JP3607234B2 - 熱伝導率推定方法および熱伝導率推定装置 - Google Patents

熱伝導率推定方法および熱伝導率推定装置 Download PDF

Info

Publication number
JP3607234B2
JP3607234B2 JP2001315064A JP2001315064A JP3607234B2 JP 3607234 B2 JP3607234 B2 JP 3607234B2 JP 2001315064 A JP2001315064 A JP 2001315064A JP 2001315064 A JP2001315064 A JP 2001315064A JP 3607234 B2 JP3607234 B2 JP 3607234B2
Authority
JP
Japan
Prior art keywords
thermal conductivity
temperature
region
distribution
measurement object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001315064A
Other languages
English (en)
Other versions
JP2002350379A (ja
Inventor
親良 炭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Avionics Co Ltd
Original Assignee
Nippon Avionics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Avionics Co Ltd filed Critical Nippon Avionics Co Ltd
Priority to JP2001315064A priority Critical patent/JP3607234B2/ja
Publication of JP2002350379A publication Critical patent/JP2002350379A/ja
Application granted granted Critical
Publication of JP3607234B2 publication Critical patent/JP3607234B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Complex Calculations (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、物体又は生体を破壊することなく、非接触温度測定により、その物体又は生体の熱伝導率を推定する方法および推定する装置に関する技術の分野に属する。
【0002】
【従来の技術】
図5に従来の技術による熱伝導率推定装置の構成を示す。その技術は、熱源13によって測定対象物4に積極的に温度分布を生ぜしめ、その温度分布をサーモカプラなどの温度検出器12によって測定対象物の全体に渡る多数の点について測定し、データ処理手段16で有限差分法や有限要素法を用いてモデル化し、感度理論に基づいて関心領域内部の熱伝導率を推定するというものである。
ここで、関心領域とは測定対象物において、熱伝導率が未知であるため、その熱伝導率を推定しようとする領域のことである。
【0003】
【発明が解決しようとする課題】
しかしながら、従来の技術では、測定対象物に対し、外部に熱源を設けて積極的に温度分布を生じさせる必要があるが、測定対象物内に既に温度分布が存在した場合にその温度場を乱してしまうという問題があった。
【0004】
また、測定対象物の全体を有限差分法や有限要素法等でモデル化する必要があり、測定対象物の関心領域内のみの測定から、その関心領域の熱伝導率を推定することが困難であるという問題があった。
【0005】
本発明の目的は、上記従来技術の問題点に鑑みて、測定対象物の関心領域にすでに温度場が形成されているときには、外部熱源により人工的に温度分布を実現せしめることなく、また、関心領域内の測定データのみから熱伝導率の推定が可能である熱伝導率推定方法および熱伝導率推定装置を提供することにある。
【0006】
【課題を解決するための手段】
上記の目的を達成するために、本発明の熱伝導率推定方法および熱伝導率推定装置は以下のような構成を有する。
まず、基本的な熱伝導率推定方法は、温度検出器で測定対象物の関心領域内における温度場の各位置について順次温度を測定しその温度データと位置データとを対応させてデータ記録手段に記録し、更に、関心領域内に設けた参照領域にて得られる熱伝導率値および位置データを参照値とし、前記記録されたデータと参照値に基づいて、1階空間偏微分方程式を立て、熱伝導率あるいは温度の空間分布に関して有限差分近似或いは有限要素近似(変分原理)を適用し、有限差分近似の場合に数式5で表される連立方程式を得、
【0007】
【数5】
Figure 0003607234
【0008】
更に、正則化パラメータα1およびα2を用いて数式6で表される汎関数e(s)が最小となる関係を表す数式7を求め、これから誘導した数式8により測定対象物の関心領域の熱伝導率の空間分布を表すベクトルsを求めることを特徴とする熱伝導率推定方法である。
尚、正則化パラメータα1およびα2は、数式6および数式7にて、熱伝導率の空間分布を表すベクトルsにかかる行列が数値解析的に充分に正定値となる様に大きい値に調節される、または、測定された温度データの精度(S/N比)により S/N 比が高い場合に小さく、 S/N 比が低い場合に大きく調節される。尚、温度測定データの精度(S/N比)の測定に関しては、測定器の測定精度の評価を行うべく、表面が平らであり温度が一定である黒体を対象に、複数回、温度分布の測定を行い、その測定温度分布データの平均値の自乗およびその測定温度分布データの分散値の比からS/N比を評価する、または、測定器および測定系を含めた測定精度の評価を行うべく、真の測定対象を測定する際の測定系と同一の測定系にて、または、その測定系を実現して、同様に黒体を対象にS/N比を評価することがある。正則化パラメータα1およびα2は、そのS/N比に反比例する様に設定されることがある。
また、正則化パラメータα1およびα2は、空間的に変化するものとして実現されることもあり、結果的に、数式6および数式7にて、熱伝導率の空間分布を表すベクトルsの成分である各関心点の伝導率にかかる局所行列が数値解析的に充分に正定値となる様に大きい値に調節される、または、各関心点の測定された温度データの精度(S/N比)により S/N 比が高い場合に小さく、 S/N 比が低い場合に大きく調節される。尚、温度測定データの精度(S/N比)の測定に関しては、測定器の測定精度の評価を行うべく、表面が平らであり温度が一定である黒体を対象に、複数回、温度分布の測定を行い、各位置において、測定温度データの平均値の自乗および測定温度データの分散値の比を評価し、S/N比の分布を評価する、または、測定器および測定系を含めた測定精度の評価を行うべく、真の測定対象を測定する際の測定系と同一の測定系にて、または、その測定系を実現して、同様に黒体を対象にS/N比の分布を評価することがある。正則化パラメータα1およびα2は、各位置において、そのS/N比に反比例する様に設定されることがある。
【0009】
【数6】
Figure 0003607234
【0010】
【数7】
Figure 0003607234
【0011】
【数8】
Figure 0003607234
【0012】
また、参照領域を他物質の添付により形成する場合には、参照領域を実現するべく各種参照物質を測定対象物の関心領域内に添えて、データ記録手段に記録された関心領域内のデータと参照領域から得られた参照値とから測定対象物の熱伝導率の空間分布を表すベクトルsを上記基本的方法と同様に求める熱伝導率推定方法である。また、有限要素近似を行った場合においても、未知熱伝導率分布に関して導出される連立方程式を最小2乗法を用いて解く際に、同様に正則化を施すこととなる。特に、変分原理を適用する場合には、変分(最小化)を行う際に正則化を施すことがある。
【0013】
更に、測定対象物の関心領域内に温度データが欠落した領域が存在した場合には、その領域を関心領域から除外して測定対象物の熱伝導率の空間分布を表すベクトルsを評価し、その関心領域から除外された領域の熱伝導率分布の値がsから内挿・外挿補間処理により評価される上記基本的方法と同様に求める熱伝導率推定方法である。
【0014】
次に、本発明装置第1の構成(基本構成)の熱伝導率推定装置は、下記の各構成を有することを特徴とする。
(イ)計測対象物の関心領域の着眼位置の温度を計測する温度検出器
(ロ)計測対象物を載置する試料設置台
(ハ)異なる位置の温度を順次測定しようとする計測対象物と温度検出器の相対位置を変化させる位置走査機構
(ニ)測定対象物と温度検出器との間の距離を調整する距離調整手段
(ホ)温度検出器で計測された温度データをその測定箇所の位置データと対応付けて記録するデータ記録手段
(ヘ)データ記録手段に記録されたデータを用いて数式8により計測対象物の熱伝導率の空間分布を表すベクトルsを算出するデータ処理手段
(ト)上記各構成手段が各記載された動作を行うよう制御する制御手段
【0015】
次に、本発明装置第2の構成の熱伝導率推定装置は、前記第1の構成に加えて、計測対象物が、試料設置台に載らず熱伝導率推定装置の外部にある場合に、温度検出器を計測対象物に向け且つ相対位置変化を行わせることのできる検出器保持機構を有することを特徴とする熱伝導率推定装置である。
【0016】
次に、本発明装置第3の構成の熱伝導率推定装置は、前記第1の構成又は第2の構成に加えて、計測対象物の関心領域に1つ以上の温度場を発生せしめることができる温度場発生装置を有することを特徴とする熱伝導率推定装置である。
【0017】
次に、本発明装置第4の構成の熱伝導率推定装置は、前記第1,第2又は第3の構成に加えて、少なくとも測定対象物を納めることのできる真空ポンプを用いた真空容器を使用することを特徴とする熱伝導率推定装置である。
【0018】
次に、本発明装置第5の構成の熱伝導率推定装置は、前記第1,第2,第3又は第4の構成において、温度検出器として、赤外線素子を使用した温度検出器を用いたことを特徴とするものである。
【0019】
次に、本発明装置第6の構成の熱伝導率推定装置は、前記第1,第2,第3又は第4の構成において、温度検出器として、赤外線素子群の受光エネルギーをディジタル演算して焦点位置の設定が可能な赤外線温度検出器を用いたことを特徴とする熱伝導率推定装置である。
【0020】
次に、本発明装置第7の構成の熱伝導率推定装置は、前記第1,第2,第3又は第4の構成において、温度検出器として、赤外線素子群の受光エネルギーをディジタル演算して空間分解能の設定が可能である赤外線温度検出器を用いたことを特徴とする熱伝導率推定装置である。
【0021】
次に、本発明装置第8の構成の熱伝導率推定装置は、前記第1,第2,第3又は第4の構成において、温度検出器として、前記第5,第6又は第7の構成の温度検出器に、赤外線レンズを併用して空間分解能および焦点位置の設定が可能な赤外線温度検出器を用いたことを特徴とする熱伝導率推定装置である。
【0022】
次に、本発明装置第9の構成の熱伝導率推定装置は、前記第1,第2,第3又は第4の構成において、温度検出器として、前記第5,第6,第7又は第8の構成の温度検出器に、能動的に赤外線を放射する機能およびその焦点位置と空間分解能を制御する機能を有する赤外線温度検出器を用いたことを特徴とする熱伝導率推定装置である。
【0023】
次に、本発明装置第10の構成の熱伝導率推定装置は、第1〜第9の構成のいずれか1つの構成において、測定結果としての温度分布および熱伝導率分布を画面表示する表示器(例えばCRT表示器等)を付加したことを特徴とする熱伝導率推定装置である。
【0024】
次に、本発明装置第11の構成の熱伝導率推定装置は、第1〜第9の構成のいずれか1つの構成において、測定結果としての温度分布および熱伝導率分布に加えて、温度勾配分布、熱伝導率勾配分布、温度ラプラシアン分布、熱伝導率ラプラシアン分布、これらの経時的変化そのもの、および、その相対変化の少なくとも1つを画面表示する表示器(例えばCRT表示器等)を付加したことを特徴とする熱伝導率推定装置である。
【0025】
【発明の実施の形態】
本発明の熱伝導率推定方法では、赤外線素子を用いた非接触の赤外線温度検出器で測定対象物の温度分布を測定し、その測定値によって記述される1階の空間偏微分方程式を解くことによって、既に存在する温度場を乱すことなく、関心領域内において与えられた参照伝導率に対する相対的な熱伝導率空間分布を推定可能であり、更に、低域通過型フィルタおよび正則化された代数方程式を用いることによって、温度測定データに含まれるエラー(ノイズ)データや参照領域(熱伝導率の参照値の与えられる領域)が狭くて位置が悪い場合においても関心領域内の測定データのみから熱伝導率が推定可能であることを特徴としている。
【0026】
前述の正則化された代数方程式は、以下のように導出される。
測定された値によって記述される熱伝導率に関する1階空間偏微分方程式を立て、これに対して、熱伝導率あるいは温度の空間分布に関して有限差分近似や有限要素近似(変分原理)を用いて離散化(モデル化)する。ここでは、有限差分法を適用した場合について述べるが、有限要素法を適用した場合も同様の手順による。
【0027】
関心領域の2つの独立した温度場をT,T とすると、それぞれの勾配分布はD =−▽T 、D =−▽T となり、数式9の連立1階空間偏微分方程式が成り立つ。
【0028】
【数9】
Figure 0003607234
【0029】
また、温度場を3次元空間で測定できる場合は、3つの独立した温度場T,T,T を測定することにより数式10の連立偏微分方程式が成立する。
【0030】
【数10】
Figure 0003607234
【0031】
尚、温度場を1次元空間で測定できる場合は、1つの温度場Tを測定することにより数式11の偏微分方程式が成立する。
【0032】
【数11】
Figure 0003607234
【0033】
1つの温度場のみを測定できる場合は、数式9,10,11の1つの偏微分方程式のみが成立する。
一般的には、初期条件はlnk(x,y,z)=lnk’(x,y,z)という形で、関心領域内の複数の領域において与えられるが、測定を行う空間の次元数と同数の独立な温度場が測定された場合には参照値は関心領域内の1点で与えられればよい。
【0034】
この様な1階空間偏微分方程式および初期条件に対し、有限差分近似を適用し、初期条件を代入することにより、数式12の連立方程式が得られる。
【0035】
【数12】
Figure 0003607234
【0036】
但し、sは未知伝導率の空間分布を表すベクトル、Gは1階偏微分の有限差分近似定数からなる行列、Dおよびdは各々温度勾配分布から定まる行列およびその成分の1階偏微分値からなるベクトルである。
【0037】
これを最小2乗法を用いて解くことになるが、D、dは温度勾配分布およびその空間微分値に低域通過型フィルタをかけたもので決まるため、DGの逆作用素はdに含まれる高周波数帯のノイズを増幅させてしまう。つまり、sは不安定な結果となってしまう。そこで、いわゆる正則化を応用して再構成の安定化を図る。具体的には、正則化パラメータα1およびα2(正値)を用いて、数式13で表される汎関数e(s)をsに関して最小化する。尚、正則化パラメータα1およびα2は、数式13および数式14にて、熱伝導率の空間分布を表すベクトルsにかかる行列が数値解析的に充分に正定値となる様に大きい値に調節される、または、測定された温度データの精度(S/N比)により S/N 比が高い場合に小さく、 S/N 比が低い場合に大きく調節される。尚、温度測定データの精度(S/N比)の測定に関しては、測定器の測定精度の評価を行うべく、表面が平らであり温度が一定である黒体を対象に、複数回、温度分布の測定を行い、その測定温度分布データの平均値の自乗およびその測定温度分布データの分散値の比からS/N比を評価する、または、測定器および測定系を含めた測定精度の評価を行うべく、真の測定対象を測定する際の測定系と同一の測定系にて、または、その測定系を実現して、同様に黒体を対象にS/N比を評価することがある。正則化パラメータα1およびα2は、そのS/N比に反比例する様に設定されることがある。
また、正則化パラメータα1およびα2は、空間的に変化するものとして実現されることもあり、結果的に、数式13および数式14にて、熱伝導率の空間分布を表すベクトルsの成分である各関心点の伝導率にかかる局所行列が数値解析的に充分に正定値となる様に大きい値に調節される、または、各関心点の測定された温度データの精度(S/N比)により S/N 比が高い場合に小さく、 S/N 比が低い場合に大きく調節される。尚、温度測定データの精度(S/N比)の測定に関しては、測定器の測定精度の評価を行うべく、表面が平らであり温度が一定である黒体を対象に、複数回、温度分布の測定を行い、各位置において、測定温度データの平均値の自乗および測定温度データの分散値の比を評価し、S/N比の分布を評価する、または、測定器および測定系を含めた測定精度の評価を行うべく、真の測定対象を測定する際の測定系と同一の測定系にて、または、その測定系を実現して、同様に黒体を対象にS/N比の分布を評価することがある。正則化パラメータα1およびα2は、各位置において、そのS/N比に反比例する様に設定されることがある。
【0038】
【数13】
Figure 0003607234
【0039】
但し、GsおよびG Gsは各々未知伝導率の空間分布の勾配およびラプラシアンである。GsおよびG Gsは正定値であるため、汎関数e(s)は必ず一つの最小値を持つことになる。
汎関数e(s)の最小化により、正則化された正規方程式は、単位行列をIとして、数式14のようになる。
【0040】
【数14】
Figure 0003607234
【0041】
従って、これより求める未知熱伝導率の空間分布を表すベクトルsは数式15で得られることになる。
【0042】
【数15】
Figure 0003607234
【0043】
また、有限要素近似を行った場合においても、未知熱伝導率分布に関して導出される連立方程式を最小2乗法を用いて解く際に、同様に正則化を施すこととなる。特に、変分原理を適用する場合には、変分(最小化)を行う際に正則化を施すことがある。
以上が本発明の熱伝導率推定方法の基本構成であるが、参照領域を形成するのに、測定対象物以外の各種参照物質を測定対象物の関心領域内に添えて参照値を得る方法も考えられる。また、測定対象物の関心領域内に温度データが欠落した領域が存在した場合には、その領域を関心領域から除外して測定対象物の熱伝導率の空間分布を表すベクトルsを評価し、時に、その関心領域から除外された領域の熱伝導率分布の値がsから内挿・外挿補間処理により評価されることも考えられる。
【0044】
以上述べた本発明の熱伝導率推定方法を実施する装置が本発明の熱伝導率推定装置である。
課題解決手段における装置の第1の構成は基本構成であり、試料設置台の上に測定対象物を載置して測定を行う構成である。
測定対象物を試料設置台に載置し、温度検出器で測定するに当り、距離調整手段により測定対象物との距離を設定し、位置走査機構により測定点を変えて行く。この距離調整手段および位置走査機構は試料設置台側に設けてもよいし、温度検出器側に設けてもよいし、位置走査機構については両方に設けられていてもよい。測定された温度データおよびその位置データは対応付けてデータ記録手段に記録される。この記録されたデータに基づいて、データ処理手段は数式15の演算を行い、測定対象物の関心領域の熱伝導率の空間分布を表すベクトルsを算出する。この場合、温度検出器の不良素子の存在により、温度データが欠落した場合には、その点あるいは領域を関心領域から除外して演算を行う。時に、その演算後、関心領域から除外された点あるいは領域の熱伝導率(分布)の値が、評価された熱伝導率分布の値から内挿・外挿補間処理により評価されることがある。
【0045】
第2の構成は、測定対象物が試料設置台に載せられないもの、例えば寸法の大きなもの、或いは現在存在する位置から移動のできない構築物等である場合に、赤外線温度検出器を測定対象物に向けなければならず、且つ位置の変化(走査)も可能でなければならないので、その様な検出器保持機構を設けたものである。
【0046】
第3の構成は、第1又は第2の構成において、測定対象物の温度が一様で温度勾配がない場合に、熱伝導率推定のため積極的に温度場を形成するための温度場発生装置を設けたものである。
【0047】
第4の構成は、対流の影響を低減して測定精度を向上させるために真空中における測定を可能とするべく、前記第1,第2又は第3の構成に加えて少なくとも測定対象物を納めることの可能である真空容器および真空ポンプを使用した熱伝導率推定装置である。計測制御装置は真空容器の外に設置することがある。
【0048】
温度検出器が赤外線温度検出器である場合には、容器に取り付ける赤外線窓の温度を下げるべく、冷却装置を利用することがある。
【0049】
第5〜第9の構成は、温度検出器として赤外線温度検出器を用いたものである。
赤外線温度検出器としては、イ.各種赤外線素子を使用した比較的単純な赤外線温度検出器、ロ.赤外線素子群の受光エネルギーをディジタル演算して焦点位置の設定が可能な赤外線温度検出器、ハ.赤外線素子群の受光エネルギーをディジタル演算して空間分解能の設定が可能な赤外線温度検出器、ニ.前記イ,ロ又はハの温度検出器に赤外線レンズを併用して空間分解能および焦点位置の設定が可能な赤外線温度検出器、ホ.前記イ,ロ,ハ又はニの温度検出器に、能動的に赤外線を放射する機能およびその焦点位置と空間分解能を制御する機能を有する赤外線温度検出器等が実用化されており、第5〜第9の構成の熱伝導率推定装置はこれらの赤外線温度検出器を用いたものである。
【0050】
第10の構成は、第1〜第9の構成のいずれか1つの構成において、測定結果としての温度分布および熱伝導率分布を画面表示する表示器を付加したものであるが、表示器としてはCRTを用いたもの、液晶表示装置を用いたもの、或いはLEDを用いたもの等種々考えられる。
【0051】
第11の構成は、第1〜9の構成のいずれか1つの構成において、測定結果としての温度分布および熱伝導率分布に加えて、温度勾配分布、熱伝導率勾配分布、温度ラプラシアン分布、熱伝導率ラプラシアン分布、これらの経時的変化そのもの、および、その相対変化の少なくとも1つを画面表示する表示器を付加したものであるが、表示器としてはCRTを用いたもの、液晶表示装置を用いたもの、或いはLEDを用いたもの等種々考えられる。
【0052】
【実施例】
以下、本発明の実施例を図面を参照して説明する。
図1は、本発明の熱伝導率推定装置の第1の実施例の構成を示すブロック図である。
この例は測定対象物4を試料設置台15の上に載置して測定する場合の例である。測定対象物4は、試料設置台15の上に載置され、その温度を測定するため、温度センサ1が対向するように配置される。温度センサ1はハウジング9に保持されており、駆動装置2によって駆動され温度測定機能を発揮する。従って、温度センサ1と駆動装置2とで課題解決手段に云う温度検出器を構成することとなる。
【0053】
本実施例では、温度分布を非接触で遠隔的に測定するために赤外線素子を用いた赤外線温度検出器を用いている。
また、測定対象物4と温度センサ1との距離を温度測定に適切な距離に調整できるよう距離調整手段14が設けられるとともに、温度分布を測定するため距離方向に対して直角な面での2次元移動が可能なように走査機構3が設けられている。本実施例では距離調整手段14および走査機構3は試料設置台側に設けられているが、温度センサ1側に設けてもよいし、走査機構は試料設置台15側と温度センサ1側の両方に設けることも考えられる。
【0054】
本実施例では、必要に応じて測定対象物に温度場を発生させるために温度場発生手段5も設けられている。測定対象物に直接または試料載置台、時として参照物を介して間接的に熱を流し込む又は吸い取ることがある。
【0055】
こうして測定された温度データは、測定した位置データと対応付けてデータ記録手段7に記録される。そして、データ記録手段7からのデータと、測定対象物4の関心領域内に設けられた参照点或いは参照領域における参照値がデータ処理手段8へ送られ、ここで数式15によって、測定対象物4の関心領域内における熱伝導率の空間分布を表すベクトルsが算出される。さらに、データ処理手段8においては、測定された温度分布および熱伝導率分布から温度勾配分布、熱伝導率勾配分布、温度ラプラシアン分布、および、熱伝導率ラプラシアン分布などが評価され、これに加えて温度分布、熱伝導率分布、温度勾配分布、熱伝導率勾配分布、温度ラプラシアン分布、および、熱伝導率ラプラシアン分布などの経時的変化(差分値)そのものおよびその相対変化(比の値)が評価される。以上の測定の結果得られた温度分布、熱伝導率分布、温度勾配分布、熱伝導率勾配分布、温度ラプラシアン分布、熱伝導率ラプラシアン分布など、および、これらの経時的変化(差分値)そのものおよびその相対変化(比の値)は、CRT等を用いた表示器17の画面上に表示される。計測制御手段6は、以上の各部分が、計測対象物の熱伝導率を求めるために、円滑に機能するよう各部分が課題解決手段において記載された機能を発揮するよう各部を制御する。
【0056】
図2は、第2の実施例で、温度センサ1の側に走査機構3と距離調整手段14を設けた例である。走査機構3と距離調整手段14を上下逆にすることも可能である。
【0057】
図3は、第3の実施例で、温度センサ側に第1の走査機構10を設け、測定対象物4側に第2の走査機構11を設けた例である。
この実施例では、距離調整手段14を温度センサ1側に設けているが、測定対象物4側でもかまわない。第1の走査機構10と距離調整手段14の位置を上下逆の位置にすることも可能である。
【0058】
次に、図4のフローチャートに従って、熱伝導率の分布を推定する方法について説明する。
まず、測定時に独立な温度場を3次元測定を行う場合に3つ、2次元測定を行う場合に2つ測定可能であれば、参照領域として少なくとも1つの参照点を関心領域内に設定する。
参照点は伝導率が既知である点または単位大きさの値を持つと想定した点である。
【0059】
以上に対して、測定時に温度場が1つしか設定できない場合には、温度勾配の方向と広く交わるように参照領域を関心領域内に設定する。
参照領域とは、熱伝導率が既知である領域または先見的に熱伝導率が一定であるとして単位大きさの値を持つと想定される又ある分布を持つと想定できる領域である。
結局、関心領域とは、参照点或いは参照領域をその内に含む熱伝導率分布が未知の領域である。
【0060】
次に、関心領域を測定領域として設定し、温度場の測定つまり温度分布の測定を行う。
独立した温度分布を測定する場合、次のように行う。
温度場発生手段5を用いて、関心領域に第1の温度場を生ぜしめ、その測定を実施する。続いて、温度場発生手段5により、熱源・吸い込み位置を変えて異なる第2の温度場を生ぜしめ、その測定を行う。以下、同様である。
既に温度場が存在する場合は、温度場発生手段5を使用せず、その1つのみを計測し、参照領域を設定してもよい。
測定は、距離調整手段14と走査機構3を調整して測定対象物を走査しながら位置データと温度データをデータ記録手段7に入力する。
【0061】
次に、データ処理手段8において、データ記録手段7から読み出したデータに対してノイズ除去のためのフィルタリングを行い、空間的に平滑化し、数式9或いは数式10のDの係数を求める。それを元に数式14の正規方程式を解いて、数式15により関心領域の熱伝導率分布sを求めることができる。
【0062】
【発明の効果】
以上説明したように、本発明の熱伝導率推定方法および熱伝導率推定装置によれば、熱伝導率が未知の物の関心領域の熱伝導率を、関心領域内にて測定された温度分布から求めることができるという利点がある。特に、測定対象物内部に既に温度分布が存在した場合には、その場を乱すことなくそのままその温度分布を測定することにより、容易に関心領域の熱伝導率を推定することができるという利点がある。
【図面の簡単な説明】
【図1】本発明の熱伝導率推定装置の第1の実施例の構成を示すブロック図である。
【図2】本発明の熱伝導率推定装置の第2の実施例の構成を示すブロック図である。
【図3】本発明の熱伝導率推定装置の第3の実施例の構成を示すブロック図である。
【図4】本発明の熱伝導率推定方法の手順を示すフローチャートである。
【図5】従来の熱伝導率推定装置の構成を示すブロック図である。
【符号の説明】
1 温度センサ
2 駆動装置
3 走査機構
4 測定対象物
5 温度場発生手段
6 計測制御手段
7 データ記録手段
8 データ処理手段
9 ハウジング
10 第1の走査機構
11 第2の走査機構
12 温度検出器
13 熱源
14 距離調整手段
15 試料設置台
16 データ処理手段
17 表示器

Claims (16)

  1. 温度検出器で測定対象物の関心領域内における温度場の各位置について順次温度を測定しその温度データと位置データとを対応させてデータ記録手段に記録し、更に、関心領域内に設けた参照領域から得られたデータを参照値とし、前記記録されたデータと参照値に基づいて、1階空間偏微分方程式を立て、これに対して有限差分法或いは有限要素法を適用し、有限差分法を使用した場合には数式1で表される連立方程式を得、
    Figure 0003607234
    更に、正則化パラメータα およびα を用いて数式2で表される汎関数e(s)が最小となる関係を表す数式3を求め、これから誘導した数式4により測定対象物の関心領域の熱伝導率の空間分布を表すベクトルsを求めることを特徴とする熱伝導率推定方法。
    Figure 0003607234
    Figure 0003607234
    Figure 0003607234
  2. 請求項1の熱伝導率推定方法の数式2および数式3において、熱伝導率の空間分布を表すベクトルsの成分である各関心点の伝導率にかかる局所行列が数値解析的に充分に正定値となる様に大きい値に調節された、または、各関心点の測定された温度データの精度(S/N比)により S/N 比が高い場合に小さく、 S/N 比が低い場合に大きく調節された空間的に変化する正則化パラメータα1およびα2を用いて、数式4より測定対象物の関心領域の熱伝導率を求めることを特徴とする熱伝導率推定方法。
  3. 参照領域を実現するべく各種参照物質を測定対象物の関心領域内に添えて、データ記録手段に記録された関心領域内のデータと参照領域から得られた参照値とから測定対象物の熱伝導率の空間分布を表すベクトルsを求める請求項1記載の熱伝導率推定方法。
  4. 参照領域を実現するべく各種参照物質を測定対象物の関心領域内に添えて、データ記録手段に記録された関心領域内のデータと参照領域から得られた参照値とから測定対象物の熱伝導率の空間分布を表すベクトルsを求める請求項2記載の熱伝導率推定方法。
  5. 測定対象物の関心領域内に温度データが欠落した領域が存在した場合には、その領域を関心領域から除外して測定対象物の熱伝導率の空間分布を表すベクトルsを評価し、その関心領域から除外された領域の熱伝導率分布の値がsから内挿・外挿補間処理により評価される請求項1、請求項2、請求項3、または、請求項4記載の熱伝導率推定方法。
  6. 下記の各構成を有することを特徴とする熱伝導率推定装置。(イ)計測対象物の関心領域の着眼位置の温度を計測する温度検出器
    (ロ)計測対象物を載置する試料設置台
    (ハ)異なる位置の温度を順次測定しようとする計測対象物と温度検出器の相対位置を変化させる位置走査機構
    (ニ)測定対象物と温度検出器との間の距離を調整する距離調整手段
    (ホ)温度検出器で計測された温度データをその測定箇所の位置データと対応付けて記録するデータ記録手段
    (ヘ)データ記録手段に記録されたデータを用いて数式4により計測対象物の熱伝導率の空間分布を表すベクトルsを算出するデータ処理手段
    (ト)上記各構成手段が各記載された動作を行うよう制御する制御手段
  7. 請求項6の構成に加えて、計測対象物が、試料設置台に載らず熱伝導率推定装置の外部にある場合に、温度検出器を計測対象物に向け且つ相対位置変化を行わせることのできる検出器保持機構を有することを特徴とする熱伝導率推定装置。
  8. 請求項6又は7の構成に加えて、計測対象物の関心領域に1つ以上の温度場を発生せしめることができる温度場発生装置を有することを特徴とする熱伝導率推定装置。
  9. 請求項6,7又は8の構成に加えて、少なくとも測定対象物を納めることのできる真空ポンプを用いた真空容器を使用することを特徴とする熱伝導率推定装置。
  10. 温度検出器として、赤外線素子を使用した温度検出器を用いた請求項6,7,8又は9に記載の熱伝導率推定装置。
  11. 温度検出器として、赤外線素子群の受光エネルギーをディジタル演算して焦点位置の設定が可能な赤外線温度検出器を用いたことを特徴とする請求項6,7,8又は9に記載の熱伝導率推定装置。
  12. 温度検出器として、赤外線素子群の受光エネルギーをディジタル演算して空間分解能の設定が可能である赤外線温度検出器を用いたことを特徴とする請求項6,7,8又は9に記載の熱伝導率推定装置。
  13. 温度検出器として、請求項10,11又は12に記載の温度検出器に赤外線レンズを併用して空間分解能および焦点位置の設定が可能な赤外線温度検出器を用いたことを特徴とする請求項6,7,8又は9に記載の熱伝導率推定装置。
  14. 温度検出器として、請求項10,11,12又は13に記載の温度検出器に能動的に赤外線を放射する機能およびその焦点位置と空間分解能を制御する機能を有する赤外線温度検出器を用いたことを特徴とする請求項6,7,8又は9に記載の熱伝導率推定装置。
  15. 請求項6〜請求項14のいずれか1項に記載の熱伝導率推定装置に、測定結果としての温度分布および熱伝導率分布を画面表示する表示器を付加したことを特徴とする熱伝導率推定装置。
  16. 請求項6〜請求項14のいずれか1項に記載の熱伝導率推定装置に、測定結果としての温度分布および熱伝導率分布に加えて、温度勾配分布、熱伝導率勾配分布、温度ラプラシアン分布、熱伝導率ラプラシアン分布、これらの経時的変化そのもの、および、その相対変化の少なくとも1つを画面表示する表示器を付加したことを特徴とする熱伝導率推定装置。
JP2001315064A 2001-03-23 2001-10-12 熱伝導率推定方法および熱伝導率推定装置 Expired - Lifetime JP3607234B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001315064A JP3607234B2 (ja) 2001-03-23 2001-10-12 熱伝導率推定方法および熱伝導率推定装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001084103 2001-03-23
JP2001-84103 2001-03-23
JP2001315064A JP3607234B2 (ja) 2001-03-23 2001-10-12 熱伝導率推定方法および熱伝導率推定装置

Publications (2)

Publication Number Publication Date
JP2002350379A JP2002350379A (ja) 2002-12-04
JP3607234B2 true JP3607234B2 (ja) 2005-01-05

Family

ID=26611865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001315064A Expired - Lifetime JP3607234B2 (ja) 2001-03-23 2001-10-12 熱伝導率推定方法および熱伝導率推定装置

Country Status (1)

Country Link
JP (1) JP3607234B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111580580A (zh) * 2020-05-20 2020-08-25 电子科技大学 一种基于微分方程的温度场测控系统及其方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7447607B2 (en) * 2004-08-31 2008-11-04 Watow Electric Manufacturing System and method of compensation for device mounting and thermal transfer error
US9375246B2 (en) * 2007-01-19 2016-06-28 Covidien Lp System and method of using thermal and electrical conductivity of tissue
KR101302750B1 (ko) * 2011-09-09 2013-08-30 한국표준과학연구원 열전소자 평가 장치
JP2016042037A (ja) * 2014-08-14 2016-03-31 富士通株式会社 評価方法及び装置、並びにプログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111580580A (zh) * 2020-05-20 2020-08-25 电子科技大学 一种基于微分方程的温度场测控系统及其方法
CN111580580B (zh) * 2020-05-20 2021-07-02 电子科技大学 一种基于微分方程的温度场测控系统及其方法

Also Published As

Publication number Publication date
JP2002350379A (ja) 2002-12-04

Similar Documents

Publication Publication Date Title
US6751342B2 (en) System for generating thermographic images using thermographic signal reconstruction
US9225915B2 (en) Calibration and quantification method for gas imaging camera
US7822268B2 (en) Advanced processing of active thermography signals
Gena et al. Qualitative and quantitative schlieren optical measurement of the human thermal plume
CN109060822B (zh) 长脉冲红外无损检测序列图像处理方法与系统
US8238642B2 (en) Methods and apparatus for measuring 3D dimensions on 2D images
JP2019505251A (ja) 被検体をx線撮像する装置
Crawford et al. Robust, automated processing of IR thermography for quantitative boundary-layer transition measurements
EP2631658A1 (en) Clean room gasflow distribution test method and system
CN112146763B (zh) 基于自动识别的测温方法及系统
JP3607234B2 (ja) 熱伝導率推定方法および熱伝導率推定装置
Frangez et al. Assessment and improvement of distance measurement accuracy for time-of-flight cameras
KR101910697B1 (ko) 발열점 검출 방법 및 발열점 검출 장치
US11215446B2 (en) Computer-implemented method for identifying mechanical properties by coupled correlation of images and mechanical modelling
CN114235885A (zh) 基于温敏荧光散斑及dic测量技术的热膨胀实时测量方法
Feldmann Resolution of two-dimensional currents in superconductors from a two-dimensional magnetic field measurement by the method of regularization
WO2002089042A1 (en) System for generating thermographic images using thermographic signal reconstruction
Akimenko et al. Computer modeling of control the thermal imaging system surveillance
Chrzanowski et al. Testing and evaluation of thermal cameras for absolute temperature measurement
Djupkep et al. Analysis of a new method of measurement and visualization of indoor conditions by infrared thermography
JP2004125397A (ja) 熱伝導率推定方法及び装置
US8976241B1 (en) Surface deformation image analyzer
Yogaswara et al. The development of experimental sets for measuring linear thermal expansion coefficient of metal using digital video-based single slit diffraction method
JP4460808B2 (ja) 電流密度ベクトル推定装置および電気導電率推定装置
Fischer et al. Three-dimensional temperature measurement in flames by multispectral tomographic image analysis

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041006

R150 Certificate of patent or registration of utility model

Ref document number: 3607234

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350