US7951144B2 - Thermal and electrical conductivity probes and methods of making the same - Google Patents

Thermal and electrical conductivity probes and methods of making the same Download PDF

Info

Publication number
US7951144B2
US7951144B2 US12/016,754 US1675408A US7951144B2 US 7951144 B2 US7951144 B2 US 7951144B2 US 1675408 A US1675408 A US 1675408A US 7951144 B2 US7951144 B2 US 7951144B2
Authority
US
United States
Prior art keywords
probe
substrate
approximately
microns
resistive heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US12/016,754
Other languages
English (en)
Other versions
US20080175299A1 (en
Inventor
Roop L. Mahajan
Ming Yi
Ronald J. Podhajsky
Hrishikesh V. Panchawagh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covidien LP
University of Colorado
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/016,754 priority Critical patent/US7951144B2/en
Publication of US20080175299A1 publication Critical patent/US20080175299A1/en
Assigned to TYCO HEALTHCARE GROUP LP reassignment TYCO HEALTHCARE GROUP LP ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PODHAJSKY, RONALD J.
Assigned to THE REGENTS OF THE UNIVERSITY OF COLORADO reassignment THE REGENTS OF THE UNIVERSITY OF COLORADO ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PANCHAWAGH, HRISHIKESH, MAHAJAN, ROOP L., YI, MING
Priority to US13/098,199 priority patent/US8156632B2/en
Application granted granted Critical
Publication of US7951144B2 publication Critical patent/US7951144B2/en
Priority to US13/351,553 priority patent/US8747402B2/en
Assigned to COVIDIEN LP reassignment COVIDIEN LP CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: TYCO HEALTHCARE GROUP LP
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0538Measuring electrical impedance or conductance of a portion of the body invasively, e.g. using a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/486Diagnostic techniques involving generating temporal series of image data
    • A61B6/487Diagnostic techniques involving generating temporal series of image data involving fluoroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/18Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/045Circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/14Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature
    • G01N27/18Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature caused by changes in the thermal conductivity of a surrounding material to be tested
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00026Conductivity or impedance, e.g. of tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00875Resistance or impedance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49007Indicating transducer

Definitions

  • the present disclosure relates to electrosurgical instruments, systems and methods of making the same. More particularly, the present disclosure relates to conductivity probes for sensing directional attributes of tissue and methods of making the same.
  • Thermal conductivity of biological tissues is dependent on the particular type of biological tissue and on the composition of the biological tissue. Different biological tissues exhibit different and/or unique thermal conductivity based on factors such as tissue density, vascularization, age, direction and distance to major blood vessels, etc. Additionally, different biological tissues may exhibit a different and/or unique thermal conductivity in different directions.
  • Electrical conductivity is not only determined by tissue type and composition, but also by other externally applied physical and chemical influences during thermal treatment, such as, for example, temperature inducement and saline pretreatment.
  • Knowing the thermal and/or electrical conductivity of tissue may be used by a surgeon in a number of applications, including, but not limited to, predicting the effect of thermal treatment on given tissue, identifying the location and size of internal structures, and enhancing the resolution of traditional imaging devices.
  • thermal and electrical conductivity probes for sensing the directional attributes of tissue and methods of making the same.
  • a system for sensing attributes of tissue in at least one direction includes a thermal conductivity probe including a sensor configured to measure thermal conductivity in the target tissue in at least one direction, a power supply operatively connected to the thermal conductivity probe and being configured to supply power to the thermal conductivity probe, a multimeter operatively connected the thermal conductivity probe; an electrical conductivity probe including a sensor configured to measure electrical conductivity in the target tissue in at least one direction, an impedance analyzer to measure the tissue impedance (or equivalently electrical conductivity) and a computer operatively connected to at least one of the multimeter and impedance analyzer.
  • the thermal conductivity probe and the electrical conductivity probe may be integrated into a single probe.
  • the probe includes a body and a sensor operably connected to the body.
  • the sensor includes a line heater having one or more resistive heating elements, a detector having one or more detector elements, and a substrate for supporting the line heater and the detector and to provide thermal conductivity contrast.
  • the body of the probe may define a catheter configured for insertion into tissue.
  • the pair of outer detector elements may form resistance temperature detector elements (RTD).
  • the pair of inner heating elements may be substantially parallel.
  • the probe may further include an array of sensors.
  • a method of making a thermal conductivity probe includes providing an inert substrate, depositing a first layer on the substrate, depositing a second layer on the first layer, generating a first pattern in the first and second layers, generating a second pattern in the second layer, and depositing an insulative layer over the first and second layers.
  • the first and second layers may be deposited using evaporation techniques.
  • the first layer may be selected from the group consisting of titanium (Ti), titanium tungsten (TiW) and platinum (Pt).
  • the second layer may be selected from the group consisting of gold (AU), iridium (Ir) and platinum-iridium (Pt—Ir).
  • the first layer may measure about 50 nm thick.
  • the second layer may measure about 500 nm thick.
  • the first and second patterns may be generated using an etching technique.
  • an electrical conductivity probe for measuring attributes of tissue.
  • the probe includes a body and a sensor for sensing electrical conductivity.
  • the sensor includes a pair of electrodes, a pair of bonding pads coupled to the pair of electrodes by a pair of electrical leads, and a substrate for supporting the electrodes, boding pads and leads.
  • the pair of electrodes may be parallel.
  • the body of the probe may define a catheter configured for insertion into tissue.
  • the sensor may include insulating material at least partially overlying the pair of electrodes, and an exposed region formed in the insulation and associated with each electrode.
  • a method of making an electrical conductivity probe includes providing a substrate, depositing an adhesive layer on the substrate, depositing a conductive layer on the adhesive layer, generating a pattern on the adhesive layer and the conductive layer, and depositing an insulating layer over the conductive layer and the pattern.
  • the adhesive layer and conductive layer may be deposited using evaporation techniques.
  • the pattern may define first and second electrodes.
  • the adhesive layer may be selected from the group consisting of titanium (Ti), titanium tungsten (TiW) and platinum (Pt), and may measure about 30 nm thick.
  • the conductive layer selected from the group consisting of gold (AU), iridium (Ir) and platinum-iridium (Pt—Ir), and may measure about 330 nm thick.
  • the insulative layer may be spun onto the conductive layer and pattern.
  • FIG. 1 is a schematic perspective view of a sensing system according to an embodiment of the present disclosure
  • FIG. 2A is a schematic illustration of an embodiment of a micro thermal probe of the sensing system of FIG. 1 ;
  • FIG. 2B is an enlarged view of the indicated area of detail of FIGS. 2A and 2B ;
  • FIGS. 3-9 are schematic illustrations of exemplary steps in the fabrication of the micro thermal probe of FIG. 2 ;
  • FIG. 10A is a schematic illustration of an embodiment of another electrical microprobe of the sensing system of FIG. 1 ;
  • FIG. 10B is an enlarged view of the indicated area of detail of FIG. 10A ;
  • FIGS. 11-16 are schematic illustrations of exemplary steps in the fabrication of the electrical microprobe of FIG. 10 ;
  • FIG. 17 is a schematic illustration of an electrosurgical system including the sensing system of FIG. 1 , shown in operative association with a target tissue;
  • FIG. 18 is a perspective view of a distal end of an electrical microprobe of the present disclosure.
  • FIG. 19 is a transverse, cross-sectional view of an electrical microprobe as taken through 19 - 19 of FIG. 1 ;
  • FIG. 20 is a transverse, cross-sectional view of another electrical microprobe as taken through 19 - 19 of FIG. 1 ;
  • FIG. 21 is a schematic illustration of a distal end of an electrical microprobe according to yet another embodiment of the present disclosure.
  • FIG. 22 is a schematic illustration of a distal end of an integrated electrical and thermal microprobe according to still another embodiment of the present disclosure.
  • FIG. 23 is a schematic illustration of a distal end of an electrical ablation device according to an embodiment of the present disclosure.
  • FIG. 24 is a schematic illustration of a distal end of an electrosurgical device according to another embodiment of the present disclosure.
  • FIG. 25 is a schematic illustration of a distal end of an electrosurgical device according to still another embodiment of the present disclosure.
  • proximal as is traditional, will refer to the end of the system, or component thereof which is closest to the operator, and the term “distal” will refer to the end of the system, or component thereof, which is more remote from the operator.
  • thermal treatment is understood to include and is not limited to radio-frequency (RF) treatment, laser treatment, microwave treatment and cryoablation treatment.
  • RF radio-frequency
  • a sensing system for sensing directional attributes of tissue is generally designated as 100 .
  • System 100 includes a thermal conductivity probe 200 , power supply “PS” connected to or connectable to probe 200 , a multimeter “M” connected to or connectable to probe 200 , and a computer “C” connected to or connectable to multimeter “M”.
  • System 100 may further include an electrical conductivity probe 300 connected to an impedance analyzer “IA”, or other suitable devices.
  • Impedance analyzer “IA” may be formed integral with multimeter “M”, or may instead include a separate unit.
  • Power supply “PS” may include any power source capable of providing constant power.
  • power supply “PS” may include a DC power source.
  • thermal conductivity probe 200 includes a first pair of bonding pads 202 electrically connected to or electrically connectable to power supply “PS”, and a second pair of bonding pads 204 electrically connected to or electrically connectable to multimeter “M”.
  • Electrical conductivity probe 300 may include a pair of bonding pads 304 electrically connected to or electrically connectable to impedance analyzer “IA”.
  • a micro thin-film thermal conductivity probe has been developed to measure thermal conductivity of biological tissues based on the principle of traditional hot-wire method.
  • An embodiment of the design of the microprobe of the present disclosure includes a resistive line heating element on a substrate and a Resistance Temperature Detector (RTD) based temperature sensor.
  • RTD Resistance Temperature Detector
  • Probe 200 may be in the form of a needle, probe antenna or the like or any other suitable configuration.
  • probe 200 may include an elongate body 210 , in the form of a catheter, defining a sharpened or pointed distal tip 212 .
  • Probe 200 further includes a microprobe sensor 220 suitably secured to catheter 210 .
  • Microprobe sensor 220 may be disposed at least partially within catheter 210 , on an outer surface of catheter 210 , imbedded in the outer surface of catheter 210 and/or according to any other suitable method.
  • microprobe sensor 220 includes a line heating element 222 having a pair of resistive inner thin-film heating elements 222 a , 222 b , a detector element 224 having a pair of outer “resistance temperature detector” (RTD) elements 224 a , 224 b , and a substrate 226 for supporting heating elements 222 a , 222 b and RTD elements 224 a , 224 b .
  • the substrate 226 defines a first lateral edge 226 a and a second lateral edge 226 b and defines a width “W” between the first lateral edge 226 a and the second lateral edge 226 b.
  • line heating element 222 has a width “W 1 ” of approximately 100 ⁇ m and a length “L 1 ” of approximately 5000 microns ( ⁇ m).
  • detector element 224 may have a width “W 2 ” of approximately 100 ⁇ m and a length “L 2 ” of approximately 1500 ⁇ m.
  • the dimensions disclosed herein are representative, it is envisioned and within the scope of the present disclosure for the dimensions to have any suitable value, such as, for example, having lengths “L 1 ”, “L 2 ” that are approximately 3.0 times greater than the lengths specified or having lengths that are approximately 0.2 times less than the lengths specified.
  • the width “W” of the substrate 226 is greater than the widths “W 1 ” and “W 2 ”. It is contemplated that the lengths selected, for example, may be chosen for optimal use in a specific target tissue, e.g., liver, lung, kidney, muscle, etc.
  • heating elements 222 a , 222 b of line heating element 222 are substantially parallel to one another and are spaced a distance “Y 1 ” from one another. Distance “Y 1 ” may be approximately 100 ⁇ m.
  • the first and second resistive heating elements 222 a and 222 b are disposed between the first and second detector elements 224 a and 224 b , respectively.
  • Each heating element 222 a , 222 b is spaced apart from a respective RTD element 224 a , 224 b by a distance “Y 2 ”.
  • the first and second detector elements 224 a and 224 b are disposed on the substrate substantially parallel to one another and each define an inner edge 224 a ′ and 224 b ′, respectively, along the length of the substrate 226 .
  • the first and second resistive heating elements 222 a and 222 b are disposed on the substrate substantially parallel to one another and each define an outer edge 222 a ′ and 222 b ′, respectively, along the length of the substrate 226 .
  • the first and second detector elements 224 a and 224 b are each disposed separately in an outer position with respect to, and closer to, the first and second lateral edges 226 a , 226 b defined by the substrate 226 as compared to the first and second resistive heating elements 222 a , 222 b , respectively.
  • the first and second resistive heating elements 222 a , 222 b are each disposed separately in an inner position as compared to the first and second detector elements 224 a , 224 b and with respect to the first and second lateral edges 226 a , 226 b defined by the substrate 226 , respectively.
  • the first and second resistive heating elements 222 a , 222 b define the first width dimension “Y 1 ” that characterizes the combined width of the first and second resistive heating elements 222 a , 222 b on the substrate 226 that is less than the second width dimension “W” defined by the distance between the first and second lateral edges 226 a , 226 b defined by the substrate 226 .
  • the distance “Y 2 ” between the outer edges 222 a ′, 222 b ′ of the resistive heating elements 222 a , 222 b and the inner edges 224 a ′, 224 b ′ of the detector elements 224 a , 224 b each define a third width dimension that is distance “Y 2 ”.
  • Distance “Y 2 ” may be approximately 50 ⁇ m.
  • microprobe sensor 220 is shown and described.
  • the steps involved in the manufacture of microprobe sensor 220 include, as seen in FIG. 3 , providing a substrate 226 , e.g., glass, polyimide (kapton) or other polymeric substrate that is inert.
  • substrate 226 may have a thickness approximately equal to 1.0 mm.
  • a first layer 228 is deposited on substrate 226 using evaporation techniques or other suitable deposition techniques.
  • First layer 228 may be fabricated from titanium (Ti) titanium tungsten (TiW), platinum (Pt) or other like materials, and may have a thickness of approximately 50 nm.
  • a second layer 230 is deposited on first layer 228 using evaporation techniques or other suitable deposition techniques.
  • Second layer 230 may be fabricated from gold (Au), iridium (Ir), platinum-iridium alloy (Pt—Ir) or other like materials, and may have a thickness of approximately 500 nm.
  • the dimensions of microprobe sensor 220 provided herein are merely representative, and may be made larger or smaller depending on the application. For example, microprobe sensor 220 may be reduced in size when configured for use with infants.
  • microprobe sensor 220 may include a substrate 226 having a thickness approximately equal to 300 ⁇ m to 1000 ⁇ m, and in a further embodiment approximately equal to 500 ⁇ m.
  • suitable photolithography techniques or other suitable etching or removal techniques are used to generate a desired first pattern 232 in first and second layers 228 , 230 by using a precision photomask (not shown).
  • second layer 230 is etched, using photolithography techniques or other suitable etching or removal techniques, to create a second pattern 234 therein. In this manner, the heating elements and the RTD elements are defined.
  • an insulating layer 236 is deposited, i.e., spun onto, overtop first and second layers 228 , 230 and first and second patterns 232 , 234 .
  • Insulating layer 236 may comprise a dielectric layer of benzocyclobutane (BCB), silica (SiO2), parylene, polyimide, SU8, or other like materials.
  • Insulating layer 236 functions to protect first and second layers 228 , 230 from corrosive element in tissue, such as, for example, saline.
  • areas 238 are exposed in insulating layer 236 to define bonding pads 202 , 204 and expose bonding pads 202 , 204 for soldering or the like.
  • Sensor 220 may further be coated with a hydrophilic or hydrophobic layer (not shown) for increasing the biocompatibility of sensor 220 .
  • Wires may be welded, soldered, ball bonded, epoxied, etc. to each bonding pad 202 , 204 and microprobe sensor 220 may then be placed within elongate body 210 (see FIG. 1 ).
  • a waterproof epoxy may be used to hold microprobe sensor 220 in place within elongate body 210 and to protect microprobe sensor 220 .
  • thermal conductivity probe 200 may be used to determine the thermal conductivity of target tissue.
  • the transient time response of heating elements 222 a , 222 b is dependent on a thermal conductivity of the medium surrounding microprobe sensor 220 and the substrate underlying microprobe sensor 220 .
  • a 5V output generated by power source “PS”, is used to provide a constant current through heating elements 222 a , 222 b .
  • Computer “C” is used to monitor, record and acquire the data and/or readings generated by microprobe sensor 220 .
  • the transient time response of the RTD elements 224 a , 224 b depends on the thermal conductivity of the surrounding medium and the substrate.
  • catheter 210 is inserted into the target tissue “T” and microprobe sensor 220 is activated to determine the thermal conductivity of said target tissue.
  • Thermal conductivity probe 200 is adapted to measure thermal conductance K eff as represented by the following equation, as commonly known in the field:
  • K eff K ⁇ ⁇ 1 + n ⁇ [ ( ⁇ ⁇ ⁇ c ) b ⁇ ⁇ ⁇ ⁇ r b 2 ⁇ V _ ⁇ ⁇ cos ⁇ ⁇ ⁇ ] 2 ⁇ ⁇ ⁇ K 2 ⁇ + q met where ⁇ : K eff ⁇ ⁇ - ⁇ ⁇ is ⁇ ⁇ the ⁇ ⁇ “ effective ” ⁇ ⁇ tissue ⁇ ⁇ conductance ⁇ ⁇ which ⁇ ⁇ is ⁇ ⁇ measured .
  • K eff ⁇ ⁇ is ⁇ ⁇ the ⁇ ⁇ combination ⁇ ⁇ of ⁇ ⁇ conduction ⁇ ⁇ ( due ⁇ ⁇ to ⁇ ⁇ intrinsic ⁇ ⁇ thermal ⁇ ⁇ conductivity ) ⁇ and ⁇ ⁇ convection ⁇ ⁇ ( due ⁇ ⁇ to ⁇ ⁇ perfusion ) ;
  • K tissue ⁇ ⁇ - ⁇ ⁇ is ⁇ ⁇ tissue ⁇ ⁇ conductance ⁇ ⁇ in ⁇ ⁇ the ⁇ ⁇ absence ⁇ ⁇ of ⁇ ⁇ perfusion ;
  • n ⁇ ⁇ - ⁇ ⁇ is ⁇ ⁇ the ⁇ ⁇ number ⁇ ⁇ of ⁇ ⁇ blood ⁇ ⁇ vessels ;
  • b ⁇ ⁇ is ⁇ ⁇ the ⁇ ⁇ density ⁇ ⁇ of ⁇ ⁇ blood ;
  • Probe 300 may be in the form of a needle, probe antenna or the like or any suitable configuration.
  • probe 300 may include an elongate body 310 , in the form of a catheter, defining a sharpened or pointed distal tip 312 .
  • Probe 300 further includes a sensor 320 suitably secured to catheter 310 .
  • Sensor 320 may be disposed at least partially within catheter 310 , on an outer surface of catheter 310 , imbedded in the outer surface of catheter 310 and/or according to any other suitable.
  • sensor 320 includes a pair of electrodes 322 a , 322 b defining a sensor area “SA”, a pair of electrical leads 323 a , 323 b respectively connecting electrodes 322 a , 322 b to bonding pads 304 , and a substrate 326 for supporting electrodes 322 a , 322 b , leads 323 a , 323 b and bonding pads 304 .
  • each electrode 322 a , 322 b has a width “W 3 ” of approximately 150 ⁇ m and a length “L 3 ” of approximately 2,000 ⁇ m. While the dimensions disclosed herein are representative or exemplary, it is envisioned and within the scope of the present disclosure for the dimensions to have any suitable value, such as, for example, having lengths that are approximately 3.0 times greater than the lengths specified or having lengths that are approximately 0.2 times less than the lengths specified. It is contemplated that the lengths selected, for example, may be chosen for optimal use in a specific target tissue, e.g., liver, lung, kidney, muscle, etc. As best seen in FIGS. 10A and 10B , electrodes 322 a , 322 b are substantially parallel to one another and are spaced a distance “Y 3 ” from one another. Distance “Y 3 ” may be approximately 300 ⁇ m.
  • FIGS. 11-16 an exemplary method of manufacturing sensor 320 is shown and described.
  • the steps involved in the manufacture of sensor 320 include, as seen in FIG. 11 , providing a substrate 326 , e.g., a polyimide or other suitable substrate that is inert.
  • substrate 326 may have a thickness between approximately 300 ⁇ m and 1,000 ⁇ m, and in a further embodiment may be approximately 500 ⁇ m.
  • an adhesive layer 328 is deposited on substrate 326 using suitable deposition by evaporation techniques or other suitable deposition and/or evaporation techniques.
  • Adhesive layer 328 may be fabricated from titanium (Ti) titanium tungsten (TiW), platinum (Pt) or other like materials, and may have a thickness of approximately 30 nm.
  • a conductive layer 330 is deposited on adhesive layer 228 using suitable deposition by evaporation techniques or other suitable deposition and/or evaporation techniques.
  • Conductive layer 330 may be fabricated from gold (Au), iridium (Ir), platinum-iridium alloy (Pt—Ir) or other like materials, and may have a thickness of approximately 300 nm.
  • the dimensions of microprobe sensor 320 provided herein are merely representative, and may be made larger or smaller depending on the application.
  • insulating layer 336 is deposited, e.g., spun onto, overtop conductive layer 330 and pattern 332 .
  • Insulating layer 336 may comprise a dielectric layer of benzocyclobutane (BCB), silica (SiO 2 ), parylene C or other like materials.
  • BCB benzocyclobutane
  • SiO 2 silica
  • parylene C parylene C or other like materials.
  • Insulating layer 336 functions to protect conductive layer 330 from corrosive element in tissue, such as, for example, saline.
  • areas 338 are patterned into insulating layer 336 to define first and second electrodes 322 a , 322 b and bonding pads 304 and to expose bonding pads 304 for soldering or the like.
  • Wires may be welded, soldered, ball bonded, epoxied, etc. to each bonding pad 304 and sensor 320 may then be paced within elongate body 310 (see FIG. 1 ).
  • a waterproof epoxy may be used to hold sensor 320 in place within elongate body 310 and to protect sensor 320 .
  • Sensor 320 may further be coated with a hydrophilic or hydrophobic layer (not shown) for increasing the biocompatibility of sensor 320 .
  • electrical conductivity probe 300 may be used to determine the electrical conductivity of target tissue prior to an electrosurgical procedure.
  • a 500 kHz output frequency generated by multimeter “M”, is used to provide electrosurgical energy to electrodes 322 a , 322 b .
  • a return pad or electrode (not shown) is employed to complete a circuit with electrodes 322 a , 322 b , via tissue “T”.
  • the computer “C” is used to monitor, record and acquire the data and/or readings generated by sensor 320 .
  • the impedance values by the micro electrical probe are calibrated in different salinity levels against the standard four-electrode probe which provides a direct measure of the electrical conductivity.
  • a calibration curve is generated that relate the impedance value given by the micro electrical probe to the electrical conductivity measured by the standard four-electrode probe at different salinity levels.
  • the electrical conductivity can be calculated by comparing the impedance value with the calibration curve.
  • catheter 310 is inserted into the target tissue “T” and sensor 320 is activated to determine the electrical conductivity of said target tissue “T”.
  • devices 200 , 300 may employ or include at least two or multiple sensors 220 , 320 disposed around a circumference thereof. As seen in FIG. 19 , each of devices 200 , 300 may include a pair of sensors 220 a , 320 a disposed on opposed sides thereof, or as seen in FIG. 20 , each of devices 200 , 300 may include a sensors 220 b , 320 b disposed at 90° angles relative to one another.
  • sensors 220 , 320 may be disposed at different axial locations along a length of respective catheter 210 , 310 . As seen in FIG. 22 , sensors 220 , 320 may be provided on a single electrosurgical device 400 . In this manner, electrosurgical device 400 will be capable of measuring and/or capturing both the values of thermal conductivity and electrical conductivity of target tissue “T”.
  • sensors 220 , 320 may be incorporated into or otherwise associated with a thermal treatment device 500 , in the form of an ablation needle, probe, antenna or the like.
  • Thermal treatment device 500 defines an electrically exposed distal tip 502 configured and adapted to deliver therapeutic energy to target tissue, according to any suitable known method in the art.
  • Distal tip 502 extends from an insulated shaft 504 or the like.
  • sensors 220 , 320 may be provided along and/or incorporated into distal tip 502 and/or provided along and/or incorporated into shaft 504 .
  • the particular arrangement, location and orientation of sensors 220 , 320 relative to one another and relative to distal tip 502 and 504 may be selected or chosen as needed and/or desired.
  • sensors 220 , 320 may be provided along and/or incorporated into an outer tube 602 of a thermal treatment device 600 .
  • outer tube 602 of thermal treatment device 600 may be retracted relative to shaft 604 , or in the alternative, shaft 604 may be extended relative to outer tube 602 , to expose an operational end 606 of thermal treatment device 600 .
  • sensors 220 , 320 may be provided along and/or incorporated into a shaft 702 of a thermal treatment device 700 .
  • shaft 702 of thermal treatment device 700 may be extended relative to an operational outer tube 704 , thereby exposing sensors 220 , 320 .
  • operational outer tube 704 may be replaced with an energy delivery needle or the like for delivering therapeutic energy to surrounding tissue and thermal treatment device 700 may be extended relative to energy delivery needle 704 .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Robotics (AREA)
  • Otolaryngology (AREA)
  • Plasma & Fusion (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • Surgical Instruments (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
US12/016,754 2007-01-19 2008-01-18 Thermal and electrical conductivity probes and methods of making the same Expired - Fee Related US7951144B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/016,754 US7951144B2 (en) 2007-01-19 2008-01-18 Thermal and electrical conductivity probes and methods of making the same
US13/098,199 US8156632B2 (en) 2007-01-19 2011-04-29 Thermal and electrical conductivity probes and methods of making the same
US13/351,553 US8747402B2 (en) 2007-01-19 2012-01-17 Electrical conductivity probes for measuring attributes of tissue

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US88123807P 2007-01-19 2007-01-19
US12/016,754 US7951144B2 (en) 2007-01-19 2008-01-18 Thermal and electrical conductivity probes and methods of making the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/098,199 Division US8156632B2 (en) 2007-01-19 2011-04-29 Thermal and electrical conductivity probes and methods of making the same

Publications (2)

Publication Number Publication Date
US20080175299A1 US20080175299A1 (en) 2008-07-24
US7951144B2 true US7951144B2 (en) 2011-05-31

Family

ID=39124874

Family Applications (5)

Application Number Title Priority Date Filing Date
US12/016,761 Active 2030-12-10 US9375246B2 (en) 2007-01-19 2008-01-18 System and method of using thermal and electrical conductivity of tissue
US12/016,754 Expired - Fee Related US7951144B2 (en) 2007-01-19 2008-01-18 Thermal and electrical conductivity probes and methods of making the same
US13/098,199 Expired - Fee Related US8156632B2 (en) 2007-01-19 2011-04-29 Thermal and electrical conductivity probes and methods of making the same
US13/351,553 Active 2028-03-15 US8747402B2 (en) 2007-01-19 2012-01-17 Electrical conductivity probes for measuring attributes of tissue
US15/189,625 Abandoned US20160302688A1 (en) 2007-01-19 2016-06-22 System and method of using thermal and electrical conductivity of tissue

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/016,761 Active 2030-12-10 US9375246B2 (en) 2007-01-19 2008-01-18 System and method of using thermal and electrical conductivity of tissue

Family Applications After (3)

Application Number Title Priority Date Filing Date
US13/098,199 Expired - Fee Related US8156632B2 (en) 2007-01-19 2011-04-29 Thermal and electrical conductivity probes and methods of making the same
US13/351,553 Active 2028-03-15 US8747402B2 (en) 2007-01-19 2012-01-17 Electrical conductivity probes for measuring attributes of tissue
US15/189,625 Abandoned US20160302688A1 (en) 2007-01-19 2016-06-22 System and method of using thermal and electrical conductivity of tissue

Country Status (3)

Country Link
US (5) US9375246B2 (ja)
EP (4) EP2402741B1 (ja)
JP (2) JP5511141B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080177199A1 (en) * 2007-01-19 2008-07-24 Podhajsky Ronald J System and Method of Using Thermal and Electrical Conductivity of Tissue
US20110107816A1 (en) * 2009-11-06 2011-05-12 Agilent Technologies, Inc. Thermal conductivity detector
US20170273571A1 (en) * 2013-03-15 2017-09-28 3Dt Holdings, Llc Impedance systems and methods to use the same to obtain luminal organ measurements
US20170333125A1 (en) * 2015-11-16 2017-11-23 Jonah Lepak Energy delivery devices
US10349824B2 (en) 2013-04-08 2019-07-16 Apama Medical, Inc. Tissue mapping and visualization systems
US11684415B2 (en) 2013-04-08 2023-06-27 Boston Scientific Scimed, Inc. Tissue ablation and monitoring thereof

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7901400B2 (en) 1998-10-23 2011-03-08 Covidien Ag Method and system for controlling output of RF medical generator
US7137980B2 (en) 1998-10-23 2006-11-21 Sherwood Services Ag Method and system for controlling output of RF medical generator
US7364577B2 (en) 2002-02-11 2008-04-29 Sherwood Services Ag Vessel sealing system
US7044948B2 (en) 2002-12-10 2006-05-16 Sherwood Services Ag Circuit for controlling arc energy from an electrosurgical generator
US7722601B2 (en) 2003-05-01 2010-05-25 Covidien Ag Method and system for programming and controlling an electrosurgical generator system
EP1676108B1 (en) 2003-10-23 2017-05-24 Covidien AG Thermocouple measurement circuit
US7396336B2 (en) 2003-10-30 2008-07-08 Sherwood Services Ag Switched resonant ultrasonic power amplifier system
US7131860B2 (en) 2003-11-20 2006-11-07 Sherwood Services Ag Connector systems for electrosurgical generator
US7553309B2 (en) 2004-10-08 2009-06-30 Covidien Ag Electrosurgical system employing multiple electrodes and method thereof
US7628786B2 (en) 2004-10-13 2009-12-08 Covidien Ag Universal foot switch contact port
US9474564B2 (en) 2005-03-31 2016-10-25 Covidien Ag Method and system for compensating for external impedance of an energy carrying component when controlling an electrosurgical generator
US8734438B2 (en) 2005-10-21 2014-05-27 Covidien Ag Circuit and method for reducing stored energy in an electrosurgical generator
US7947039B2 (en) 2005-12-12 2011-05-24 Covidien Ag Laparoscopic apparatus for performing electrosurgical procedures
US8685016B2 (en) 2006-01-24 2014-04-01 Covidien Ag System and method for tissue sealing
US7513896B2 (en) 2006-01-24 2009-04-07 Covidien Ag Dual synchro-resonant electrosurgical apparatus with bi-directional magnetic coupling
US8147485B2 (en) 2006-01-24 2012-04-03 Covidien Ag System and method for tissue sealing
CA2574935A1 (en) 2006-01-24 2007-07-24 Sherwood Services Ag A method and system for controlling an output of a radio-frequency medical generator having an impedance based control algorithm
AU2007200299B2 (en) 2006-01-24 2012-11-15 Covidien Ag System and method for tissue sealing
CA2574934C (en) 2006-01-24 2015-12-29 Sherwood Services Ag System and method for closed loop monitoring of monopolar electrosurgical apparatus
US7651493B2 (en) 2006-03-03 2010-01-26 Covidien Ag System and method for controlling electrosurgical snares
US7651492B2 (en) 2006-04-24 2010-01-26 Covidien Ag Arc based adaptive control system for an electrosurgical unit
US7794457B2 (en) 2006-09-28 2010-09-14 Covidien Ag Transformer for RF voltage sensing
US8777941B2 (en) 2007-05-10 2014-07-15 Covidien Lp Adjustable impedance electrosurgical electrodes
US20080291966A1 (en) * 2007-05-24 2008-11-27 Engel Steven J Thermal conductivity detector (TCD) having compensated constant temperature element
US7834484B2 (en) 2007-07-16 2010-11-16 Tyco Healthcare Group Lp Connection cable and method for activating a voltage-controlled generator
US8216220B2 (en) 2007-09-07 2012-07-10 Tyco Healthcare Group Lp System and method for transmission of combined data stream
US8512332B2 (en) 2007-09-21 2013-08-20 Covidien Lp Real-time arc control in electrosurgical generators
SE532140C2 (sv) * 2007-09-28 2009-11-03 Clinical Laserthermia Systems Anordning för positionering av implanterbara ledningar
US8226639B2 (en) 2008-06-10 2012-07-24 Tyco Healthcare Group Lp System and method for output control of electrosurgical generator
JP4752892B2 (ja) * 2008-09-30 2011-08-17 セイコーエプソン株式会社 流体噴射装置および手術器具
EP2355692A1 (en) * 2008-11-11 2011-08-17 Koninklijke Philips Electronics N.V. Medical device comprising a probe for measuring temperature data in a patient's tissue
US8262652B2 (en) 2009-01-12 2012-09-11 Tyco Healthcare Group Lp Imaginary impedance process monitoring and intelligent shut-off
US8753333B2 (en) 2010-03-10 2014-06-17 Covidien Lp System for determining proximity relative to a nerve
US8864761B2 (en) 2010-03-10 2014-10-21 Covidien Lp System and method for determining proximity relative to a critical structure
US10335230B2 (en) 2011-03-09 2019-07-02 Covidien Lp Systems for thermal-feedback-controlled rate of fluid flow to fluid-cooled antenna assembly and methods of directing energy to tissue using same
JP6032517B2 (ja) * 2011-04-14 2016-11-30 学校法人立命館 手術支援システム及びコンピュータプログラム
US8888771B2 (en) 2011-07-15 2014-11-18 Covidien Lp Clip-over disposable assembly for use with hemostat-style surgical instrument and methods of manufacturing same
US9119648B2 (en) 2012-01-06 2015-09-01 Covidien Lp System and method for treating tissue using an expandable antenna
US9364278B2 (en) 2012-04-30 2016-06-14 Covidien Lp Limited reuse ablation needles and ablation devices for use therewith
US9182364B1 (en) * 2012-10-10 2015-11-10 U.S. Department Of Energy Hot wire needle probe for thermal conductivity detection
KR101463036B1 (ko) * 2013-03-26 2014-11-20 서울대학교산학협력단 나노 입자의 자기적 가열을 이용한 다채널 신경 자극 장치
US9872719B2 (en) 2013-07-24 2018-01-23 Covidien Lp Systems and methods for generating electrosurgical energy using a multistage power converter
US9655670B2 (en) 2013-07-29 2017-05-23 Covidien Lp Systems and methods for measuring tissue impedance through an electrosurgical cable
US9826928B2 (en) 2013-12-24 2017-11-28 Catholic University Industry Academic Cooperation Foundation Apparatus and method for measuring thermal conductivity in burns
WO2015099444A1 (ko) * 2013-12-24 2015-07-02 가톨릭대학교 산학협력단 화상 열전도도 측정 장치 및 방법
JP6221156B2 (ja) * 2013-12-25 2017-11-01 学校法人早稲田大学 熱伝導率測定システム
WO2016069914A1 (en) * 2014-10-29 2016-05-06 Indiana University Research And Technology Corp. System and method for bladder transducer placement
CN104502713A (zh) * 2014-12-26 2015-04-08 上海神开石油设备有限公司 一种应用在无线传输系统的低功耗电导率传感器
FR3034643B1 (fr) * 2015-04-07 2021-09-24 Spineguard Systeme medical destine a penetrer dans une structure anatomique d'un patient
CN105147287A (zh) * 2015-09-16 2015-12-16 北京水木天蓬医疗技术有限公司 一种生物组织识别装置、识别方法及生物组织识别系统
GB2545703B (en) 2015-12-22 2019-01-09 Univ Sheffield Apparatus and methods for determining force applied to the tip of a probe
WO2017178817A1 (en) * 2016-04-15 2017-10-19 Oxford University Innovation Limited A needle probe, apparatus for sensing compositional information, medical drain, method of measuring a thermal property, and method of sensing compositional information
US10925629B2 (en) 2017-09-18 2021-02-23 Novuson Surgical, Inc. Transducer for therapeutic ultrasound apparatus and method
WO2019071269A2 (en) 2017-10-06 2019-04-11 Powell Charles Lee SYSTEM AND METHOD FOR TREATING AN OBSTRUCTIVE SLEEP APNEA
TWI648544B (zh) * 2018-05-10 2019-01-21 矽品精密工業股份有限公司 用於測試射頻元件的測試結構
US11109787B2 (en) * 2018-05-21 2021-09-07 Vine Medical LLC Multi-tip probe for obtaining bioelectrical measurements
US20200113619A1 (en) * 2018-10-11 2020-04-16 Rebound Therapeutics Corporation Cautery tool for intracranial surgery
CN109567906B (zh) * 2018-12-14 2020-04-24 清华大学 穿刺针及超声穿刺装置
CN110044957B (zh) * 2019-04-24 2020-10-27 南京大学 测量电路、测量系统及热物性参数测量方法

Citations (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4038975A (en) 1974-07-15 1977-08-02 Vyvojova A Provozni Zakladna Vyzkumnych Ustavu Method of and apparatus for the detector of neoplasms and other morphologic changes in mucous membrane samples
US4291708A (en) 1977-11-02 1981-09-29 Yeda Research & Development Co. Ltd. Apparatus and method for detection of tumors in tissue
US4537203A (en) 1980-10-21 1985-08-27 Tokyo Shibaura Denki Kabushiki Kaisha Abnormal cell detecting device
US4617939A (en) 1982-04-30 1986-10-21 The University Of Sheffield Tomography
US4719441A (en) 1985-02-26 1988-01-12 Navasina Ag Sensor for measuring electrical conductivity
US4729385A (en) 1985-10-23 1988-03-08 American Mediscan, Inc. Probe and method of use for detecting abnormal tissues
DE3711511C1 (de) 1987-04-04 1988-06-30 Hartmann & Braun Ag Verfahren zur Bestimmung der Gaskonzentrationen in einem Gasgemisch und Sensor zur Messung der Waermeleitfaehigkeit
US4955383A (en) 1988-12-22 1990-09-11 Biofield Corporation Discriminant function analysis method and apparatus for disease diagnosis and screening
US4960109A (en) * 1988-06-21 1990-10-02 Massachusetts Institute Of Technology Multi-purpose temperature sensing probe for hyperthermia therapy
US4966158A (en) 1987-11-12 1990-10-30 Kao Corporation Measurement method for moisture content in the skin and system therefor
US5035514A (en) * 1990-05-07 1991-07-30 Thermal Technologies, Inc. Thermal probe for measuring thermal properties of a flowing medium
US5184620A (en) 1991-12-26 1993-02-09 Marquette Electronics, Inc. Method of using a multiple electrode pad assembly
US5184624A (en) 1988-04-15 1993-02-09 The University Of Sheffield Electrical impedance tomography
US5217014A (en) 1991-11-04 1993-06-08 Biofield Corp. Depolarized pre-gelled electrodes
EP0558429A1 (fr) 1992-02-26 1993-09-01 PECHINEY RECHERCHE (Groupement d'Intérêt Economique géré par l'ordonnance no. 67-821 du 23 Septembre 1967) Méthode de mesure simultanée de la résistivité électrique et de la conductivité thermique
US5353802A (en) 1990-10-18 1994-10-11 Centrum For Dentalteknik Och Biomaterial Device for measurement of electrical impedance of organic and biological materials
US5630426A (en) 1995-03-03 1997-05-20 Neovision Corporation Apparatus and method for characterization and treatment of tumors
US5704355A (en) 1994-07-01 1998-01-06 Bridges; Jack E. Non-invasive system for breast cancer detection
US5800350A (en) 1993-11-01 1998-09-01 Polartechnics, Limited Apparatus for tissue type recognition
WO1999044520A1 (en) 1998-03-06 1999-09-10 Conway-Stuart Medical, Inc. Method to treat esophageal sphincters by electrosurgery
US6026323A (en) 1997-03-20 2000-02-15 Polartechnics Limited Tissue diagnostic system
WO2000054682A1 (en) 1999-03-17 2000-09-21 Ntero Surgical, Inc. Systems and methods for reducing post-surgical complications
WO2000070333A1 (en) 1999-05-14 2000-11-23 Hot Disk Ab Method of measuring thermal properties of materials with direction dependant properties
US6190378B1 (en) * 1997-12-05 2001-02-20 Massachusetts Institute Of Technology Cryosurgical instrument and related techniques
US20020173731A1 (en) * 2001-05-17 2002-11-21 Thermal Technololgies, Inc. Blood flow monitor for shock and resuscitation
US20030097130A1 (en) * 1997-09-04 2003-05-22 Gerhard Muller Electrode arrangement for electrothermal treatment of human or animal bodies
US20040015162A1 (en) 2002-07-22 2004-01-22 Medtronic Vidamed, Inc. Method for treating tissue with a wet electrode and apparatus for using same
US20040037343A1 (en) * 2000-01-14 2004-02-26 Seiko Instruments Inc. Calorimeter and manufacturing method thereof
WO2004052182A2 (en) 2002-12-11 2004-06-24 Proteus Biomedical, Inc. Monitoring and treating hemodynamic parameters
US6845264B1 (en) 1998-10-08 2005-01-18 Victor Skladnev Apparatus for recognizing tissue types
US20050090881A1 (en) * 2003-04-17 2005-04-28 Frank Jeffrey I. Heat transfer probe
DE102004022206A1 (de) 2004-05-04 2005-12-01 Bundesrepublik Deutschland, vertr. d. d. Bundesministerium für Wirtschaft und Arbeit, dieses vertr. d. d. Präsidenten der Physikalisch-Technischen Bundesanstalt Sensor und Sensoranordnung zur Messung der Wärmeleitfähigkeit einer Probe
DE202005015147U1 (de) 2005-09-26 2006-02-09 Health & Life Co., Ltd., Chung-Ho Biosensor-Teststreifen mit Identifizierfunktion
US20070049915A1 (en) * 2005-08-26 2007-03-01 Dieter Haemmerich Method and Devices for Cardiac Radiofrequency Catheter Ablation
US20070060921A1 (en) * 2004-06-17 2007-03-15 Jnj Technology Holdings Llc Ablation apparatus and system to limit nerve conduction
US20080025366A1 (en) * 2003-04-29 2008-01-31 Mcburney Terence Probe for Measuring Thermal and Hydraulic Properties
US20080161797A1 (en) * 2006-12-29 2008-07-03 Huisun Wang Ablation catheter electrode having multiple thermal sensors and method of use

Family Cites Families (154)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE390937C (de) 1922-10-13 1924-03-03 Adolf Erb Vorrichtung zur Innenbeheizung von Wannenoefen zum Haerten, Anlassen, Gluehen, Vergueten und Schmelzen
DE1099658B (de) 1959-04-29 1961-02-16 Siemens Reiniger Werke Ag Selbsttaetige Einschaltvorrichtung fuer Hochfrequenzchirurgiegeraete
FR1275415A (fr) 1960-09-26 1961-11-10 Dispositif détecteur de perturbations pour installations électriques, notamment d'électrochirurgie
DE1139927B (de) 1961-01-03 1962-11-22 Friedrich Laber Hochfrequenz-Chirurgiegeraet
DE1149832C2 (de) 1961-02-25 1977-10-13 Siemens AG, 1000 Berlin und 8000 München Hochfrequenz-chirurgieapparat
FR1347865A (fr) 1962-11-22 1964-01-04 Perfectionnements aux appareils de diathermo-coagulation
DE1439302B2 (de) 1963-10-26 1971-05-19 Siemens AG, 1000 Berlin u 8000 München Hochfrequenz Chirurgiegerat
SU401367A1 (ru) 1971-10-05 1973-10-12 Тернопольский государственный медицинский институт Биактивный электрохирургическнп инструмент
FR2235669A1 (en) 1973-07-07 1975-01-31 Lunacek Boris Gynaecological sterilisation instrument - has hollow electrode protruding from the end of a curved ended tube
GB1480736A (en) 1973-08-23 1977-07-20 Matburn Ltd Electrodiathermy apparatus
DE2455174A1 (de) 1973-11-21 1975-05-22 Termiflex Corp Ein/ausgabegeraet zum datenaustausch mit datenverarbeitungseinrichtungen
DE2407559C3 (de) 1974-02-16 1982-01-21 Dornier System Gmbh, 7990 Friedrichshafen Wärmesonde
DE2415263A1 (de) 1974-03-29 1975-10-02 Aesculap Werke Ag Chirurgische hf-koagulationssonde
DE2429021C2 (de) 1974-06-18 1983-12-08 Erbe Elektromedizin GmbH, 7400 Tübingen Fernschalteinrichtung für ein HF-Chirurgiegerät
FR2276027A1 (fr) 1974-06-25 1976-01-23 Medical Plastics Inc Raccordement electrique pour electrode plane
DE2460481A1 (de) 1974-12-20 1976-06-24 Delma Elektro Med App Elektrodenhandgriff zur handfernschaltung eines hochfrequenz-chirurgiegeraets
US4237887A (en) 1975-01-23 1980-12-09 Valleylab, Inc. Electrosurgical device
DE2504280C3 (de) 1975-02-01 1980-08-28 Hans Heinrich Prof. Dr. 8035 Gauting Meinke Vorrichtung zum Schneiden und/oder Koagulieren menschlichen Gewebes mit Hochfrequenzstrom
CA1064581A (en) 1975-06-02 1979-10-16 Stephen W. Andrews Pulse control circuit and method for electrosurgical units
FR2315286A2 (fr) 1975-06-26 1977-01-21 Lamidey Marcel Pince a dissequer, hemostatique, haute frequence
DE2540968C2 (de) 1975-09-13 1982-12-30 Erbe Elektromedizin GmbH, 7400 Tübingen Einrichtung zum Einschalten des Koagulationsstroms einer bipolaren Koagulationspinzette
FR2390968A1 (fr) 1977-05-16 1978-12-15 Skovajsa Joseph Dispositif de traitement local d'un patient, notamment pour acupuncture ou auriculotherapie
SU727201A2 (ru) 1977-11-02 1980-04-15 Киевский Научно-Исследовательский Институт Нейрохирургии Электрохирургический аппарат
DE2803275C3 (de) 1978-01-26 1980-09-25 Aesculap-Werke Ag Vormals Jetter & Scheerer, 7200 Tuttlingen Fernschalteinrichtung zum Schalten eines monopolaren HF-Chirurgiegerätes
DE2823291A1 (de) 1978-05-27 1979-11-29 Rainer Ing Grad Koch Schaltung zur automatischen einschaltung des hochfrequenzstromes von hochfrequenz-koagulationsgeraeten
DE2946728A1 (de) 1979-11-20 1981-05-27 Erbe Elektromedizin GmbH & Co KG, 7400 Tübingen Hochfrequenz-chirurgiegeraet
US4380237A (en) * 1979-12-03 1983-04-19 Massachusetts General Hospital Apparatus for making cardiac output conductivity measurements
USD263020S (en) 1980-01-22 1982-02-16 Rau Iii David M Retractable knife
USD266842S (en) 1980-06-27 1982-11-09 Villers Mark W Phonograph record spacer
USD278306S (en) 1980-06-30 1985-04-09 Mcintosh Lois A Microwave oven rack
JPS5778844A (en) 1980-11-04 1982-05-17 Kogyo Gijutsuin Lasre knife
DE3045996A1 (de) 1980-12-05 1982-07-08 Medic Eschmann Handelsgesellschaft für medizinische Instrumente mbH, 2000 Hamburg Elektro-chirurgiegeraet
FR2502935B1 (fr) 1981-03-31 1985-10-04 Dolley Roger Procede et dispositif de controle de la coagulation de tissus a l'aide d'un courant a haute frequence
DE3120102A1 (de) 1981-05-20 1982-12-09 F.L. Fischer GmbH & Co, 7800 Freiburg Anordnung zur hochfrequenzkoagulation von eiweiss fuer chirurgische zwecke
FR2517953A1 (fr) 1981-12-10 1983-06-17 Alvar Electronic Appareil diaphanometre et son procede d'utilisation
US4595012A (en) * 1984-01-13 1986-06-17 American Hospital Supply Corporation Lumen mounted electrodes for pacing and intra-cardiac ECG sensing
FR2573301B3 (fr) 1984-11-16 1987-04-30 Lamidey Gilles Pince chirurgicale et son appareillage de commande et de controle
DE3510586A1 (de) 1985-03-23 1986-10-02 Erbe Elektromedizin GmbH, 7400 Tübingen Kontrolleinrichtung fuer ein hochfrequenz-chirurgiegeraet
USD295893S (en) 1985-09-25 1988-05-24 Acme United Corporation Disposable surgical clamp
USD295894S (en) 1985-09-26 1988-05-24 Acme United Corporation Disposable surgical scissors
DE3604823C2 (de) 1986-02-15 1995-06-01 Lindenmeier Heinz Hochfrequenzgenerator mit automatischer Leistungsregelung für die Hochfrequenzchirurgie
EP0246350A1 (de) 1986-05-23 1987-11-25 Erbe Elektromedizin GmbH. Koagulationselektrode
DE8712328U1 (ja) 1987-09-11 1988-02-18 Jakoubek, Franz, 7201 Emmingen-Liptingen, De
DE3904558C2 (de) 1989-02-15 1997-09-18 Lindenmeier Heinz Automatisch leistungsgeregelter Hochfrequenzgenerator für die Hochfrequenz-Chirurgie
DE3942998C2 (de) 1989-12-27 1998-11-26 Delma Elektro Med App Elektrochirurgisches Hochfrequenzgerät
DE4122050C2 (de) 1991-07-03 1996-05-30 Gore W L & Ass Gmbh Antennenanordnung mit Zuleitung zur medizinischen Wärmeapplikation in Körperhohlräumen
DE4238263A1 (en) 1991-11-15 1993-05-19 Minnesota Mining & Mfg Adhesive comprising hydrogel and crosslinked polyvinyl:lactam - is used in electrodes for biomedical application providing low impedance and good mechanical properties when water and/or moisture is absorbed from skin
DE4205213A1 (de) 1992-02-20 1993-08-26 Delma Elektro Med App Hochfrequenzchirurgiegeraet
USD354218S (en) 1992-10-01 1995-01-10 Fiberslab Pty Limited Spacer for use in concrete construction
DE4303882C2 (de) 1993-02-10 1995-02-09 Kernforschungsz Karlsruhe Kombinationsinstrument zum Trennen und Koagulieren für die minimal invasive Chirurgie
FR2711066B1 (fr) 1993-10-15 1995-12-01 Sadis Bruker Spectrospin Antenne pour le chauffage de tissus par micro-ondes et sonde comportant une ou plusieurs de ces antennes.
JPH07120422A (ja) * 1993-10-25 1995-05-12 Alps Electric Co Ltd 薄膜または厚膜の熱伝導率測定方法
DE4339049C2 (de) 1993-11-16 2001-06-28 Erbe Elektromedizin Einrichtung zur Konfiguration chirurgischer Systeme
CN1079269C (zh) 1993-11-17 2002-02-20 刘中一 多频率微波治疗仪
US6241725B1 (en) * 1993-12-15 2001-06-05 Sherwood Services Ag High frequency thermal ablation of cancerous tumors and functional targets with image data assistance
US5722401A (en) * 1994-10-19 1998-03-03 Cardiac Pathways Corporation Endocardial mapping and/or ablation catheter probe
WO1996034571A1 (en) 1995-05-04 1996-11-07 Cosman Eric R Cool-tip electrode thermosurgery system
DE19608716C1 (de) 1996-03-06 1997-04-17 Aesculap Ag Bipolares chirurgisches Faßinstrument
US5786002A (en) 1996-04-04 1998-07-28 Siecor Corporation Guide block assembly for aligning bore forming pins during molding of multi-fiber optical connector ferrules
US6047216A (en) * 1996-04-17 2000-04-04 The United States Of America Represented By The Administrator Of The National Aeronautics And Space Administration Endothelium preserving microwave treatment for atherosclerosis
US5904709A (en) * 1996-04-17 1999-05-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Microwave treatment for cardiac arrhythmias
DE29616210U1 (de) 1996-09-18 1996-11-14 Winter & Ibe Olympus Handhabe für chirurgische Instrumente
DE19643127A1 (de) 1996-10-18 1998-04-23 Berchtold Gmbh & Co Geb Hochfrequenzchirurgiegerät und Verfahren zu dessen Betrieb
US5923475A (en) 1996-11-27 1999-07-13 Eastman Kodak Company Laser printer using a fly's eye integrator
DE19717411A1 (de) 1997-04-25 1998-11-05 Aesculap Ag & Co Kg Verfahren und Vorrichtung zur Überwachung der thermischen Belastung des Gewebes eines Patienten
DE59712260D1 (de) 1997-06-06 2005-05-12 Endress & Hauser Gmbh & Co Kg Mit Mikrowellen arbeitendes Füllstandsmessgerät
DE19751108A1 (de) 1997-11-18 1999-05-20 Beger Frank Michael Dipl Desig Elektrochirurgisches Operationswerkzeug
DE19801173C1 (de) 1998-01-15 1999-07-15 Kendall Med Erzeugnisse Gmbh Klemmverbinder für Filmelektroden
US5959241A (en) * 1998-04-30 1999-09-28 Digital Equipment Corporation Scanning force microscope thermal microprobe
DE19848540A1 (de) 1998-10-21 2000-05-25 Reinhard Kalfhaus Schaltungsanordnung und Verfahren zum Betreiben eines Wechselrichters
USD425201S (en) 1998-10-23 2000-05-16 Sherwood Services Ag Disposable electrode assembly
USD449886S1 (en) 1998-10-23 2001-10-30 Sherwood Services Ag Forceps with disposable electrode
USD424694S (en) 1998-10-23 2000-05-09 Sherwood Services Ag Forceps
JP2002532717A (ja) * 1998-12-11 2002-10-02 サイミックス テクノロジーズ、インク 迅速な物質特性評価のためのセンサ配列に基づくシステム及びその方法
JP4102031B2 (ja) * 1999-03-09 2008-06-18 サーメイジ インコーポレイテッド 組織を治療するのための装置および方法
US6645198B1 (en) * 1999-03-17 2003-11-11 Ntero Surgical, Inc. Systems and methods for reducing post-surgical complications
USD424693S (en) 1999-04-08 2000-05-09 Pruter Rick L Needle guide for attachment to an ultrasound transducer probe
GB9911954D0 (en) 1999-05-21 1999-07-21 Gyrus Medical Ltd Electrosurgery system and instrument
GB9911956D0 (en) 1999-05-21 1999-07-21 Gyrus Medical Ltd Electrosurgery system and method
GB9912627D0 (en) 1999-05-28 1999-07-28 Gyrus Medical Ltd An electrosurgical instrument
GB9912625D0 (en) 1999-05-28 1999-07-28 Gyrus Medical Ltd An electrosurgical generator and system
GB9913652D0 (en) 1999-06-11 1999-08-11 Gyrus Medical Ltd An electrosurgical generator
JP2001003776A (ja) 1999-06-22 2001-01-09 Mitsubishi Electric Corp 自動変速機制御装置
US7053063B2 (en) * 1999-07-21 2006-05-30 The Regents Of The University Of California Controlled electroporation and mass transfer across cell membranes in tissue
JP2001037775A (ja) 1999-07-26 2001-02-13 Olympus Optical Co Ltd 治療装置
JP2001165731A (ja) * 1999-09-30 2001-06-22 Yazaki Corp フローセンサおよびこれを用いた流量計
US7276146B2 (en) * 2001-11-16 2007-10-02 Roche Diagnostics Operations, Inc. Electrodes, methods, apparatuses comprising micro-electrode arrays
US20040215296A1 (en) * 1999-11-16 2004-10-28 Barrx, Inc. System and method for treating abnormal epithelium in an esophagus
JP2001231870A (ja) 2000-02-23 2001-08-28 Olympus Optical Co Ltd 加温治療装置
DE10027727C1 (de) 2000-06-03 2001-12-06 Aesculap Ag & Co Kg Scheren- oder zangenförmiges chirurgisches Instrument
US6467951B1 (en) * 2000-08-18 2002-10-22 International Business Machines Corporation Probe apparatus and method for measuring thermoelectric properties of materials
US20050124975A1 (en) * 2000-09-12 2005-06-09 Law Peter K. Myogenic cell transfer catheter and method
JP3607234B2 (ja) * 2001-03-23 2005-01-05 日本アビオニクス株式会社 熱伝導率推定方法および熱伝導率推定装置
USD457958S1 (en) 2001-04-06 2002-05-28 Sherwood Services Ag Vessel sealer and divider
USD457959S1 (en) 2001-04-06 2002-05-28 Sherwood Services Ag Vessel sealer
US6488677B1 (en) * 2001-05-10 2002-12-03 Thermal Technologies, Inc. System for quantifying edema
US20030013986A1 (en) * 2001-07-12 2003-01-16 Vahid Saadat Device for sensing temperature profile of a hollow body organ
US7160255B2 (en) * 2001-07-12 2007-01-09 Vahid Saadat Method and device for sensing and mapping temperature profile of a hollow body organ
US20030045798A1 (en) * 2001-09-04 2003-03-06 Richard Hular Multisensor probe for tissue identification
US20030195588A1 (en) * 2002-04-16 2003-10-16 Neuropace, Inc. External ear canal interface for the treatment of neurological disorders
ES2377483T3 (es) * 2002-04-25 2012-03-28 Tyco Healthcare Group Lp Instrumentos quirúrgicos que incluyen sistemas microelectromecánicos (MEMS)
DE10224154A1 (de) 2002-05-27 2003-12-18 Celon Ag Medical Instruments Vorrichtung zum elektrochirurgischen Veröden von Körpergewebe
USD487039S1 (en) 2002-11-27 2004-02-24 Robert Bosch Corporation Spacer
US9603545B2 (en) * 2003-02-21 2017-03-28 3Dt Holdings, Llc Devices, systems, and methods for removing targeted lesions from vessels
DE10310765A1 (de) 2003-03-12 2004-09-30 Dornier Medtech Systems Gmbh Sonde und Vorrichtung für eine Thermotherapie
USD499181S1 (en) 2003-05-15 2004-11-30 Sherwood Services Ag Handle for a vessel sealer and divider
USD496997S1 (en) 2003-05-15 2004-10-05 Sherwood Services Ag Vessel sealer and divider
DE10328514B3 (de) 2003-06-20 2005-03-03 Aesculap Ag & Co. Kg Chirurgisches Instrument
US7179256B2 (en) * 2003-10-24 2007-02-20 Biosense Webster, Inc. Catheter with ablation needle and mapping assembly
FR2862813B1 (fr) 2003-11-20 2006-06-02 Pellenc Sa Procede de chargement equilibre d'une batterie lithium-ion ou lithium polymere
FR2864439B1 (fr) 2003-12-30 2010-12-03 Image Guided Therapy Dispositif de traitement d'un volume de tissu biologique par hyperthermie localisee
USD541938S1 (en) 2004-04-09 2007-05-01 Sherwood Services Ag Open vessel sealer with mechanical cutter
USD533942S1 (en) 2004-06-30 2006-12-19 Sherwood Services Ag Open vessel sealer with mechanical cutter
USD535027S1 (en) 2004-10-06 2007-01-09 Sherwood Services Ag Low profile vessel sealing and cutting mechanism
USD525361S1 (en) 2004-10-06 2006-07-18 Sherwood Services Ag Hemostat style elongated dissecting and dividing instrument
USD531311S1 (en) 2004-10-06 2006-10-31 Sherwood Services Ag Pistol grip style elongated dissecting and dividing instrument
USD541418S1 (en) 2004-10-06 2007-04-24 Sherwood Services Ag Lung sealing device
USD564662S1 (en) 2004-10-13 2008-03-18 Sherwood Services Ag Hourglass-shaped knife for electrosurgical forceps
USD576932S1 (en) 2005-03-01 2008-09-16 Robert Bosch Gmbh Spacer
CN102125430A (zh) * 2005-03-28 2011-07-20 明诺医学有限公司 选择性地治疗目标组织的内腔电组织表征和调谐射频能量
ES2265290B1 (es) 2005-07-20 2008-01-16 Hinotec Tecnologia Española S.L. Baliza neumatica extraible para funciones de señalizacion con anclaje soterrado.
EP1988849A4 (en) * 2006-01-25 2011-02-23 Dtherapeutics DEVICES, SYSTEMS AND METHODS FOR DETERMINING THE SIZE OF VESSELS
US7869854B2 (en) * 2006-02-23 2011-01-11 Magnetecs, Inc. Apparatus for magnetically deployable catheter with MOSFET sensor and method for mapping and ablation
US20070270688A1 (en) * 2006-05-19 2007-11-22 Daniel Gelbart Automatic atherectomy system
US8198976B2 (en) * 2006-08-18 2012-06-12 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Flexible thin metal film thermal sensing system
JP4618241B2 (ja) 2006-12-13 2011-01-26 株式会社村田製作所 同軸プローブ装置
US8696724B2 (en) * 2007-01-11 2014-04-15 Scion Neurostim, Llc. Devices for vestibular or cranial nerve stimulation
US9375246B2 (en) * 2007-01-19 2016-06-28 Covidien Lp System and method of using thermal and electrical conductivity of tissue
US10076655B2 (en) * 2007-09-21 2018-09-18 Koninklijke Philips N.V. Vestibular stimulation system
USD606203S1 (en) 2008-07-04 2009-12-15 Cambridge Temperature Concepts, Ltd. Hand-held device
USD594736S1 (en) 2008-08-13 2009-06-23 Saint-Gobain Ceramics & Plastics, Inc. Spacer support
JP4578577B2 (ja) 2008-09-29 2010-11-10 京セラ株式会社 切削インサート、切削工具、およびそれらを用いる切削方法
USD594737S1 (en) 2008-10-28 2009-06-23 Mmi Management Services Lp Rebar chair
USD634010S1 (en) 2009-08-05 2011-03-08 Vivant Medical, Inc. Medical device indicator guide
USD613412S1 (en) 2009-08-06 2010-04-06 Vivant Medical, Inc. Vented microwave spacer
US20110118731A1 (en) * 2009-11-16 2011-05-19 Tyco Healthcare Group Lp Multi-Phase Electrode
US8469953B2 (en) * 2009-11-16 2013-06-25 Covidien Lp Twin sealing chamber hub
US8394092B2 (en) * 2009-11-17 2013-03-12 Vivant Medical, Inc. Electromagnetic energy delivery devices including an energy applicator array and electrosurgical systems including same
US8882759B2 (en) * 2009-12-18 2014-11-11 Covidien Lp Microwave ablation system with dielectric temperature probe
US20110172659A1 (en) * 2010-01-13 2011-07-14 Vivant Medical, Inc. Ablation Device With User Interface at Device Handle, System Including Same, and Method of Ablating Tissue Using Same
US8764744B2 (en) * 2010-01-25 2014-07-01 Covidien Lp System for monitoring ablation size
US9113927B2 (en) * 2010-01-29 2015-08-25 Covidien Lp Apparatus and methods of use for treating blood vessels
US8491579B2 (en) * 2010-02-05 2013-07-23 Covidien Lp Electrosurgical devices with choke shorted to biological tissue
US8968288B2 (en) * 2010-02-19 2015-03-03 Covidien Lp Ablation devices with dual operating frequencies, systems including same, and methods of adjusting ablation volume using same
US8568404B2 (en) 2010-02-19 2013-10-29 Covidien Lp Bipolar electrode probe for ablation monitoring
US20110208180A1 (en) 2010-02-25 2011-08-25 Vivant Medical, Inc. System and Method for Monitoring Ablation Size
US8617153B2 (en) 2010-02-26 2013-12-31 Covidien Lp Tunable microwave ablation probe
US8777939B2 (en) 2010-02-26 2014-07-15 Covidien Lp Self-tuning microwave ablation probe
US20110213353A1 (en) * 2010-02-26 2011-09-01 Lee Anthony C Tissue Ablation System With Internal And External Radiation Sources
US8728067B2 (en) * 2010-03-08 2014-05-20 Covidien Lp Microwave antenna probe having a deployable ground plane
US8672923B2 (en) * 2010-03-11 2014-03-18 Covidien Lp Automated probe placement device
US9028474B2 (en) * 2010-03-25 2015-05-12 Covidien Lp Microwave surface coagulator with retractable blade
US10039601B2 (en) * 2010-03-26 2018-08-07 Covidien Lp Ablation devices with adjustable radiating section lengths, electrosurgical systems including same, and methods of adjusting ablation fields using same
US8409188B2 (en) * 2010-03-26 2013-04-02 Covidien Lp Ablation devices with adjustable radiating section lengths, electrosurgical systems including same, and methods of adjusting ablation fields using same

Patent Citations (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4038975A (en) 1974-07-15 1977-08-02 Vyvojova A Provozni Zakladna Vyzkumnych Ustavu Method of and apparatus for the detector of neoplasms and other morphologic changes in mucous membrane samples
US4291708A (en) 1977-11-02 1981-09-29 Yeda Research & Development Co. Ltd. Apparatus and method for detection of tumors in tissue
US4537203A (en) 1980-10-21 1985-08-27 Tokyo Shibaura Denki Kabushiki Kaisha Abnormal cell detecting device
US4617939A (en) 1982-04-30 1986-10-21 The University Of Sheffield Tomography
US4719441A (en) 1985-02-26 1988-01-12 Navasina Ag Sensor for measuring electrical conductivity
US4729385A (en) 1985-10-23 1988-03-08 American Mediscan, Inc. Probe and method of use for detecting abnormal tissues
DE3711511C1 (de) 1987-04-04 1988-06-30 Hartmann & Braun Ag Verfahren zur Bestimmung der Gaskonzentrationen in einem Gasgemisch und Sensor zur Messung der Waermeleitfaehigkeit
US4966158A (en) 1987-11-12 1990-10-30 Kao Corporation Measurement method for moisture content in the skin and system therefor
US5184624A (en) 1988-04-15 1993-02-09 The University Of Sheffield Electrical impedance tomography
US4960109A (en) * 1988-06-21 1990-10-02 Massachusetts Institute Of Technology Multi-purpose temperature sensing probe for hyperthermia therapy
US4955383A (en) 1988-12-22 1990-09-11 Biofield Corporation Discriminant function analysis method and apparatus for disease diagnosis and screening
US5320101A (en) 1988-12-22 1994-06-14 Biofield Corp. Discriminant function analysis method and apparatus for disease diagnosis and screening with biopsy needle sensor
US5035514A (en) * 1990-05-07 1991-07-30 Thermal Technologies, Inc. Thermal probe for measuring thermal properties of a flowing medium
US5353802A (en) 1990-10-18 1994-10-11 Centrum For Dentalteknik Och Biomaterial Device for measurement of electrical impedance of organic and biological materials
US5217014A (en) 1991-11-04 1993-06-08 Biofield Corp. Depolarized pre-gelled electrodes
US5184620A (en) 1991-12-26 1993-02-09 Marquette Electronics, Inc. Method of using a multiple electrode pad assembly
EP0558429A1 (fr) 1992-02-26 1993-09-01 PECHINEY RECHERCHE (Groupement d'Intérêt Economique géré par l'ordonnance no. 67-821 du 23 Septembre 1967) Méthode de mesure simultanée de la résistivité électrique et de la conductivité thermique
US5800350A (en) 1993-11-01 1998-09-01 Polartechnics, Limited Apparatus for tissue type recognition
US5704355A (en) 1994-07-01 1998-01-06 Bridges; Jack E. Non-invasive system for breast cancer detection
US5630426A (en) 1995-03-03 1997-05-20 Neovision Corporation Apparatus and method for characterization and treatment of tumors
US6026323A (en) 1997-03-20 2000-02-15 Polartechnics Limited Tissue diagnostic system
US20030097130A1 (en) * 1997-09-04 2003-05-22 Gerhard Muller Electrode arrangement for electrothermal treatment of human or animal bodies
US6190378B1 (en) * 1997-12-05 2001-02-20 Massachusetts Institute Of Technology Cryosurgical instrument and related techniques
WO1999044520A1 (en) 1998-03-06 1999-09-10 Conway-Stuart Medical, Inc. Method to treat esophageal sphincters by electrosurgery
US6845264B1 (en) 1998-10-08 2005-01-18 Victor Skladnev Apparatus for recognizing tissue types
WO2000054682A1 (en) 1999-03-17 2000-09-21 Ntero Surgical, Inc. Systems and methods for reducing post-surgical complications
WO2000070333A1 (en) 1999-05-14 2000-11-23 Hot Disk Ab Method of measuring thermal properties of materials with direction dependant properties
US20040037343A1 (en) * 2000-01-14 2004-02-26 Seiko Instruments Inc. Calorimeter and manufacturing method thereof
US20020173731A1 (en) * 2001-05-17 2002-11-21 Thermal Technololgies, Inc. Blood flow monitor for shock and resuscitation
US20040015162A1 (en) 2002-07-22 2004-01-22 Medtronic Vidamed, Inc. Method for treating tissue with a wet electrode and apparatus for using same
WO2004052182A2 (en) 2002-12-11 2004-06-24 Proteus Biomedical, Inc. Monitoring and treating hemodynamic parameters
US20050090881A1 (en) * 2003-04-17 2005-04-28 Frank Jeffrey I. Heat transfer probe
US20080025366A1 (en) * 2003-04-29 2008-01-31 Mcburney Terence Probe for Measuring Thermal and Hydraulic Properties
DE102004022206A1 (de) 2004-05-04 2005-12-01 Bundesrepublik Deutschland, vertr. d. d. Bundesministerium für Wirtschaft und Arbeit, dieses vertr. d. d. Präsidenten der Physikalisch-Technischen Bundesanstalt Sensor und Sensoranordnung zur Messung der Wärmeleitfähigkeit einer Probe
US20070060921A1 (en) * 2004-06-17 2007-03-15 Jnj Technology Holdings Llc Ablation apparatus and system to limit nerve conduction
US20070049915A1 (en) * 2005-08-26 2007-03-01 Dieter Haemmerich Method and Devices for Cardiac Radiofrequency Catheter Ablation
DE202005015147U1 (de) 2005-09-26 2006-02-09 Health & Life Co., Ltd., Chung-Ho Biosensor-Teststreifen mit Identifizierfunktion
US20080161797A1 (en) * 2006-12-29 2008-07-03 Huisun Wang Ablation catheter electrode having multiple thermal sensors and method of use

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
U.S. Appl. No. 12/016,761, Podhajsky.

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080177199A1 (en) * 2007-01-19 2008-07-24 Podhajsky Ronald J System and Method of Using Thermal and Electrical Conductivity of Tissue
US20110107816A1 (en) * 2009-11-06 2011-05-12 Agilent Technologies, Inc. Thermal conductivity detector
US8313236B2 (en) * 2009-11-06 2012-11-20 Agilent Technologies, Inc. Thermal conductivity detector
US20170273571A1 (en) * 2013-03-15 2017-09-28 3Dt Holdings, Llc Impedance systems and methods to use the same to obtain luminal organ measurements
US10349824B2 (en) 2013-04-08 2019-07-16 Apama Medical, Inc. Tissue mapping and visualization systems
US11439298B2 (en) 2013-04-08 2022-09-13 Boston Scientific Scimed, Inc. Surface mapping and visualizing ablation system
US11684415B2 (en) 2013-04-08 2023-06-27 Boston Scientific Scimed, Inc. Tissue ablation and monitoring thereof
US20170333125A1 (en) * 2015-11-16 2017-11-23 Jonah Lepak Energy delivery devices
US10736693B2 (en) * 2015-11-16 2020-08-11 Apama Medical, Inc. Energy delivery devices

Also Published As

Publication number Publication date
EP2402741A2 (en) 2012-01-04
US20080177199A1 (en) 2008-07-24
EP1946700A3 (en) 2008-10-22
JP2008241692A (ja) 2008-10-09
EP1946700A2 (en) 2008-07-23
US8747402B2 (en) 2014-06-10
EP2402741A3 (en) 2013-12-04
JP5511141B2 (ja) 2014-06-04
US20120116242A1 (en) 2012-05-10
US20160302688A1 (en) 2016-10-20
EP2402742A3 (en) 2013-12-04
EP2402742B1 (en) 2016-12-14
US20080175299A1 (en) 2008-07-24
EP1946713A1 (en) 2008-07-23
EP2402742A2 (en) 2012-01-04
US9375246B2 (en) 2016-06-28
JP2008237884A (ja) 2008-10-09
US20110203104A1 (en) 2011-08-25
EP2402741B1 (en) 2015-07-08
EP1946700B1 (en) 2012-08-29
US8156632B2 (en) 2012-04-17

Similar Documents

Publication Publication Date Title
US7951144B2 (en) Thermal and electrical conductivity probes and methods of making the same
JP6816191B2 (ja) 複数の光ファイバを備えた装置
US11382530B2 (en) Symmetric short contact force sensor with four coils
JP5654473B2 (ja) 患者の組織内の温度データを測定するためのプローブを有する医療装置
US20170360326A1 (en) Devices, systems, and methods for real-time monitoring of electrophysical effects during tissue treatment
CN114040724A (zh) 降低阻抗电极设计
EP3510956B1 (en) Thermally isolated thermocouple
US9851316B2 (en) System and method for determining a spatial thermal property profile of a sample
CN112566551A (zh) 用于分叉末端导管的柔性电路末端
JPWO2020069564A5 (ja)
JP2019155092A (ja) 電極用の位置決めカートリッジ
Leung et al. Micro‐electrodes for in situ temperature and bio‐impedance measurement
US7762958B1 (en) Method and apparatus for determining injection depth and tissue type
Yi et al. Micromachined electrical conductivity probe for RF ablation of tumors
AU2018278963A1 (en) Position-biasing thermocouple
Tangwongsan et al. In vitro calibration of a system for measurement of in vivo convective heat transfer coefficient in animals
AU2018286619A1 (en) Position-controlled thermocouple
Kalvøy et al. Needle position determined by tissue impedance

Legal Events

Date Code Title Description
AS Assignment

Owner name: TYCO HEALTHCARE GROUP LP, CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PODHAJSKY, RONALD J.;REEL/FRAME:021637/0772

Effective date: 20081006

AS Assignment

Owner name: THE REGENTS OF THE UNIVERSITY OF COLORADO, COLORAD

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PANCHAWAGH, HRISHIKESH;YI, MING;MAHAJAN, ROOP L.;REEL/FRAME:022156/0738;SIGNING DATES FROM 20090113 TO 20090119

Owner name: THE REGENTS OF THE UNIVERSITY OF COLORADO, COLORAD

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PANCHAWAGH, HRISHIKESH;YI, MING;MAHAJAN, ROOP L.;SIGNING DATES FROM 20090113 TO 20090119;REEL/FRAME:022156/0738

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: COVIDIEN LP, MASSACHUSETTS

Free format text: CHANGE OF NAME;ASSIGNOR:TYCO HEALTHCARE GROUP LP;REEL/FRAME:029065/0403

Effective date: 20120928

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20230531