US7789575B2 - Optical device, optical device apparatus, camera module, and optical device manufacturing method - Google Patents
Optical device, optical device apparatus, camera module, and optical device manufacturing method Download PDFInfo
- Publication number
- US7789575B2 US7789575B2 US11/490,232 US49023206A US7789575B2 US 7789575 B2 US7789575 B2 US 7789575B2 US 49023206 A US49023206 A US 49023206A US 7789575 B2 US7789575 B2 US 7789575B2
- Authority
- US
- United States
- Prior art keywords
- region
- optical device
- transparent
- transparent member
- optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 200
- 238000004519 manufacturing process Methods 0.000 title claims description 26
- 238000000034 method Methods 0.000 claims description 29
- 238000001514 detection method Methods 0.000 claims description 15
- 238000005498 polishing Methods 0.000 claims description 5
- 229920005989 resin Polymers 0.000 abstract description 56
- 239000011347 resin Substances 0.000 abstract description 56
- 239000000853 adhesive Substances 0.000 abstract description 37
- 230000001070 adhesive effect Effects 0.000 abstract description 37
- 230000002093 peripheral effect Effects 0.000 abstract description 36
- 230000015572 biosynthetic process Effects 0.000 abstract description 16
- 239000004065 semiconductor Substances 0.000 description 26
- 238000003384 imaging method Methods 0.000 description 25
- 239000000758 substrate Substances 0.000 description 19
- 239000000463 material Substances 0.000 description 18
- 239000011521 glass Substances 0.000 description 9
- 238000000465 moulding Methods 0.000 description 9
- 229920002120 photoresistant polymer Polymers 0.000 description 9
- 238000005530 etching Methods 0.000 description 8
- 239000013078 crystal Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000005304 optical glass Substances 0.000 description 5
- 239000010453 quartz Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000005488 sandblasting Methods 0.000 description 3
- 238000001039 wet etching Methods 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- -1 acryl Chemical group 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000009877 rendering Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/14632—Wafer-level processed structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/14618—Containers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14683—Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
- H01L27/14687—Wafer level processing
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
- G02B3/0006—Arrays
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
- G02B3/0006—Arrays
- G02B3/0037—Arrays characterized by the distribution or form of lenses
- G02B3/0056—Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32225—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/45144—Gold (Au) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48225—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
- H01L2224/48227—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/14625—Optical elements or arrangements associated with the device
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14683—Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
- H01L27/14685—Process for coatings or optical elements
Definitions
- the present invention relates to an optical device and a method for manufacturing it.
- the following technique was proposed as a structure and a manufacturing method thereof for attaining a lightweight semiconductor imaging device at low cost.
- a cap glass is attached to a substrate so as to cover an imaging element section of each chip in the form of a wafer.
- an attached part of the cap glass is set so as not to overlap with an imaging region on the substrate.
- the semiconductor imaging element array in which semiconductor imaging elements are formed is diced and separated into individual pieces.
- the resultant semiconductor imaging element is die-bonded using an adhesive to adhere and be fixed at the bottom of a packaging box.
- an electrode terminal of the semiconductor imaging element is connected to a terminal of a package by means of a metal wire in a wire bonding process.
- the semiconductor imaging device is manufactured (see Japanese Patent Application Laid Open Publication No. 03-151666A, for example).
- the cap glass covers the imaging region of the semiconductor imaging element at the initial stage of the assembly, preventing the imaging region from damage of a flaw and the like and preventing deficiency which would be caused due to dust adhesion or the like in the assembly process thereafter. Further, in the above conventional example, the cap glass is attached to only a semiconductor imaging element accepted in a test carried out at the stage of the semiconductor imaging element array. This reduces assembly cost.
- This structure is composed of a semiconductor imaging element including an imaging region formed on a semiconductor substrate, a plurality of micro lenses, a plurality of electrode terminals, and a peripheral circuit region and a transparent plate on the semiconductor imaging element which adheres to the micro lenses by means of an adhesive having a low refractive index (see Japanese Patent Application Laid Open Publication No. 2003-031782A, for example)
- the respective cap glasses separated in advance are aligned one by one and then are made to adhere to the respective semiconductor imaging elements as accepted chips of the semiconductor imaging element array. Reflected light from an electrode terminal provided in the peripheral part, a wire lead connected thereto, or the like enters into the imaging regions to cause a smear or a flare. Though the cap glasses can be manufactured easily, such a phenomenon cannot be prevented in the first conventional example.
- the electrode terminals of the semiconductor imaging element can be formed only at opposite two sides out of the four sides. This imposes a severe limitation on the number of the electrode terminals that can be formed. Also, in this example, the phenomenon cannot be prevented in which reflected light from an electrode terminal provided in the peripheral part, a wire lead connected thereto, or the like enters into the imaging region to cause a smear or a flare.
- the present invention has been made for solving the above problems and has its object of providing an optical device such as a semiconductor imaging device which is compact, is thin, is easily manufactured, and suppresses optical noise and providing a manufacturing method thereof.
- an optical device of the present invention includes: an optical element one of faces of which serves as a circuit formation face where a circuit is to be formed and which includes in the circuit formation face a region for light detection or emission and an electrode region in which an electrode terminal for connecting with an external circuit is formed; and a transparent member which is arranged on at least the region for light detection or emission and which is larger in plan than at least the region for light detection or emission; a transparent adhesive for causing the transparent member to adhere and be fixed to the optical element, wherein a roughed region is formed in a region of a face of the transparent member which adheres to the optical element, the region being overlapped in plan with a region surrounding the region for light detection or emission.
- the roughed region is formed in the transparent member so that light entering in this region is scattered, preventing reflected light from an electrode terminal or a wire lead thereof to enter into the region where light is to be detected or emitted.
- This suppresses a smear and a flare in the case where the optical device of the present invention includes a light receiving element, resulting in provision of high quality images.
- the transparent member such as a glass adheres to the optical element directly, facilitating correction of the optical axis of emitting light, compared with the case with the transparent member set apart from the optical element, and enabling prevention of lowering of emitted light output.
- the transparent member is arranged on the bare chip, which means thinned and compacted optical device compared with one that is resin-sealed in a molding process.
- the roughed region is preferably formed in a region not overlapped with the region for light detection or emission as viewed in plan.
- the transparent member is made of any one material of, for example, optical glass, quartz, crystal, and optical transparent resin.
- an antireflection film is formed at least one of the inner face of the roughed region and the outer peripheral face of the transparent member, entering of reflected light from an electrode terminal, a wire lead thereof, or the like into the region for light detection or emission is suppressed further.
- An optical device manufacturing method of the present invention includes: a step (a) of forming an optical element array including a plurality of optical elements each including a region for light detection or emission and an electrode region in which an electrode terminal for connecting with an external circuit is formed; a step (b) of forming on the optical elements transparent members in which roughed regions are formed and each of which has a dimension in plan larger than the region for light detection or emission; and a step (c) of forming optical devices each including the optical element and the transparent member by dicing the optical element array, wherein in the step (b), each of the transparent members are formed so that the roughed region faces a region surrounding the region for light detection or emission.
- the step (b) of forming the transparent members includes various methods.
- a transparent member array including a plurality of parts to be the transparent members is formed, is joined to the optical element array, and then, is separated to the individual transparent members.
- the transparent members are sequentially made to adhere onto the optical elements.
- the transparent member array can be formed by etching or by molding using a molding die.
- the transparent member is directly mounted on the principal face of the optical element, achieving reduction in thickness and size. Reflected light from an electrode terminal provided in the outer peripheral part of the region for light detection or emission or a wire lead thereof enters to the region for light detection or emission to serve as stray light. In the optical device of the present invention, however, this phenomenon can be suppressed. As a result, an optical device inviting neither a smear nor a flare and excellent in optical characteristic can be realized by the simple manufacturing method.
- FIG. 1A is a plan view showing an optical device according to Embodiment 1 of the present invention
- FIG. 1B is a section taking along the line Ib-Ib in FIG. 1A .
- FIG. 2A to FIG. 2D are sections showing a process of forming a transparent member array in an optical device manufacturing method according to Embodiment 1.
- FIG. 3A to FIG. 3D are sections showing a process of forming transparent members in batch on an optical element array in the optical device manufacturing method according to Embodiment 1.
- FIG. 4A and FIG. 4B are sections showing the process of forming the transparent members in batch on the optical element array in the optical device manufacturing method according to Embodiment 1.
- FIG. 5A to FIG. 5C are sections showing a process of forming a transparent array with the use of a resin molding die.
- FIG. 6A is a plan view showing an optical device according to First Modified Example of Embodiment 1, and FIG. 6B is a section taking along the line VIb-VIb in FIG. 6A .
- FIG. 7A is a plan view showing an optical device according to Second Modified Example of Embodiment 1
- FIG. 7B is a section taking along the line VIIb-VIIb in FIG. 7A .
- FIG. 8 is a section showing an optical device according to Embodiment 2 of the present invention.
- FIG. 9 is a section showing a transparent member used in the optical device according to Embodiment 2.
- FIG. 10A to FIG. 10E are sections showing a process of making transparent members to adhere and be fixed onto optical elements in an optical device manufacturing method according to Embodiment 2.
- FIG. 11A is a plan view showing an optical device according to a modified example of Embodiment 2, and FIG. 11B is a section taking along the line XIb-XIb in FIG. 11A .
- FIG. 12 is a section showing an optical device apparatus according to Embodiment 3.
- FIG. 13 is a section showing a camera module according to Embodiment 4.
- FIG. 1A is a plan view showing an optical device 1 according to Embodiment 1 of the present invention
- FIG. 1B is a section taking along the line Ib-Ib in FIG. 1A .
- the optical device 1 of the present embodiment includes an optical element 10 including, in a semiconductor substrate 12 , a light detecting region 14 , a peripheral circuit region 16 , and electrode region 18 including a plurality of electrode terminals 20 , a transparent member 22 , and a transparent resin adhesive 26 for making the transparent member 22 to adhere and be fixed to the optical element 10 .
- At least one of a light receiving element and a light emitting element is provided as the optical element 10 in the optical device 1 .
- the light receiving element is an image sensor such as a CMOS sensor, a CCD sensor, or the like while the light emitting element is, for example, a laser, a light emitting diode, or the like.
- the light detecting region 14 serves as an imaging region.
- the light detecting region 14 is formed at the central part of the semiconductor substrate 12 and includes a plurality of electro-optic conversion elements (not shown) arranged in matrix and further includes a color filter and a micro lens which are provided on each of the electro-optic conversion elements.
- the peripheral circuit region 16 is formed so as to surround the light detecting region 14 in the semiconductor substrate 12 and includes a circuit for processing electric signals output from the electro-optic conversion elements.
- the electrode region 18 including the plurality of electrode terminals 20 is formed in the outermost peripheral region of the semiconductor substrate 12 .
- the electrode terminals 20 are used for connecting with an external appliance. It is noted that a silicon substrate made of single crystal of silicon is employed in general as the semiconductor substrate 12 but another semiconductor material may be employed.
- the transparent member 22 is in a flat shape larger than at least the light detecting region 14 , and a roughed region 24 having a saw-toothed shape in section is formed in a region adhering to the outer peripheral part (peripheral circuit region 16 and the like) of the light detecting region 14 in the face of the transparent member 22 adhering to the optical element 10 .
- the roughed region 24 is in a form of a rectangle like one formed of four strips as view in plan.
- the transparent member 22 adheres and is fixed onto the face of the optical element 10 by means of the transparent resin adhesive 26 so that the roughed region 24 surrounds the light detecting region 14 .
- the thickness of the transparent member 22 is set within the range, for example, between 200 ⁇ m and 500 ⁇ m, both inclusive, and preferably set to approximately 350 ⁇ m.
- the roughed region 24 is in a shape of bumps and dips or is serrated (saw-toothed shape), or the like.
- the upper face and the lower face of at least part of the transparent member 22 which is located on the light detecting region 14 are flat, are in parallel to each other, and forms an optical plane.
- plural peaks and plural valleys are formed coaxially so as to form rectangles surrounding the light detecting region 14 .
- the difference between the peaks and valleys is set to 200 ⁇ m or smaller, for example.
- optical glass As a material of the transparent member 22 , optical glass, quartz, crystal, optical transparent resin, or the like is employed, for example.
- optical transparent resin any resin material generally used in optics can be employed, such as epoxy-based resin, acryl-based resin, methacrylate-based resin, polycarbonate-based resin, polyolefin-based resin, polyester-based resin, fluorine-containing polymer, fluoridated polyimide, or the like.
- the transparent resin adhesive 26 is used especially for adhesion and fixing of the transparent member 22 to the light detecting region 14 of the optical element 10 and must be made of an optically transparent material.
- the transparent resin adhesive 26 is required to have a refractive index different from the micro lenses formed in the light detecting region 14 . Particularly, it is desirable that the transparent adhesive 26 has a refractive index lower than the micro lenses because a light collecting effect would be expected.
- the optical element 10 includes a light emitting element
- the light detecting region 14 serves as a light emitting region.
- FIG. 2A to FIG. 2D are sections showing the process of forming the transparent member array 36 in the optical device manufacturing method according to the present embodiment. Wherein, an optical glass is used as a transparent plate in the present embodiment.
- a transparent plate 28 having substantially the same shape as the optical element array is prepared.
- a photoresist pattern 32 for forming defining grooves 34 which will be described later, is formed on one of the faces of the transparent plate 28 while a surface protection film 30 is formed on the entirety of the other face thereof.
- Any material may be employed as a material of the surface protection film 30 with no limitation only if it is durable against a chemical solution used in etching the optical glass as will be described later.
- the photoresist pattern 32 is formed by applying a photoresist film onto the entirety of the face of the transparent plate 28 and subjecting the photoresist film to exposure and development so that a region of the transparent plate 28 which corresponds to the electrode region 18 of the optical element 10 is exposed.
- the defining grooves 34 are formed by wet etching the exposed part of the transparent plate 28 .
- the wet etching can be easily performed when a chemical solution containing a hydrofluoric acid, for example, is used.
- the depth of the defining grooves 34 formed by this etching is set larger than the thickness of the transparent member 22 finally remaining on the face of the optical element 10 after polishing the transparent plate 28 of which step will be described later.
- the depth of the defining grooves formed by etching in this step is set to approximately 380 ⁇ m when the thickness of the final transparent member 22 is 350 ⁇ m.
- the thickness of the transparent plate 28 is desirably set to approximately 500 ⁇ m when the depth of the defining grooves 34 is set to 380 ⁇ m. Following this etching, the photoresist pattern 32 is removed.
- a plurality of roughed regions 24 are formed using a dicing machine in parts of one face of the transparent plate 28 , each of which corresponds to the peripheral circuit region 16 provided at the outer peripheral part of the light detecting region 14 (see FIG. 1A and FIG. 1B ).
- the roughed regions 24 are easily formed by cutting the transparent plate 28 to the depth of approximately 100 ⁇ m by a dicing blade.
- the surface protection film 30 is removed from the transparent plate 28 to obtain the transparent member array 36 .
- quartz, crystal, or the like other than the optical glass may be employed as a material of the transparent plate 28 .
- a transparent resin material may be employed.
- the defining grooves 34 may be formed by sandblasting, dry etching, or the like, rather than etching.
- the roughed regions 24 may be formed by dry or wet etching. Alternatively, the roughed regions 24 may be formed by sandblasting or laser beam machining. The roughed regions 24 may not be formed in a sharp saw-toothed shape in section and can exhibit a larger antireflection effect with the inner face thereof roughened.
- FIG. 3A to FIG. 3D , FIG. 4A , and FIG. 4B are sections showing a process of forming the transparent members 22 in batch on the optical element array 42 in the optical device manufacturing method of the present embodiment.
- an optical element array 42 is prepared in which a plurality of optical elements 10 are formed at a predetermined arrangement pitch, wherein each optical element 10 includes the light detecting region 14 , the peripheral circuit region 16 , and the electrode region 18 which are formed on one of the principal faces of the semiconductor substrate 12 .
- Dicing lines 40 are formed in the optical element array 42 for separating the optical elements 10 individually.
- the transparent resin adhesive 26 is applied onto the light detecting regions 14 and the peripheral circuit regions 16 arranged in the outer peripheral parts thereof of the respective optical elements 10 or onto the entirety or part of each peripheral circuit regions 16 .
- the transparent resin adhesive 26 must be applied so as not to reach the electrode regions 18 .
- the present step may be carried out by screen printing. Alternatively, for accurate application, it may be carried out by lift-off method in which a photoresist is formed by a photolithography process on a region where the transparent resin adhesive 26 is not to be applied, the transparent resin adhesive 26 is applied, and then, the photoresist is removed. Or, a photosensitive transparent resin adhesive may be used.
- the transparent resin adhesive 26 may be applied only necessary part by rendering. Moreover, a semi-hardened pre-impregnated sheet made of a transparent resin adhesive may be processed to have the same shape as the region where the transparent resin adhesive is to be applied and, then, be attached to the optical element array 42 .
- the transparent member array 36 is aligned with the face where the roughed regions 24 thereof are formed allowed to face the circuit formation face of the optical element array 42 so that the roughed regions 24 are not overlapped with and surround the light detecting regions 14 .
- the electrode terminals 20 provided in the electrode regions 18 are arranged within the defining grooves 34 .
- the transparent member array 36 and the optical element array 42 are made to adhere to each other with the transparent resin adhesive 26 interposed.
- the transparent resin adhesive 26 is hardened as it is.
- an adhesive which is hardened by a ultraviolet ray is used as the transparent resin adhesive 26
- the transparent resin adhesive 26 can be hardened by irradiating the ultraviolet ray over the transparent member array 36 .
- a thermosetting adhesive is used as the transparent resin adhesive 26 , it is hardened by heating the entirety while keeping the adhesion state of the transparent member array 36 and the optical element array 42 .
- the transparent member array 36 is polished until polishing reaches the defining groves 34 of the transparent member array 36 .
- the transparent member array 36 is divided into the individual transparent members 22 .
- the transparent members 22 are held by and remain to adhere to the optical element array 42 . In this state, the surfaces of the transparent members 22 are subjected further to mirror polishing.
- the optical element array 42 is cut along the dicing lines 40 to be divided into the individual optical elements 10 , thereby obtaining the optical devices 1 of the present invention.
- the transparent member 22 adheres and is fixed directly onto the light detecting region 14 by means of the transparent resin adhesive 26 , and the roughed region 24 is formed in a region of the transparent member 22 at the outer peripheral part of the light detecting region 14 .
- the optical axis of emitting light can be corrected easily, compared with the case where the transparent member 22 is arranged apart from the light emitting element, because of direct adhesion of the transparent member 22 to the light emitting element, resulting in prevention of lowering of emitted light output.
- the transparent members 22 in the form of the transparent member array 36 are made to adhere and be fixed to the optical element array 42 and, then, are divided in batch, simplifying the manufacturing process.
- the transparent member array 36 is formed by etching, sandblasting, or the like, but the formation method of the transparent member array 36 in the present invention is not limited thereto.
- the transparent member array 36 may be formed by molding using a resin molding die, as shown in FIG. 5A to FIG. 5C .
- FIG. 5A to FIG. 5C are sections showing a process of forming a transparent member array 58 with the use of a resin molding die.
- an upper die 50 and a lower die 52 in which a resin injection port (gate portion) is formed are prepared.
- the upper die 50 and the lower die 52 form in combination a cavity having a pattern reverse to the aforementioned transparent members 22 correspondingly to the optical elements 10 of the optical element array 42 (see FIG. 3C , for example).
- a resin 56 having a viscosity lowered by heating is injected from the injection port and is filled in the cavity while reducing the pressure within a gap between the upper die 50 and the lower die 52 of the resin molding die. Then, the resin 56 is cooled to be hardened.
- the resin 56 is taken out by separating the upper die 50 and the lower die 52 . Then, the gate portion for injecting the resin 56 and an air vent section for pressure reduction are removed. Thus, the transparent member array 58 made of the resin 56 is obtained.
- the steps thereafter for manufacturing the optical device are the same as those in the above embodiment, and therefore, the description thereof is omitted.
- the resin 56 employable in this formation method includes epoxy-based resin, acryl-based resin, and polyimide-based resin as typical examples, but another transparent resin material may be employed.
- FIG. 6A is a plan view showing an optical device according to First Modified Example of the present embodiment
- FIG. 6B is a section taking along the line VIb-VIb in FIG. 6A .
- an optical device 2 of First Modified Example is the same as the optical device 1 of Embodiment 1 except the point that a transparent member 60 different in shape from that in Embodiment 1 is formed on the optical element 10 used in Embodiment 1.
- the transparent member 60 is fixed on the optical element 10 by means of the transparent resin adhesive 26 so as to cover the entirety of the circuit formation face of the optical element 10 .
- opening parts 64 having a dimension in plan larger than the electrode terminals 20 of the optical element 10 are formed at parts overlapped with the electrode terminals 20 .
- the dimension in plan of the transparent member 60 is the same as the dimension in plan of the optical element 10 .
- the thickness of the transparent member 60 is set within the range between 200 ⁇ m and 500 ⁇ m, both inclusive and preferably is set to approximately 350 ⁇ m.
- a roughed region 24 is formed in a region overlapped in plan with the outer peripheral part of the light detecting region 14 so that peaks and valleys are formed coaxially to form rectangles, similarly to the optical device 1 of Embodiment 1.
- the transparent member 60 is attached substantially to the entirety of the optical element 10 , increasing the mechanical strength. Also, the roughing region 24 is formed in the transparent member 60 , so that entering of reflected light from an electrode terminal 20 or a wire lead into the light detecting region 14 is suppressed, similarly to the optical device 1 of Embodiment 1.
- Difference of a manufacturing method of the optical device 2 of the present modified example from the manufacturing method of the optical device 1 of Embodiment 1 lies in that the transparent member array forming process is modified partially and that the transparent member array is cut together with the optical element array into individual pieces in the dicing step.
- the other steps are the same as those in the manufacturing method of the optical device 1 described in Embodiment 1.
- the partially modified process of forming the transparent member array will be described below.
- the transparent member 60 is attached to almost all over the entirety of the circuit formation face of the optical element 10 , and only the electrode terminals 20 and the outer peripheries thereof are exposed in the optical element 10 . Accordingly, the photoresist pattern is formed to have openings larger than the electrode terminals 20 of the optical element 10 in the step shown in FIG. 2A . Following formation of such the photoresist pattern, the transparent plate is etched by the method described with reference to FIG. 2A to FIG. 2D . Thus, non-through holes are formed which have the same depth as the defining grooves 34 described with reference to FIG. 2A to FIG. 2D and which are larger than the electrode terminals 20 .
- the transparent member array is formed by the same steps as those for manufacturing the optical device 1 of the present embodiment, and the optical element array is diced together with the transparent member array to be divided into individuals finally.
- the optical device 2 of First Modified Example is formed. It is noted that the transparent member array may be formed using a resin molding die also in First Modified Example.
- the electrode terminals 20 are arranged at the bottoms of the opening parts 64 of the transparent member 60 . This facilitates connection between the electrode terminals 20 and an external appliance by for example, only filling a conductive adhesive into the opening parts 64 . Further, with the above structure, the mechanical strength increases, and the roughed region 24 suppresses entering of stray light into the light detecting region 14 .
- FIG. 7A is a plan view showing an optical device 3 according to Second Modified Example of the present embodiment
- FIG. 7B is a section taking along the line VIIb-VIIb in FIG. 7A .
- the optical device 3 of the present modified example is an optical device 2 of First Modified Example of which part is further modified.
- the opening parts 64 of the transparent member 60 are slightly larger than the electrode terminals 20 of the optical element 10 .
- opening parts 71 form squared C-shapes in plan by cutting parts including regions of the transparent member 70 which are overlapped with the electrode terminals 20 .
- the outer shape of the transparent member 70 is a rectangle in plan with indentations.
- the elements other than the transparent member 70 and the manufacturing method thereof are the same as those of the optical device 2 of First Modified Example, and therefore, the description thereof is omitted.
- the transparent member of the optical device of the present embodiment may have any shape only if the roughed region is not overlapped with the light detecting region 14 and the electrode terminals 20 are not covered.
- the roughed region 24 may be formed on the electrode region 18 except the electrode terminals 20 .
- FIG. 8 is a section showing an optical device 4 according to Embodiment 2.
- the optical device 4 of the present embodiment is different from the optical device 1 of Embodiment 1 in that an antireflection film 74 and an antireflection film 76 are formed on the outer peripheral face (side face) of a transparent member 72 and the inner face of the roughed region 24 , respectively.
- the other constitution thereof is the same as that of the optical device 1 of Embodiment 1.
- the antireflection films 74 , 76 are provided respectively on the outer peripheral face of the transparent member 72 and the inner face of the roughed region 24 , suppressing entering of reflection light from an electrode terminal 20 , a wire lead, or the like into the light detecting region 14 further reliably.
- FIG. 9 is a section of the transparent member 72 used in the optical device 4 of the present embodiment.
- the individual transparent members 72 are made to adhere and fixed one by one rather than in the form of an array onto regions where light is to be detected on the circuit formation face of the optical element array.
- the transparent member 72 shown in FIG. 9 is formed as follows.
- transparent plates are prepared which have a dimension in plan smaller than the electrode region 18 and larger than the light detecting region 14 of the optical element 10 .
- an inorganic material such as glass, quartz, crystal or the like
- any transparent resin material may be employed as a material of the transparent plate, as described in Embodiment 1.
- the roughed region 24 is formed so as to be large enough to surround the light detecting region 14 and so as to be in a form of a rectangle like one formed of four strips.
- the roughed region 24 can be easily formed by dicing as described in Embodiment 1 but may be formed by a photolithography process and etching. It is possible that the roughed region 24 is formed in a large transparent plate in advance, and then, the large transparent plate is cut into pieces of the transparent members 72 .
- the antireflection films 74 , 76 are formed on the outer peripheral face of each transparent member 72 and the inner face of each roughed region 24 , respectively.
- the antireflection films 74 , 76 can be easily formed by, for example, depositing carbon with part corresponding to the light detecting region 14 masked. Alternatively, it may be formed by applying a black resin by rendering or ink jetting. Any material may be employed as a material of the antireflection films 74 , 76 only if it has a low reflectance.
- FIG. 10A to FIG. 10E are sections showing a process of attaching and fixing the transparent member 72 onto the optical element 10 in the method for manufacturing the optical device 4 according to the present embodiment.
- the optical element array 42 described in Embodiment 1 is prepared.
- the transparent resin adhesive 26 is applied onto regions including the light detecting regions 14 and the peripheral circuit regions 16 in the circuit formation faces of the optical elements 10 .
- the steps so far are the same as those in Embodiment 1.
- one transparent member 72 is aligned with respect to the light detecting region 14 of one of the optical elements 10 in the optical element array 42 , and then, the transparent member 72 is attached and fixed onto the optical element 10 by means of the transparent resin adhesive 26 . If the transparent resin adhesive 26 is one to be hardened by a ultraviolet ray, the ultraviolet ray is irradiated only to a region of the optical element array 42 where the transparent member 72 is attached so that the transparent resin adhesive 26 is hardened.
- the transparent members 72 are attached and fixed to the circuit formation faces of the optical elements 10 one by one sequentially.
- the transparent members 72 are attached and fixed onto the circuit formation faces of all the optical elements 10 of the optical element array 42 .
- the optical element array 42 is diced along the dicing lines 40 to thus obtain the optical devices 4 of the present embodiment, which is shown in FIG. 8 .
- the optical device 4 of the present embodiment is manufactured by attaching the transparent member 72 in the form of an individual piece to the optical element 10 .
- the antireflection films 74 , 76 are formed on the outer peripheral face of the transparent member 72 and the inner face of the roughed region 24 , respectively. Accordingly, even when a metal wire or an aluminum wire having a large reflectance is employed as a material of the wire leads, a smear and a flare, which would be caused due to reflected light from such a wire lead, are suppressed reliably.
- the reflection films 74 , 76 may be formed on only one of the outer peripheral face of a transparent member 72 and the inner face of the roughed region 24 .
- FIG. 11A is a plan view showing an optical device 5 according to a modified example of Embodiment 2, and FIG. 11B is a section taking along the line XIb-XIb in FIG. 11A .
- the optical device 5 of the present modified example is different from the optical device 4 of Embodiment 2 in that projections 78 are formed at four corners of the face of the transparent member 72 which is the opposite face of the face where the roughed region 24 is formed.
- the other constitution thereof is the same as that of the optical device 4 of Embodiment 2, and therefore, the description thereof is omitted.
- the projections 78 may be formed as a part of the transparent member 72 or may be formed by attaching another member to the transparent member 72 after the transparent member 72 is formed.
- a material of the projections 78 may be the same as the material of the transparent member 72 , for example, or may be a different material.
- the projections 78 are not necessarily transparent and may be formed by attaching or applying a metal foil or a resin.
- Provision of the projections 78 facilitates accurate alignment of the optical device 5 at implementation thereof to a circuit board or the like of an electronic appliance and enables to accurately keep a distance between a circuit substrate and the transparent member. At least two projections 78 should be provided in a region not overlapped with the light detecting region 14 in plan.
- the electrode region 18 and the peripheral circuit region 16 are defined explicitly separately. However, part of the peripheral circuit region 16 may be formed in the electrode region 18 . In this case, the region where the electrode terminals are formed is deemed as the electrode region 18 .
- the transparent member is attached to the optical element by applying the transparent resin adhesive to the peripheral circuit region 16 and the light detecting region 14 or only the peripheral circuit region 16 .
- the present invention is not limited thereto.
- an adhesive sheet such as a double-faced adhesive tape is attached to the peripheral circuit region or the peripheral circuit region and the electrode region except the electrode terminals, and then, the transparent member is attached thereto by means of the adhesive sheet. This forms a space with no adhesive in the light detecting region, eliminating the need to set a particular limitation of the reflectance of the transparent resin adhesive.
- Embodiment 3 An optical device apparatus using the optical device according to Embodiment 1, Embodiment 2, or Modified Examples thereof will be described as Embodiment 3 of the present invention.
- FIG. 12 is a section showing the optical device apparatus 100 according to Embodiment 3.
- the optical device apparatus 100 of the present embodiment includes a substrate 85 , an optical device 81 boarded on the substrate 85 by means of an adhesive 83 and including the electrode terminals 20 described in Embodiment 1 or 2, a frame body 89 provided on the substrate 85 for surrounding the optical device 81 , an external terminal 87 exposed at the outer face (bottom face herein) of the optical device apparatus 100 and connected to the electrode terminals 20 by means of, for example, a metal wires 91 , and a sealing resin 93 filled in the frame body 89 for sealing part of the optical device 81 and the metal wires 91 .
- the transparent member is directly arranged on the face of the optical element, so that the optical device 81 has a thickness thinner than in the case where the transparent member and the optical element are arranged with a space left from each other. Further, with the roughed region, a smear and a flare are suppressed effectively. Hence, the optical device apparatus 100 including the optical device 81 becomes thin and, therefore, can be used favorably in a camera module or the like.
- a camera module including the optical device apparatus according to Embodiment 3 will be described as Embodiment 4 of the present invention.
- FIG. 13 is a section showing a camera module according to Embodiment 4.
- the camera module herein may be any of various apparatuses such as a digital camera, a monitoring camera, a video camera, a camera for a mobile phone, and the like.
- the optical element of the optical device serves as a light receiving element such as an image sensor.
- the camera module of the present embodiment includes a wiring substrate 101 , the optical device apparatus 100 boarded on the wiring substrate 101 , a positioning spacer 103 arranged around the optical device apparatus 100 on the wiring substrate 101 , a body tube base 105 fixed above the wiring substrate 101 with the positioning spacer 103 interposed and forming a tubular opening part above the light detecting region (see FIG. 1 and the like), a glass plate 107 arranged above the light detecting region and fixed at the bottom of the opening part of the body tube base 105 , a lens accommodating section 109 provided within the opening part of the body tube base 105 , a lens holder 113 fixed in the lens accommodating section 109 , and a lens 111 supported by the lens holder 113 and arranged above the light detecting region.
- the wiring provided in the wiring substrate 101 is connected to an external terminal 87 of the optical device apparatus 100 .
- the camera module of the present embodiment is also thinned.
- the transparent member is arranged directly on the face of the optical element, reducing deviation of the optical axis to enable clear image shooting.
- the roughed region of the optical device suppresses a smear and a flare, resulting in an image obtained with fewer smears and fewer flare.
- the optical device of the present invention is useful for various electronic appliances which need a shooting device, such as mobile phones, digital cameras, and the like.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
Description
Claims (1)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005211572 | 2005-07-21 | ||
JP2005-211572 | 2005-07-21 | ||
JP2006121755A JP4686400B2 (en) | 2005-07-21 | 2006-04-26 | Optical device, optical device apparatus, camera module, and optical device manufacturing method |
JP2006-121755 | 2006-04-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20070019101A1 US20070019101A1 (en) | 2007-01-25 |
US7789575B2 true US7789575B2 (en) | 2010-09-07 |
Family
ID=37678691
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/490,232 Active 2029-05-28 US7789575B2 (en) | 2005-07-21 | 2006-07-21 | Optical device, optical device apparatus, camera module, and optical device manufacturing method |
Country Status (2)
Country | Link |
---|---|
US (1) | US7789575B2 (en) |
JP (1) | JP4686400B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150053849A1 (en) * | 2013-08-22 | 2015-02-26 | Azurewave Technologies, Inc. | Sensor package structure and production apparatus for manufacturing the same |
Families Citing this family (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5427337B2 (en) * | 2005-12-21 | 2014-02-26 | セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー | Semiconductor device, method for manufacturing the same, and camera module |
US20070236591A1 (en) * | 2006-04-11 | 2007-10-11 | Tam Samuel W | Method for mounting protective covers over image capture devices and devices manufactured thereby |
JP2008166632A (en) * | 2006-12-29 | 2008-07-17 | Manabu Bonshihara | Solid-state imaging apparatus, its manufacturing method and camera module |
US20080218186A1 (en) * | 2007-03-07 | 2008-09-11 | Jeff Kooiman | Image sensing integrated circuit test apparatus and method |
CN101261347A (en) * | 2007-03-09 | 2008-09-10 | 鸿富锦精密工业(深圳)有限公司 | Camera module group and method of manufacture |
JP2008227233A (en) * | 2007-03-14 | 2008-09-25 | Matsushita Electric Ind Co Ltd | Semiconductor device and manufacturing method thereof, and optical pickup module |
JP2008226378A (en) * | 2007-03-14 | 2008-09-25 | Matsushita Electric Ind Co Ltd | Semiconductor device, manufacturing method thereof and optical pickup module |
JP2008227232A (en) * | 2007-03-14 | 2008-09-25 | Matsushita Electric Ind Co Ltd | Semiconductor device and manufacturing method thereof, and optical pickup module |
JP4384202B2 (en) | 2007-05-31 | 2009-12-16 | シャープ株式会社 | Semiconductor device and optical device module including the same |
JP4378394B2 (en) | 2007-05-31 | 2009-12-02 | シャープ株式会社 | Semiconductor device and optical device module including the same |
JP4413956B2 (en) * | 2007-08-21 | 2010-02-10 | 新光電気工業株式会社 | Camera module and portable terminal |
JP2009088407A (en) * | 2007-10-02 | 2009-04-23 | Panasonic Corp | Solid-state image sensing device and method for manufacturing same |
JP2011517313A (en) | 2007-12-11 | 2011-06-02 | ビアメト ファーマシューティカルズ,インク. | Metalloenzyme inhibitors that use a metal binding moiety in combination with a targeting moiety |
JP2009239258A (en) * | 2008-03-05 | 2009-10-15 | Panasonic Corp | Optical device and method of manufacturing the same |
US20100013041A1 (en) * | 2008-07-15 | 2010-01-21 | Micron Technology, Inc. | Microelectronic imager packages with covers having non-planar surface features |
JP5363799B2 (en) * | 2008-12-25 | 2013-12-11 | 旭化成ケミカルズ株式会社 | Photovoltaic power generation module having a prepreg sheet that is adhesively cured by an external stimulus, and its installation method |
JP2010245292A (en) * | 2009-04-06 | 2010-10-28 | Panasonic Corp | Optical device, electronic apparatus, and method of manufacturing the same |
CN101998035B (en) * | 2009-08-24 | 2013-07-03 | 鸿富锦精密工业(深圳)有限公司 | Camera module and assembling method thereof |
US8983370B2 (en) | 2009-09-01 | 2015-03-17 | Nec Corporation | Communication transmission apparatus, communication coupler and impedance adjusting sheet |
JP2011054794A (en) * | 2009-09-02 | 2011-03-17 | Panasonic Corp | Optical device and method of manufacturing the same |
FR2954588B1 (en) * | 2009-12-23 | 2014-07-25 | Commissariat Energie Atomique | METHOD FOR ASSEMBLING AT LEAST ONE CHIP WITH A WIRED ELEMENT, ELECTRONIC CHIP WITH DEFORMABLE BONDING ELEMENT, METHOD FOR MANUFACTURING A PLURALITY OF CHIPS, AND ASSEMBLY OF AT LEAST ONE CHIP WITH A WIRED ELEMENT |
JP5694670B2 (en) * | 2010-02-05 | 2015-04-01 | キヤノン株式会社 | Solid-state imaging device and manufacturing method thereof |
US20120168943A1 (en) * | 2010-12-30 | 2012-07-05 | Stmicroelectronics Pte. Ltd. | Plasma treatment on semiconductor wafers |
US8912653B2 (en) | 2010-12-30 | 2014-12-16 | Stmicroelectronics Pte Ltd. | Plasma treatment on semiconductor wafers |
JP2012174799A (en) | 2011-02-18 | 2012-09-10 | Sony Corp | Solid state image pickup device and method for manufacturing the same |
EP2840375A1 (en) * | 2013-08-19 | 2015-02-25 | Sensirion AG | Device with a micro- or nanoscale structure |
EP3367082A1 (en) | 2013-11-06 | 2018-08-29 | Invensense, Inc. | Pressure sensor |
EP2871455B1 (en) | 2013-11-06 | 2020-03-04 | Invensense, Inc. | Pressure sensor |
EP3076146B1 (en) | 2015-04-02 | 2020-05-06 | Invensense, Inc. | Pressure sensor |
JP2017022200A (en) * | 2015-07-08 | 2017-01-26 | ソニーセミコンダクタソリューションズ株式会社 | Image sensor, and electronic apparatus |
KR102185061B1 (en) | 2015-08-27 | 2020-12-01 | 삼성전기주식회사 | Image sensor assembly, manufacturing method thereof, and camera module |
US11225409B2 (en) | 2018-09-17 | 2022-01-18 | Invensense, Inc. | Sensor with integrated heater |
WO2020090432A1 (en) * | 2018-10-29 | 2020-05-07 | ソニーセミコンダクタソリューションズ株式会社 | Imaging element and method for manufacturing imaging element |
JP2020136545A (en) | 2019-02-21 | 2020-08-31 | ソニーセミコンダクタソリューションズ株式会社 | Solid-state imaging device and electronic apparatus |
JP7152666B2 (en) | 2019-03-08 | 2022-10-13 | 日亜化学工業株式会社 | Light-emitting device and manufacturing method thereof |
CN110007332B (en) * | 2019-04-28 | 2023-11-28 | 沈阳智核医疗科技有限公司 | Crystal array, detector, medical detection device, and method for manufacturing crystal array |
CN113785178A (en) | 2019-05-17 | 2021-12-10 | 应美盛股份有限公司 | Pressure sensor with improved gas tightness |
US11778293B2 (en) * | 2019-09-02 | 2023-10-03 | Canon Kabushiki Kaisha | Mounting substrate to which image sensor is mounted, sensor package and manufacturing method thereof |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03151666A (en) | 1989-11-08 | 1991-06-27 | Nec Corp | Manufacture of solid image-pickup device |
US6266197B1 (en) * | 1999-12-08 | 2001-07-24 | Amkor Technology, Inc. | Molded window array for image sensor packages |
US6407381B1 (en) * | 2000-07-05 | 2002-06-18 | Amkor Technology, Inc. | Wafer scale image sensor package |
JP2003031782A (en) | 2001-07-11 | 2003-01-31 | Fuji Film Microdevices Co Ltd | Solid state image device |
US6618196B2 (en) * | 2000-05-10 | 2003-09-09 | Kuraray Co., Ltd. | Rear-projection type screen |
US20040077121A1 (en) * | 2002-04-22 | 2004-04-22 | Hiroshi Maeda | Solid-state imaging device and method of manufacturing said solid-state imaging device |
US20040161871A1 (en) * | 2002-11-27 | 2004-08-19 | Seiko Epson Corporation | Semiconductor device, method of manufacturing the same, circuit substrate and electronic equipment |
US20040159920A1 (en) * | 2002-11-27 | 2004-08-19 | Seiko Epson Corporation | Semiconductor device, method of manufacturing the same, cover for semiconductor device, and electronic equipment |
US20050275079A1 (en) * | 2002-03-22 | 2005-12-15 | Stark David H | Wafer-level hermetic micro-device packages |
US20050275741A1 (en) * | 2004-06-15 | 2005-12-15 | Fujitsu Limited | Image pickup device and production method thereof |
US20060108518A1 (en) * | 2004-11-15 | 2006-05-25 | Nsmc Holdings International Corp. Ltd. | Structure for calibrating packaging of electric micro-optic modules |
US20070018309A1 (en) * | 2005-07-21 | 2007-01-25 | Siliconware Precision Industries Co., Ltd. | Image sensor package, optical glass used therein, and processing method of the optical glass |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63116461A (en) * | 1986-11-05 | 1988-05-20 | Tomoegawa Paper Co Ltd | Hermetic sealing for solid-state image pickup device |
JPH0575934A (en) * | 1991-09-13 | 1993-03-26 | Toshiba Corp | Ccd image pickup device module |
JPH0677451A (en) * | 1992-06-23 | 1994-03-18 | Sony Corp | Solid-state image pickup device |
JPH11261861A (en) * | 1998-03-11 | 1999-09-24 | Olympus Optical Co Ltd | Image pickup unit for lens mirror frame |
JP2002094036A (en) * | 2000-09-18 | 2002-03-29 | Nissin Kohki Co Ltd | Ccd sensor and lid for ccd |
JP2004063786A (en) * | 2002-07-29 | 2004-02-26 | Fuji Photo Film Co Ltd | Solid-state image sensing device and its manufacturing method |
JP2004063782A (en) * | 2002-07-29 | 2004-02-26 | Fuji Photo Film Co Ltd | Solid-state image sensing device and its manufacturing method |
-
2006
- 2006-04-26 JP JP2006121755A patent/JP4686400B2/en not_active Expired - Fee Related
- 2006-07-21 US US11/490,232 patent/US7789575B2/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03151666A (en) | 1989-11-08 | 1991-06-27 | Nec Corp | Manufacture of solid image-pickup device |
US6266197B1 (en) * | 1999-12-08 | 2001-07-24 | Amkor Technology, Inc. | Molded window array for image sensor packages |
US6618196B2 (en) * | 2000-05-10 | 2003-09-09 | Kuraray Co., Ltd. | Rear-projection type screen |
US6407381B1 (en) * | 2000-07-05 | 2002-06-18 | Amkor Technology, Inc. | Wafer scale image sensor package |
JP2003031782A (en) | 2001-07-11 | 2003-01-31 | Fuji Film Microdevices Co Ltd | Solid state image device |
US20050275079A1 (en) * | 2002-03-22 | 2005-12-15 | Stark David H | Wafer-level hermetic micro-device packages |
US20040077121A1 (en) * | 2002-04-22 | 2004-04-22 | Hiroshi Maeda | Solid-state imaging device and method of manufacturing said solid-state imaging device |
US20040161871A1 (en) * | 2002-11-27 | 2004-08-19 | Seiko Epson Corporation | Semiconductor device, method of manufacturing the same, circuit substrate and electronic equipment |
US20040159920A1 (en) * | 2002-11-27 | 2004-08-19 | Seiko Epson Corporation | Semiconductor device, method of manufacturing the same, cover for semiconductor device, and electronic equipment |
US20050275741A1 (en) * | 2004-06-15 | 2005-12-15 | Fujitsu Limited | Image pickup device and production method thereof |
US20060108518A1 (en) * | 2004-11-15 | 2006-05-25 | Nsmc Holdings International Corp. Ltd. | Structure for calibrating packaging of electric micro-optic modules |
US20070018309A1 (en) * | 2005-07-21 | 2007-01-25 | Siliconware Precision Industries Co., Ltd. | Image sensor package, optical glass used therein, and processing method of the optical glass |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150053849A1 (en) * | 2013-08-22 | 2015-02-26 | Azurewave Technologies, Inc. | Sensor package structure and production apparatus for manufacturing the same |
US9287306B2 (en) * | 2013-08-22 | 2016-03-15 | Azurewave Technologies, Inc. | Production apparatus for manufacturing sensor package structure |
Also Published As
Publication number | Publication date |
---|---|
JP2007053337A (en) | 2007-03-01 |
JP4686400B2 (en) | 2011-05-25 |
US20070019101A1 (en) | 2007-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7789575B2 (en) | Optical device, optical device apparatus, camera module, and optical device manufacturing method | |
JP4204368B2 (en) | Optical device module and method of manufacturing optical device module | |
US7547955B2 (en) | Semiconductor imaging device and method for manufacturing the same | |
US9153614B2 (en) | Method and apparatus for lens alignment for optically sensitive devices and systems implementing same | |
US7083999B2 (en) | Optical device, method of manufacturing the same, optical module, circuit board and electronic instrument | |
KR100809682B1 (en) | Method of manufacturing optical device attached transparent cover and method of manufacturing optical device module using the same | |
US20110096213A1 (en) | Wafer-shaped optical apparatus and manufacturing method thereof, electronic element wafer module, sensor wafer module, electronic element module,sensor module, and electronic information device | |
US20090283311A1 (en) | Electronic element wafer module and method for manufacturing electronic element wafer module, electronic element module, and electronic information device | |
US8742323B2 (en) | Semiconductor module | |
KR100730726B1 (en) | Camera module | |
US20050253213A1 (en) | Covers for microelectronic imagers and methods for wafer-level packaging of microelectronics imagers | |
JP4618639B2 (en) | Manufacturing method of semiconductor device | |
US20080251872A1 (en) | Image sensor package, method of manufacturing the same, and image sensor module including the image sensor package | |
US9525002B2 (en) | Image sensor device with sensing surface cavity and related methods | |
JP2004296453A (en) | Solid-state imaging device, semiconductor wafer, optical device module, method of manufacturing the solid-state imaging device, and method of manufacturing the optical device module | |
US8017418B2 (en) | Semiconductor image sensor and method for fabricating the same | |
JP2005026426A (en) | Solid-state imaging device and its manufacturing method | |
KR102249873B1 (en) | Photographic assembly and packaging method thereof, lens module, electronic device | |
KR20050004009A (en) | Solid-state imaging device and method for manufacturing the same | |
JP2003204053A (en) | Imaging module and its manufacturing method and digital camera | |
WO2009130839A1 (en) | Optical device and electronic apparatus including the same | |
US8659019B2 (en) | Semiconductor device | |
US20040031973A1 (en) | Process for manufacturing encapsulated optical sensors, and an encapsulated optical sensor manufactured using this process | |
JP2005317745A (en) | Solid-state imaging apparatus and method for manufacturing the same | |
CN109103208B (en) | Packaging method and packaging structure of image sensing chip |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MINAMIO, MASANORI;HARADA, YUTAKA;FUKUDA, TOSHIYUKI;REEL/FRAME:018678/0253 Effective date: 20060620 |
|
AS | Assignment |
Owner name: PANASONIC CORPORATION, JAPAN Free format text: CHANGE OF NAME;ASSIGNOR:MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.;REEL/FRAME:021897/0671 Effective date: 20081001 Owner name: PANASONIC CORPORATION,JAPAN Free format text: CHANGE OF NAME;ASSIGNOR:MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.;REEL/FRAME:021897/0671 Effective date: 20081001 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: PANNOVA SEMIC, LLC, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PANASONIC CORPORATION;REEL/FRAME:036065/0273 Effective date: 20141226 |
|
FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552) Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |