereof |
MX2014016015A MX2014016015A (es) | 2012-06-21 | 2013-06-19 | Promotores de la adhesion copolimerizables que contienen azufre y composiciones de los mismos. |
EP13733191.4A EP2864396B1 (en) | 2012-06-21 | 2013-06-19 | Copolymerizable sulfur-containing adhesion promoters and compositions thereof |
ES13733191T ES2795417T3 (es) | 2012-06-21 | 2013-06-19 | Promotores de adhesión que contienen azufre copolimerizables y composiciones de los mismos |
CN201380038950.7A CN104487487B (zh) | 2012-06-21 | 2013-06-19 | 可共聚的含硫的粘合促进剂及其组合物 |
IN10828DEN2014 IN2014DN10828A (es) | 2012-06-21 | 2013-06-19 | |
PCT/US2013/046471 WO2013192266A2 (en) | 2012-06-21 | 2013-06-19 | Copolymerizable sulfur-containing adhesion promoters and compositions thereof |
BR112014031821-2A BR112014031821B1 (pt) | 2012-06-21 | 2013-06-19 | composto contendo enxofre e composição |
JP2015518536A JP6316806B2 (ja) | 2012-06-21 | 2013-06-19 | 共重合性含硫接着促進剤およびその組成物 |
US13/940,813 US9365677B2 (en) | 2012-06-21 | 2013-07-12 | Copolymerizable sulfur-containing adhesion promoters and compositions thereof |
US14/065,521 US9303149B2 (en) | 2012-06-21 | 2013-10-29 | Adhesion promoting adducts containing metal ligands, compositions thereof, and uses thereof |
HK15104631.0A HK1203988A1 (en) | 2012-06-21 | 2015-05-15 | Copolymerizable sulfur-containing adhesion promoters and compositions thereof |
JP2018028595A JP2018090614A (ja) | 2012-06-21 | 2018-02-21 | 共重合性含硫接着促進剤およびその組成物 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/529,183 US8513339B1 (en) | 2012-06-21 | 2012-06-21 | Copolymerizable sulfur-containing adhesion promoters and compositions thereof |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/923,941 Continuation-In-Part US9056949B2 (en) | 2012-06-21 | 2013-06-21 | Michael addition curing chemistries for sulfur-containing polymer compositions employing bis(sulfonyl)alkanols |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/940,813 Continuation US9365677B2 (en) | 2012-06-21 | 2013-07-12 | Copolymerizable sulfur-containing adhesion promoters and compositions thereof |
US14/065,521 Continuation-In-Part US9303149B2 (en) | 2012-06-21 | 2013-10-29 | Adhesion promoting adducts containing metal ligands, compositions thereof, and uses thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
US8513339B1 true US8513339B1 (en) | 2013-08-20 |
Family
ID=48741563
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/529,183 Active US8513339B1 (en) | 2012-06-21 | 2012-06-21 | Copolymerizable sulfur-containing adhesion promoters and compositions thereof |
US13/940,813 Active 2032-12-05 US9365677B2 (en) | 2012-06-21 | 2013-07-12 | Copolymerizable sulfur-containing adhesion promoters and compositions thereof |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/940,813 Active 2032-12-05 US9365677B2 (en) | 2012-06-21 | 2013-07-12 | Copolymerizable sulfur-containing adhesion promoters and compositions thereof |
Country Status (14)
Country | Link |
---|---|
US (2) | US8513339B1 (es) |
EP (1) | EP2864396B1 (es) |
JP (2) | JP6316806B2 (es) |
KR (1) | KR101686355B1 (es) |
CN (1) | CN104487487B (es) |
AU (1) | AU2013277251B2 (es) |
BR (1) | BR112014031821B1 (es) |
CA (1) | CA2877155C (es) |
ES (1) | ES2795417T3 (es) |
HK (1) | HK1203988A1 (es) |
IN (1) | IN2014DN10828A (es) |
MX (1) | MX2014016015A (es) |
RU (1) | RU2624019C2 (es) |
WO (1) | WO2013192266A2 (es) |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130344287A1 (en) * | 2012-06-21 | 2013-12-26 | Prc-Desoto International, Inc. | Copolymerizable sulfur-containing adhesion promoters and compositions thereof |
US8962782B2 (en) | 2012-07-30 | 2015-02-24 | Prc-Desoto International, Inc. | Perfluoroether sealant compositions |
WO2015066135A3 (en) * | 2013-10-29 | 2015-07-16 | Prc-Desoto International, Inc. | Metal ligand-containing prepolymers, methods of synthesis, and compositions thereof |
US20150252233A1 (en) * | 2014-03-07 | 2015-09-10 | Prc-Desoto International, Inc. | Phosphine-catalyzed. michael addition-curable sulfur-containing polymer compositions |
US9303149B2 (en) | 2012-06-21 | 2016-04-05 | Prc-Desoto International, Inc. | Adhesion promoting adducts containing metal ligands, compositions thereof, and uses thereof |
WO2016090253A1 (en) * | 2014-12-04 | 2016-06-09 | Prc-Desoto International, Inc. | Methods for making cured sealants by actinic radiation and related compositions |
US9382462B2 (en) | 2013-03-15 | 2016-07-05 | Prc-Desoto International, Inc. | Metal ligand-containing prepolymers, methods of synthesis, and compositions thereof |
WO2016112297A1 (en) | 2015-01-09 | 2016-07-14 | Prc-Desoto International, Inc. | Low density fuel resistant sulfur-containing polymer compositions and uses thereof |
WO2016144677A1 (en) | 2015-03-06 | 2016-09-15 | Prc-Desoto International, Inc. | Partially reacted silane primer compositions |
US9611359B2 (en) | 2013-10-29 | 2017-04-04 | Prc-Desoto International, Inc. | Maleimide-terminated sulfur-containing polymers, compositions thereof, and uses thereof |
WO2017074919A1 (en) | 2015-10-26 | 2017-05-04 | Prc-Desoto International, Inc. | Non-chromate corrosion inhibiting polythioether sealants |
WO2017100634A1 (en) | 2015-12-10 | 2017-06-15 | Prc-Desoto International, Inc. | Blocked 1,8-diazabicyclo[5.4.0]undec-7-ene bicarbonate catalyst for aerospace sealants |
WO2018005633A1 (en) | 2016-06-28 | 2018-01-04 | Prc-Desoto International, Inc. | Urethane/urea-containing bis(alkenyl) ethers, prepolymers prepared using urethane/urea-containing bis(alkenyl) ethers, and uses thereof |
WO2018005686A1 (en) | 2016-06-28 | 2018-01-04 | Prc-Desoto International, Inc. | Prepolymers exhibiting rapid development of physical properties |
WO2018031532A1 (en) | 2016-08-08 | 2018-02-15 | Prc-Desoto International, Inc. | Actinic radiation-curable urethane/urea-containing aerospace coatings and sealants |
US9902799B2 (en) | 2015-11-11 | 2018-02-27 | Prc-Desoto International, Inc. | Urethane-modified prepolymers containing pendent alkyl groups, compositions and uses thereof |
WO2018085650A1 (en) | 2016-11-04 | 2018-05-11 | Prc-Desoto International, Inc. | Sulfur-containing poly(alkenyl) ethers, prepolymers incorporating sulfur-containing poly(alkenyl) ethers, and uses thereof |
US10047259B2 (en) | 2010-08-13 | 2018-08-14 | Prc-Desoto International, Inc. | Methods for making cured sealants by actinic radiation and related compositions |
EP3412706A1 (en) | 2012-10-24 | 2018-12-12 | PRC-Desoto International, Inc. | Uses of uv-curable polythioether sealants for smoothing surfaces |
WO2019010457A1 (en) | 2017-07-07 | 2019-01-10 | Prc-Desoto International, Inc. | FUEL AND HYDRAULIC FLUID-RESISTANT SEALANTS |
WO2019077516A1 (en) | 2017-10-17 | 2019-04-25 | Prc-Desoto International, Inc. | POLYMERIC PARTICLES CONTAINING SULFUR AND COMPOSITIONS |
WO2020010062A1 (en) | 2018-07-03 | 2020-01-09 | Prc-Desoto International, Inc. | Sprayable polythioether coatings and sealants |
WO2020072464A1 (en) | 2018-10-02 | 2020-04-09 | Prc-Desoto International, Inc. | Delayed cure micro-encapsulated catalysts |
WO2020181038A1 (en) | 2019-03-06 | 2020-09-10 | Prc-Desoto International, Inc. | Chemically resistant sealant compositions and uses thereof |
US11173692B2 (en) | 2019-12-19 | 2021-11-16 | Prc-Desoto International, Inc. | Free radical polymerizable adhesion-promoting interlayer compositions and methods of use |
EP3981846A1 (en) | 2020-10-09 | 2022-04-13 | Agfa Nv | Free radical curable inkjet inks and inkjet printing methods |
WO2022073849A1 (en) | 2020-10-09 | 2022-04-14 | Agfa Offset Bv | A lithographic printing plate precursor |
US11608458B2 (en) | 2019-12-19 | 2023-03-21 | Prc-Desoto International, Inc. | Adhesion-promoting interlayer compositions containing organic titanates/zirconates and methods of use |
US11624007B2 (en) | 2020-01-29 | 2023-04-11 | Prc-Desoto International, Inc. | Photocurable adhesion-promoting compositions and methods of use |
WO2023150473A1 (en) | 2022-02-01 | 2023-08-10 | Prc-Desoto International, Inc. | Polycarbonate-based polyurethane topcoats |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9006360B2 (en) * | 2012-10-24 | 2015-04-14 | Prc-Desoto International, Inc. | Controlled-release amine-catalyzed, sulfur-containing polymer and epdxy compositions |
US9518197B2 (en) | 2014-03-07 | 2016-12-13 | Prc-Desoto International, Inc. | Cure-on-demand moisture-curable urethane-containing fuel resistant prepolymers and compositions thereof |
US9777139B2 (en) * | 2015-10-26 | 2017-10-03 | Prc-Desoto International, Inc. | Reactive antioxidants, antioxidant-containing prepolymers, and compositions thereof |
CN110072564B (zh) * | 2016-10-27 | 2022-01-07 | 生物医学键合有限公司 | 作为底涂剂用于粘合性改善的包含硫醇、烯烃和含膦酸化合物的组合物 |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4366307A (en) | 1980-12-04 | 1982-12-28 | Products Research & Chemical Corp. | Liquid polythioethers |
US4609762A (en) | 1984-01-30 | 1986-09-02 | Products Research & Chemical Corp. | Thioethers having a high sulfur content and method therefor |
US4623711A (en) | 1985-08-21 | 1986-11-18 | Products Research & Chemical Corp. | Modified disulfide polymer composition and method for making same from mercaptan terminated disulfide polymer and diethyl formal mercaptan terminated polysulfide |
US5225472A (en) | 1992-05-19 | 1993-07-06 | Courtaulds Aerospace, Inc. | Low viscosity polythiol and method therefor |
US6172179B1 (en) | 1997-02-19 | 2001-01-09 | Prc-Desoto International, Inc. | Composition and method for producing fuel resistant liquid polythioether polymers with good low temperature flexibility |
US20050010003A1 (en) | 2003-07-11 | 2005-01-13 | Prc-Desoto International, Inc. | Epoxy-capped polythioethers |
US20060270796A1 (en) | 2005-05-31 | 2006-11-30 | Suresh Sawant | Polythioether polymers and curable compositions containing them |
US20070287810A1 (en) | 2003-07-11 | 2007-12-13 | Prc-Desoto International, Inc. | Epoxy-capped polythioethers and hydroxy/amine-capped polythioethers |
US20090326167A1 (en) | 2005-02-08 | 2009-12-31 | Prc-Desoto International, Inc. | Compositions and methods of making compositions exhibiting fuel resistance |
US20100010133A1 (en) | 1997-02-19 | 2010-01-14 | Prc-Desoto International, Inc. | Sealants and potting formulations including mercapto-terminated polymers produced by the reaction of a polythiol and polyvinyl ether monomer |
US20100036063A1 (en) | 2005-10-27 | 2010-02-11 | Prc-Desoto International, Inc. | Dimercaptan terminated polythioether polymers and methods for making and using the same |
US20100041839A1 (en) | 2008-08-13 | 2010-02-18 | Ppg Industries Ohio, Inc. | Lightweight particles and compositions containing them |
US20110319559A1 (en) | 2010-06-25 | 2011-12-29 | PRC-DeSolo International, Inc. | Polythioether polymers, methods for preparation thereof, and compositions comprising them |
US20120040103A1 (en) * | 2010-08-13 | 2012-02-16 | Prc-Desoto International, Inc. | Compositions comprising thiol-terminated polymers and sulfur-containing ethylenically unsaturated silanes and related cured sealants |
US20120040104A1 (en) | 2010-08-13 | 2012-02-16 | Prc-Desoto International, Inc. | Methods for making cured sealants by actinic radiation and related compositions |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3454539A (en) * | 1967-08-11 | 1969-07-08 | Ciba Ltd | Polyepoxides |
CA2275779C (en) * | 1997-02-19 | 2005-05-03 | Courtaulds Aerospace, Inc. | Composition and method for producing fuel resistant liquid polythioether polymers with good low temperature flexibility |
AU2001245600B2 (en) | 2000-03-09 | 2004-10-28 | Advanced Chemistry And Technology, Inc. | Chemically resistant polythioethers and formation thereof |
US7097883B2 (en) * | 2003-06-05 | 2006-08-29 | Ppg Industries Ohio, Inc. | Low temperature liquid polythioether polymers |
US8143370B2 (en) * | 2009-07-09 | 2012-03-27 | Prc-Desoto International, Inc. | One-part moisture curable sealant and method of making the same |
US9080004B2 (en) * | 2010-10-07 | 2015-07-14 | Prc-Desoto International, Inc. | Diethylene glycol monomethyl ether resistant coating |
US8513339B1 (en) * | 2012-06-21 | 2013-08-20 | Prc-Desoto International, Inc. | Copolymerizable sulfur-containing adhesion promoters and compositions thereof |
-
2012
- 2012-06-21 US US13/529,183 patent/US8513339B1/en active Active
-
2013
- 2013-06-19 KR KR1020157001222A patent/KR101686355B1/ko active IP Right Grant
- 2013-06-19 CN CN201380038950.7A patent/CN104487487B/zh active Active
- 2013-06-19 WO PCT/US2013/046471 patent/WO2013192266A2/en active Application Filing
- 2013-06-19 JP JP2015518536A patent/JP6316806B2/ja active Active
- 2013-06-19 RU RU2015101728A patent/RU2624019C2/ru active
- 2013-06-19 EP EP13733191.4A patent/EP2864396B1/en active Active
- 2013-06-19 ES ES13733191T patent/ES2795417T3/es active Active
- 2013-06-19 MX MX2014016015A patent/MX2014016015A/es unknown
- 2013-06-19 AU AU2013277251A patent/AU2013277251B2/en not_active Ceased
- 2013-06-19 IN IN10828DEN2014 patent/IN2014DN10828A/en unknown
- 2013-06-19 CA CA2877155A patent/CA2877155C/en active Active
- 2013-06-19 BR BR112014031821-2A patent/BR112014031821B1/pt not_active IP Right Cessation
- 2013-07-12 US US13/940,813 patent/US9365677B2/en active Active
-
2015
- 2015-05-15 HK HK15104631.0A patent/HK1203988A1/xx not_active IP Right Cessation
-
2018
- 2018-02-21 JP JP2018028595A patent/JP2018090614A/ja active Pending
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4366307A (en) | 1980-12-04 | 1982-12-28 | Products Research & Chemical Corp. | Liquid polythioethers |
US4609762A (en) | 1984-01-30 | 1986-09-02 | Products Research & Chemical Corp. | Thioethers having a high sulfur content and method therefor |
US4623711A (en) | 1985-08-21 | 1986-11-18 | Products Research & Chemical Corp. | Modified disulfide polymer composition and method for making same from mercaptan terminated disulfide polymer and diethyl formal mercaptan terminated polysulfide |
US5225472A (en) | 1992-05-19 | 1993-07-06 | Courtaulds Aerospace, Inc. | Low viscosity polythiol and method therefor |
US20100010133A1 (en) | 1997-02-19 | 2010-01-14 | Prc-Desoto International, Inc. | Sealants and potting formulations including mercapto-terminated polymers produced by the reaction of a polythiol and polyvinyl ether monomer |
US6172179B1 (en) | 1997-02-19 | 2001-01-09 | Prc-Desoto International, Inc. | Composition and method for producing fuel resistant liquid polythioether polymers with good low temperature flexibility |
US20050010003A1 (en) | 2003-07-11 | 2005-01-13 | Prc-Desoto International, Inc. | Epoxy-capped polythioethers |
US20070287810A1 (en) | 2003-07-11 | 2007-12-13 | Prc-Desoto International, Inc. | Epoxy-capped polythioethers and hydroxy/amine-capped polythioethers |
US20090326167A1 (en) | 2005-02-08 | 2009-12-31 | Prc-Desoto International, Inc. | Compositions and methods of making compositions exhibiting fuel resistance |
US20060270796A1 (en) | 2005-05-31 | 2006-11-30 | Suresh Sawant | Polythioether polymers and curable compositions containing them |
US20100036063A1 (en) | 2005-10-27 | 2010-02-11 | Prc-Desoto International, Inc. | Dimercaptan terminated polythioether polymers and methods for making and using the same |
US20100041839A1 (en) | 2008-08-13 | 2010-02-18 | Ppg Industries Ohio, Inc. | Lightweight particles and compositions containing them |
US20110319559A1 (en) | 2010-06-25 | 2011-12-29 | PRC-DeSolo International, Inc. | Polythioether polymers, methods for preparation thereof, and compositions comprising them |
US20120040103A1 (en) * | 2010-08-13 | 2012-02-16 | Prc-Desoto International, Inc. | Compositions comprising thiol-terminated polymers and sulfur-containing ethylenically unsaturated silanes and related cured sealants |
US20120040104A1 (en) | 2010-08-13 | 2012-02-16 | Prc-Desoto International, Inc. | Methods for making cured sealants by actinic radiation and related compositions |
Non-Patent Citations (1)
Title |
---|
Mather et al., "Michael Addition Reactions in Macromolecular Design for Emerging Technologies" Prog. Polym. Sci., 2006, 31, pp. 487-531. |
Cited By (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10047259B2 (en) | 2010-08-13 | 2018-08-14 | Prc-Desoto International, Inc. | Methods for making cured sealants by actinic radiation and related compositions |
US10844256B2 (en) | 2010-08-13 | 2020-11-24 | PRC DeSoo International, Inc. | Methods for making cured sealants by actinic radiation and related compositions |
US10233369B2 (en) | 2010-08-13 | 2019-03-19 | Prc-Desoto International, Inc. | Methods for making cured sealants by actinic radiation and related compositions |
US20130344287A1 (en) * | 2012-06-21 | 2013-12-26 | Prc-Desoto International, Inc. | Copolymerizable sulfur-containing adhesion promoters and compositions thereof |
US9365677B2 (en) * | 2012-06-21 | 2016-06-14 | Prc-Desoto International, Inc. | Copolymerizable sulfur-containing adhesion promoters and compositions thereof |
US9303149B2 (en) | 2012-06-21 | 2016-04-05 | Prc-Desoto International, Inc. | Adhesion promoting adducts containing metal ligands, compositions thereof, and uses thereof |
US9169424B2 (en) | 2012-07-30 | 2015-10-27 | Prc-Desoto International, Inc. | Perfluoroether sealant compositions |
US8962782B2 (en) | 2012-07-30 | 2015-02-24 | Prc-Desoto International, Inc. | Perfluoroether sealant compositions |
EP3412706A1 (en) | 2012-10-24 | 2018-12-12 | PRC-Desoto International, Inc. | Uses of uv-curable polythioether sealants for smoothing surfaces |
US9382462B2 (en) | 2013-03-15 | 2016-07-05 | Prc-Desoto International, Inc. | Metal ligand-containing prepolymers, methods of synthesis, and compositions thereof |
CN105814117A (zh) * | 2013-10-29 | 2016-07-27 | Prc-迪索托国际公司 | 含金属配体的预聚物、其合成方法和组合物 |
WO2015066135A3 (en) * | 2013-10-29 | 2015-07-16 | Prc-Desoto International, Inc. | Metal ligand-containing prepolymers, methods of synthesis, and compositions thereof |
US9611359B2 (en) | 2013-10-29 | 2017-04-04 | Prc-Desoto International, Inc. | Maleimide-terminated sulfur-containing polymers, compositions thereof, and uses thereof |
US9328275B2 (en) * | 2014-03-07 | 2016-05-03 | Prc Desoto International, Inc. | Phosphine-catalyzed, michael addition-curable sulfur-containing polymer compositions |
US10011751B2 (en) | 2014-03-07 | 2018-07-03 | Prc-Desoto International, Inc. | Phosphine-catalyzed, michael addition-curable sulfur-containing polymer compositions |
US20150252233A1 (en) * | 2014-03-07 | 2015-09-10 | Prc-Desoto International, Inc. | Phosphine-catalyzed. michael addition-curable sulfur-containing polymer compositions |
RU2705368C2 (ru) * | 2014-12-04 | 2019-11-07 | Прк-Десото Интернэшнл, Инк. | Способы получения отвержденных герметиков с использованием актиничного излучения и соответствующие композиции |
KR20170088417A (ko) * | 2014-12-04 | 2017-08-01 | 피알시-데소토 인터내쇼날, 인코포레이티드 | 화학 방사선에 의한 경화된 실란트의 제조 방법 및 관련 조성물 |
EP3572448A1 (en) * | 2014-12-04 | 2019-11-27 | PRC-Desoto International, Inc. | Methods for making cured sealants by actinic radiation and related compositions |
KR101974762B1 (ko) | 2014-12-04 | 2019-05-02 | 피알시-데소토 인터내쇼날, 인코포레이티드 | 화학 방사선에 의한 경화된 실란트의 제조 방법 및 관련 조성물 |
AU2015357553B2 (en) * | 2014-12-04 | 2018-03-29 | Prc-Desoto International, Inc. | Methods for making cured sealants by actinic radiation and related compositions |
AU2015357553B8 (en) * | 2014-12-04 | 2018-04-05 | Prc-Desoto International, Inc. | Methods for making cured sealants by actinic radiation and related compositions |
WO2016090253A1 (en) * | 2014-12-04 | 2016-06-09 | Prc-Desoto International, Inc. | Methods for making cured sealants by actinic radiation and related compositions |
US9422451B2 (en) | 2015-01-09 | 2016-08-23 | Prc-Desoto International, Inc. | Low density fuel resistant sulfur-containing polymer compositions and uses thereof |
WO2016112297A1 (en) | 2015-01-09 | 2016-07-14 | Prc-Desoto International, Inc. | Low density fuel resistant sulfur-containing polymer compositions and uses thereof |
EP3495432A1 (en) | 2015-03-06 | 2019-06-12 | PRC-Desoto International, Inc. | Partially reacted silane primer compositions |
WO2016144677A1 (en) | 2015-03-06 | 2016-09-15 | Prc-Desoto International, Inc. | Partially reacted silane primer compositions |
US10053606B2 (en) | 2015-10-26 | 2018-08-21 | Prc-Desoto International, Inc. | Non-chromate corrosion inhibiting polythioether sealants |
WO2017074919A1 (en) | 2015-10-26 | 2017-05-04 | Prc-Desoto International, Inc. | Non-chromate corrosion inhibiting polythioether sealants |
US9902799B2 (en) | 2015-11-11 | 2018-02-27 | Prc-Desoto International, Inc. | Urethane-modified prepolymers containing pendent alkyl groups, compositions and uses thereof |
US11091582B2 (en) | 2015-11-11 | 2021-08-17 | Prc-Desoto International, Inc. | Urethane-modified prepolymers containing pendent alkyl groups, compositions and uses thereof |
US9988487B2 (en) | 2015-12-10 | 2018-06-05 | Prc-Desoto International, Inc. | Blocked 1,8-diazabicyclo[5.4.0]undec-7-ene bicarbonate catalyst for aerospace sealants |
WO2017100634A1 (en) | 2015-12-10 | 2017-06-15 | Prc-Desoto International, Inc. | Blocked 1,8-diazabicyclo[5.4.0]undec-7-ene bicarbonate catalyst for aerospace sealants |
WO2018005633A1 (en) | 2016-06-28 | 2018-01-04 | Prc-Desoto International, Inc. | Urethane/urea-containing bis(alkenyl) ethers, prepolymers prepared using urethane/urea-containing bis(alkenyl) ethers, and uses thereof |
WO2018005686A1 (en) | 2016-06-28 | 2018-01-04 | Prc-Desoto International, Inc. | Prepolymers exhibiting rapid development of physical properties |
US9920006B2 (en) | 2016-06-28 | 2018-03-20 | Prc-Desoto International, Inc. | Prepolymers exhibiting rapid development of physical properties |
US10370561B2 (en) | 2016-06-28 | 2019-08-06 | Prc-Desoto International, Inc. | Urethane/urea-containing bis(alkenyl) ethers, prepolymers prepared using urethane/urea-containing bis(alkenyl) ethers, and uses thereof |
US10597360B2 (en) | 2016-06-28 | 2020-03-24 | Prc-Desoto International, Inc. | Prepolymers exhibiting rapid development of physical properties |
WO2018031532A1 (en) | 2016-08-08 | 2018-02-15 | Prc-Desoto International, Inc. | Actinic radiation-curable urethane/urea-containing aerospace coatings and sealants |
US11898054B2 (en) | 2016-08-08 | 2024-02-13 | Prc-Desoto International, Inc. | Actinic radiation-curable urethane/urea-containing aerospace coatings and sealants |
US10883016B2 (en) | 2016-08-08 | 2021-01-05 | Prc-Desoto International, Inc. | Actinic radiation-curable urethane/urea-containing aerospace coatings and sealants |
WO2018085650A1 (en) | 2016-11-04 | 2018-05-11 | Prc-Desoto International, Inc. | Sulfur-containing poly(alkenyl) ethers, prepolymers incorporating sulfur-containing poly(alkenyl) ethers, and uses thereof |
WO2019010457A1 (en) | 2017-07-07 | 2019-01-10 | Prc-Desoto International, Inc. | FUEL AND HYDRAULIC FLUID-RESISTANT SEALANTS |
US11111422B2 (en) | 2017-07-07 | 2021-09-07 | Prc-Desoto International, Inc. | Hydraulic fluid and fuel resistant sealants |
US10597565B2 (en) | 2017-07-07 | 2020-03-24 | Prc-Desoto International, Inc. | Hydraulic fluid and fuel resistant sealants |
US10351674B2 (en) | 2017-10-17 | 2019-07-16 | Prc-Desoto International, Inc. | Sulfur-containing polymeric particles and compositions |
US10836866B2 (en) | 2017-10-17 | 2020-11-17 | Prc-Desoto International, Inc. | Sulfur-containing polymeric particles and compositions |
WO2019077516A1 (en) | 2017-10-17 | 2019-04-25 | Prc-Desoto International, Inc. | POLYMERIC PARTICLES CONTAINING SULFUR AND COMPOSITIONS |
WO2020010062A1 (en) | 2018-07-03 | 2020-01-09 | Prc-Desoto International, Inc. | Sprayable polythioether coatings and sealants |
US11098222B2 (en) | 2018-07-03 | 2021-08-24 | Prc-Desoto International, Inc. | Sprayable polythioether coatings and sealants |
US10843180B2 (en) | 2018-10-02 | 2020-11-24 | Prc-Desoto International, Inc. | Delayed cure micro-encapsulated catalysts |
WO2020072464A1 (en) | 2018-10-02 | 2020-04-09 | Prc-Desoto International, Inc. | Delayed cure micro-encapsulated catalysts |
US11015097B2 (en) | 2019-03-06 | 2021-05-25 | Prc-Desoto International, Inc. | Chemically resistant sealant compositions and uses thereof |
WO2020181038A1 (en) | 2019-03-06 | 2020-09-10 | Prc-Desoto International, Inc. | Chemically resistant sealant compositions and uses thereof |
US11173692B2 (en) | 2019-12-19 | 2021-11-16 | Prc-Desoto International, Inc. | Free radical polymerizable adhesion-promoting interlayer compositions and methods of use |
US11608458B2 (en) | 2019-12-19 | 2023-03-21 | Prc-Desoto International, Inc. | Adhesion-promoting interlayer compositions containing organic titanates/zirconates and methods of use |
US11624007B2 (en) | 2020-01-29 | 2023-04-11 | Prc-Desoto International, Inc. | Photocurable adhesion-promoting compositions and methods of use |
EP3981846A1 (en) | 2020-10-09 | 2022-04-13 | Agfa Nv | Free radical curable inkjet inks and inkjet printing methods |
WO2022073774A1 (en) | 2020-10-09 | 2022-04-14 | Agfa Nv | Free radical curable inkjet inks and inkjet printing methods |
WO2022073849A1 (en) | 2020-10-09 | 2022-04-14 | Agfa Offset Bv | A lithographic printing plate precursor |
WO2023150473A1 (en) | 2022-02-01 | 2023-08-10 | Prc-Desoto International, Inc. | Polycarbonate-based polyurethane topcoats |
Also Published As
Publication number | Publication date |
---|---|
US20130344287A1 (en) | 2013-12-26 |
EP2864396B1 (en) | 2020-05-06 |
RU2624019C2 (ru) | 2017-06-30 |
JP2018090614A (ja) | 2018-06-14 |
US9365677B2 (en) | 2016-06-14 |
JP6316806B2 (ja) | 2018-04-25 |
BR112014031821B1 (pt) | 2021-02-23 |
CA2877155A1 (en) | 2013-12-27 |
HK1203988A1 (en) | 2015-11-06 |
BR112014031821A2 (pt) | 2017-06-27 |
WO2013192266A3 (en) | 2014-02-20 |
CA2877155C (en) | 2017-02-28 |
KR20150023030A (ko) | 2015-03-04 |
EP2864396A2 (en) | 2015-04-29 |
CN104487487A (zh) | 2015-04-01 |
KR101686355B1 (ko) | 2016-12-13 |
AU2013277251B2 (en) | 2015-08-20 |
JP2015527426A (ja) | 2015-09-17 |
WO2013192266A2 (en) | 2013-12-27 |
AU2013277251A1 (en) | 2015-01-22 |
IN2014DN10828A (es) | 2015-09-04 |
CN104487487B (zh) | 2016-08-03 |
ES2795417T3 (es) | 2020-11-23 |
RU2015101728A (ru) | 2016-08-10 |
MX2014016015A (es) | 2015-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8513339B1 (en) | Copolymerizable sulfur-containing adhesion promoters and compositions thereof | |
CN107207727B (zh) | 低密度耐燃料性含硫聚合物组合物及其用途 | |
US8710159B2 (en) | Polyfunctional sulfur-containing epoxies and compositions thereof | |
US9303149B2 (en) | Adhesion promoting adducts containing metal ligands, compositions thereof, and uses thereof | |
EP2864435B1 (en) | Moisture-curable, amine-catalyzed sulfur-containing polymer compositions | |
US9334403B2 (en) | Moisture-curable urethane-containing fuel resistant prepolymers and compositions thereof | |
JP2019178343A (ja) | 金属リガンドを含有する接着促進性付加体、その組成物、及びその使用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: PRC-DESOTO INTERNATIONAL, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KELEDJIAN, RAQUEL;LIN, RENHE;VIRNELSON, BRUCE;REEL/FRAME:028813/0236 Effective date: 20120504 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |