US7397609B2 - Imaging apparatus - Google Patents

Imaging apparatus Download PDF

Info

Publication number
US7397609B2
US7397609B2 US11/410,970 US41097006A US7397609B2 US 7397609 B2 US7397609 B2 US 7397609B2 US 41097006 A US41097006 A US 41097006A US 7397609 B2 US7397609 B2 US 7397609B2
Authority
US
United States
Prior art keywords
zoom
view
angle
image
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US11/410,970
Other languages
English (en)
Other versions
US20070120988A1 (en
Inventor
Hideki Akiyama
Peter Labaziewicz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Apple Inc
Original Assignee
Eastman Kodak Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastman Kodak Co filed Critical Eastman Kodak Co
Assigned to EASTMAN KODAK COMPANY reassignment EASTMAN KODAK COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LABAZIEWICZ, PETER, AKIYAMA, HIDEKI
Publication of US20070120988A1 publication Critical patent/US20070120988A1/en
Application granted granted Critical
Publication of US7397609B2 publication Critical patent/US7397609B2/en
Assigned to CITICORP NORTH AMERICA, INC., AS AGENT reassignment CITICORP NORTH AMERICA, INC., AS AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: EASTMAN KODAK COMPANY, PAKON, INC.
Assigned to QUALEX INC., KODAK IMAGING NETWORK, INC., LASER-PACIFIC MEDIA CORPORATION, CREO MANUFACTURING AMERICA LLC, FAR EAST DEVELOPMENT LTD., EASTMAN KODAK INTERNATIONAL CAPITAL COMPANY, INC., KODAK (NEAR EAST), INC., PAKON, INC., NPEC INC., KODAK PORTUGUESA LIMITED, KODAK AMERICAS, LTD., KODAK AVIATION LEASING LLC, EASTMAN KODAK COMPANY, FPC INC., KODAK REALTY, INC., KODAK PHILIPPINES, LTD. reassignment QUALEX INC. PATENT RELEASE Assignors: CITICORP NORTH AMERICA, INC., WILMINGTON TRUST, NATIONAL ASSOCIATION
Assigned to APPLE INC. reassignment APPLE INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: EASTMAN KODAK COMPANY
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/262Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
    • H04N5/2628Alteration of picture size, shape, position or orientation, e.g. zooming, rotation, rolling, perspective, translation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/69Control of means for changing angle of the field of view, e.g. optical zoom objectives or electronic zooming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • H04N5/765Interface circuits between an apparatus for recording and another apparatus
    • H04N5/77Interface circuits between an apparatus for recording and another apparatus between a recording apparatus and a television camera
    • H04N5/772Interface circuits between an apparatus for recording and another apparatus between a recording apparatus and a television camera the recording apparatus and the television camera being placed in the same enclosure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • H04N5/765Interface circuits between an apparatus for recording and another apparatus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • H04N5/907Television signal recording using static stores, e.g. storage tubes or semiconductor memories
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/79Processing of colour television signals in connection with recording
    • H04N9/80Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback
    • H04N9/804Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback involving pulse code modulation of the colour picture signal components
    • H04N9/8042Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback involving pulse code modulation of the colour picture signal components involving data reduction
    • H04N9/8047Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback involving pulse code modulation of the colour picture signal components involving data reduction using transform coding

Definitions

  • the present invention generally relates to an imaging apparatus such as a digital camera, and more particularly to an imaging apparatus equipped with one or more optical systems for photographing a scene.
  • a photographed image is digitally processed to generate a digital image file, and the generated digital image file is stored in a memory in the digital camera.
  • the digital image file is next transferred to a computer to be displayed thereon, or is transferred to a printer to be printed.
  • Preferable specifications for a digital camera are to be small in size and large in optical zoom range.
  • a user prefers a large zoom range to a limited zoom range.
  • the digital camera increases in size.
  • an expensive camera such as an optical single-lens reflex camera
  • it is possible to use a plurality of interchangeable lenses such as a 28 mm-70 mm zoom lens and a 70 mm-210 mm zoom lens.
  • such interchangeable lenses are inconvenient for a user using a compact digital camera.
  • Some digital cameras use a single lens and a plurality of image sensors for generating a color image.
  • Light from a subject is split by a prism beam splitter into a plurality of colors to be used for a plurality of monochrome image sensors to image R, G and B color images.
  • a stereo film camera and a stereo digital camera have been also known. These cameras have two lenses having the same focal distance and being arranged separately in the horizontal direction, and form two images of scenes that slightly differ from each other, in two frames of a film or two imaging sensors. The two images constitute the so-called stereo pair.
  • the two lenses are designed to have the same magnifying power, and are used simultaneously in order to form, on the image sensors, the images for the left eye and the right eye for obtaining a stereo effect.
  • a digital camera in order to obtain a large zoom range without taking any time for interchanging lenses, it is suitable to mount a plurality of lenses having different focal distances to use them appropriately according to zoom positions.
  • a digital camera can have both an optical zoom function, and an electronic zoom function which can electronically zoom the digital image data.
  • the optical zoom function can provide a zoom position which a user has set, only the optical zoom is executed; in contrast, when the optical zoom function is insufficient, the electronic zoom is executed to a distance beyond the maximum focal distance of the optical zoom.
  • the optical zoom is driven stepwise or discretely, using the electronic zoom function to interpolate within the gaps between the zoom positions obtained by the optical zoom has been proposed.
  • Japanese Patent Laid-Open Publication No. Hei 10-42183 states that a camera equipped with a single lens and a single image sensor drives the electronic zoom and the optical zoom to determine an angle of view, and increases the ratio of the optical zoom while maintaining the angle of view.
  • Japanese Patent Laid-Open Publication No. 2003-283910 states that these viewfinders are suitably changed, and that the lens of the optical viewfinder system is driven in the state of being interlocked with the taking lens in order to ensure that the angle of view of the optical view finder coincides with that of the electronic viewfinder at the time of a change from the electronic viewfinder to the optical viewfinder.
  • Japanese Patent Laid-Open Publication No. Hei 8-18842 states that in the case where the optical power of a multifocal lens is changed discontinuously, the electric zoom power is controlled so as to interpolate to obtain optical power other than that which is changed by the multifocal lens, and thereby zoom power is continuously changed in a manner similar to that in the case where a zoom lens is used.
  • zoom setting means (a zoom button) for setting a zoom position is mounted on the camera, and a user can take a photograph in a desired zoom position by setting the zoom setting means to a wide setting or a telephoto setting.
  • zoom setting means mounted on the camera to “telephoto,” a digital image obtained by the fixed focal distance lens is electronically zoomed in.
  • the electronic zoom When the electronic zoom reaches the telescopic end of the electronic zoom, the electronic zoom is changed to the zoom lens for subsequent optical zooming. Moreover, when the user operates the zoom setting means and sets it to “wide,” optical zoom-out of the digital image obtained by the zoom lens is performed. When the optical zoom down has reached the minimum focal distance of the zoom lens, the optical zoom-out is changed to the electronic zoom of the fixed focal distance lens, and subsequently the zoom-out of the fixed focal distance lens is performed.
  • An overlapping range can also be formed by extending the electronic zoom range of the fixed focal distance lens to the optical zoom range of the zoom lens, and either the electronic zoom or the optical zoom can be selected in the overlapping range.
  • the electronic zoom is to perform the interpolation processing in order to extend a digital image obtained with an imaging device such as a CCD device or a CMOS device, the electronic zoom has a problem of deterioration in the image quality of the digital image. For this reason, using the optical zoom in the overlapping range is generally preferable.
  • the zoom power obtained by the optical zoom is discretely located when the optical zoom is driven discontinuously; i.e. stepwise, interpolation has to be performed by the electronic zoom between the discrete zoom positions of the optical zoom, which causes deterioration in image quality.
  • An object of the present invention is to provide an image apparatus capable of photographing at an angle of view desired by a user even when the optical zoom is driven stepwise and the zoom positions of the optical zoom are discrete, and capable of suppressing deterioration in image quality of a photographed image.
  • an imaging apparatus comprising:
  • an imaging optical system that performs a step drive of an angle of view of a zoom
  • an angle of view specifying unit for specifying the angle of view of the zoom
  • control unit for performing the step drive of an optical zoom of the imaging optical system in a direction of the specified angle of view when the picture taking command is performed to record a subject image using the imaging optical system at a time point of passing the specified angle of view.
  • an imaging apparatus including:
  • a first imaging optical system including an electronic zoom range which constitutes at least a part of a zoom range
  • a second imaging optical system being a step-drive-type optical zoom, wherein an angle of view range of the zoom at least partially overlaps an angle of view range of the zoom of the first imaging optical system;
  • an angle of view specifying unit for specifying the angle of view of the zoom
  • control unit for performing, in a case where the angle of view specified by the angle of view specifying unit is located within the overlapping range, a step drive of the second imaging optical system in the specified angle of view direction to record a subject image at a time point of passing a set zoom position where the picture taking command is performed.
  • an imaging apparatus comprising:
  • a first imaging optical system and a second imaging optical system each performing a step drive of an angle of view of a zoom, wherein angle of view ranges of the zooms mutually overlap at least partially;
  • an angle of view specifying unit for specifying the angle of view of the zoom
  • control unit for performing, in a case where the angle of view specified by the angle of view specifying unit is located within the overlapping range, the step drive of either of the first imaging optical system and the second imaging optical system in a direction of the specified angle of view to record a subject image at a time point of passing the specified angle of view where the picture taking command is performed.
  • an image of an angle of view desired by a user can be obtained by performing photography at a time point when the imaging optical system passes the specified angle of view.
  • FIG. 1 is a block diagram showing the configuration of a digital camera
  • FIG. 2A is a front perspective view of the digital camera
  • FIG. 2B is a rear perspective view of the digital camera
  • FIG. 3 is a front view of the digital camera
  • FIG. 4 is the plan view of the digital camera
  • FIG. 5 is a side view of the digital camera
  • FIG. 6A is a plan view showing a bent optical system including a fixed focal distance lens
  • FIG. 6B is a front view showing the bent optical system including the fixed focal distance lens
  • FIG. 7 is a plan view showing the bent optical system including a zoom lens
  • FIG. 8 is a diagram showing a relation between the electronic zoom range of the fixed focal distance lens and the optical zoom range of the zoom lens in an embodiment
  • FIG. 9A is a diagram showing a relation between the electronic zoom, the optical zoom, and a user's setting zoom position
  • FIG. 9B is a diagram showing the state in which the electronic zoom position is set at the user's setting zoom position in FIG. 9A
  • FIG. 9C is a diagram showing a movement state of the optical zoom after the electronic zoom
  • FIG. 10 is a diagram showing photographing timing in the optical zoom
  • FIG. 11 is a diagram showing the photographing timing at the time of auto zoom bracketing photography
  • FIG. 12 is a diagram showing a relation between the electronic zoom and the optical zoom of a digital camera including three imaging optical systems.
  • FIG. 13 is a flowchart showing the processing of the embodiment.
  • FIG. 1 shows a block diagram showing the configuration of a digital camera 10 A according to the present embodiment.
  • the digital camera 10 A is a portable battery-driven camera.
  • the digital camera 10 A generates the digital image of a still image to be stored in a removable memory card 54 which can be detached and attached freely.
  • the digital camera 10 A may generate the digital image of a moving image in addition to the still image, or as an alternative to the still image.
  • the digital image of the moving image is similarly stored in the memory card 54 .
  • the digital camera 10 A includes an imaging assembly 1 , and the imaging assembly 1 includes a fixed focal distance lens 2 imaging an image of a scene on a first image sensor 12 , and a zoom lens 3 imaging an image of the scene on a second image sensor 14 .
  • the imaging assembly 1 provides a first image output 12 e from the first image sensor 12 and a second image output 14 e from the second image sensor 14 .
  • the image sensors 12 and 14 are identical in aspect ratio and pixel size.
  • the lens 2 is an ultrawide-angle lens of 22 mm focal length for a 35 mm photography equivalent
  • the zoom lens 3 is a zoom lens of 40 mm-120 mm focal length for the 35 mm photography equivalent.
  • the focal distance of the fixed focal distance lens 2 provides an ultrawide field of 22 mm, and the fixed focal distance lens 2 is focused on a subject located at a distance ranging from 4 feet to infinity. Consequently, the fixed focal distance lens 2 does not require any focusing.
  • the fixed focal distance lens 2 includes an iris and a shutter assembly which control the exposure of the image sensor 12 .
  • the zoom lens 3 is driven by a zoom and focus motor 5 a , and includes an iris and a shutter assembly which control the exposure of the image sensor 14 .
  • Each of the image sensors 12 and 14 is a single-chip color mega pixel CCD sensor, and uses a known Bayer color filter for photographing a color image.
  • the image sensors 12 and 14 have a 4:3 image aspect ratio, 3.1 effective mega pixels, and 2048 pixels ⁇ 1536 pixels.
  • a control processor and timing generator 40 supplies a signal to a clock driver 13 to control the first image sensor 12 , and supplies a signal to a clock driver 15 to control the second image sensor 14 .
  • the control processor and timing generator 40 also controls the zoom and focus motor 5 a and a flash 48 for illuminating a scene.
  • the control processor and timing generator 40 receives a signal from an auto-focus and automatic exposure detector 46 .
  • the image sensor 14 can be used in place of the auto-focus and automatic exposure detector 46 for exposure detection and TTL automatic focusing.
  • User controls 42 are used for operation control of the digital camera 10 A.
  • the first image output 12 e from the first image sensor 12 is amplified by a first analog signal processor (ASP 1 ) 22 , and is supplied to a first input of an analog multiplexer (MUX) 34 .
  • the second image output 14 e from the second image sensor 14 is amplified by a second analog signal processor (ASP 2 ) 24 , and is supplied to a second input of the analog MUX 34 .
  • the function of the analog MUX 34 is selecting either of the first image output 12 e from the first image sensor 12 and the second image output 14 e from the second image sensor 14 , and thereby supplies the selected sensor output from the imaging assembly 1 to the subsequent stage.
  • the control processor and timing generator 40 controls the analog MUX 34 in order to supply the output of either the first analog signal processor (ASP 1 ) 22 or the second analog signal processor (ASP 2 ) 24 to an analog digital (A/D) conversion circuit 36 .
  • the digital data supplied from the A/D converter 36 is stored in a DRAM buffer memory 38 , and is further processed by an image processor 50 .
  • the processing executed by the image processor 50 is controlled by firmware stored in a firmware memory 58 composed of a flash EPROM memory.
  • the processor 50 processes an input digital image file, and the input digital image file is stored by a RAM memory 56 at a processing stage.
  • a configuration such that two A/D conversion circuits are connected to the outputs of the first analog signal processor (ASP 1 ) 22 and the second analog signal processor (ASP 2 ) 24 , respectively, may be adopted, and in such a case the analog MUX 34 becomes unnecessary. Instead, a digital multiplexer is used for selecting either of the outputs of the A/D conversion circuits.
  • the digital image file processed by the image processor 50 is supplied to a memory card interface 52 , and the interface 52 stores the digital image file to the removable memory card 54 .
  • the memory card 54 is a kind of a digital image storage medium, and can be used in different physical formats.
  • the memory card 54 can be applied to known formats such as Compact Flash, Smart Media, a memory stick, and MMC, SD, and XD memory card formats.
  • Other formats, such as a magnetic hard drive, a magnetic tape, and an optical disc, can also be used.
  • the digital camera 10 A may use a built-in nonvolatile memory such as a Flash EPROM. In such a case, the memory card interface 52 and the memory card 54 are unnecessary.
  • the image processor 50 executes various housekeeping and image processing functions, including color interpolation by color correction and tone correction in order to generate sRGB image data.
  • JPEG compression of the sRGB image data is next performed, and the compressed sRGB image data are stored in the memory card 54 as JPEG image data.
  • the sRGB image data are also supplied to a host PC 66 via a host interface 62 of SCSI connection, USB connection, Fire Wire connection, or the like.
  • a JPEG file uses the so-called “Exif” image format.
  • the image processor 50 is typically a programmable image processor, a hard-wired custom integrated circuit processor, a general purpose microprocessor, or a combination of the hard-wired custom IC and a programmable processor.
  • the image processor 50 also generates a low-resolution thumbnail image. After an image is photographed, a thumbnail image is displayed on a color LCD 70 . A graphical user interface displayed on the color LCD 70 is controlled with the user controls 42 .
  • the digital camera 10 A may be included as part of a camera telephone (camera phone).
  • the image processor 50 is connected to a cellular processor 90 , and the cellular processor 90 uses a cellular modem 92 to transmit a digital image to a cellular network via an antenna 94 , by means of wireless transmission.
  • the imaging assembly 1 may be an integrated assembly including the lenses 2 and 3 , the image sensors 12 and 14 , and the zoom and focus motor 5 a .
  • the clock drivers 13 and 15 , the analog signal processors 22 and 24 , the analog MUX 34 , and the A/D converter 36 may be included as a portion of the integrated assembly.
  • FIGS. 2A and 2B Perspective views of the digital camera 10 A are shown in FIGS. 2A and 2B .
  • FIG. 2A is a view showing the digital camera 10 A as seen from the front thereof, and shows the fixed focal distance lens 2 , the zoom lens 3 , and the flash 48 .
  • the fixed focal distance lens 2 is an ultrawide-angle lens, and has a focal distance of 22 mm and a maximum iris of f/2.
  • the zoom lens 3 is an ultrathin lens; i.e., a prism lens, and is a zoom lens of 40 mm-120 mm.
  • the prism lens has a lens configuration as shown in FIGS. 6A and 6B , and includes prisms 8 a and 8 b for bent optical paths. Thereby, very thin optical configurations are produced.
  • FIG. 6A and 6B includes prisms 8 a and 8 b for bent optical paths.
  • the 2B is a view showing the digital camera 10 A as seen from the rear thereof, and shows the color LCD 70 and the plurality of user controls 42 .
  • the user controls 42 include a shutter button 42 a enabling a photographing sequence, a panorama button 42 b enabling a panorama mode, a zoom button 42 c enabling zoom setting, and a multi-position selector 42 d for performing an operation through an image displayed on the color LCD 70 and menu selection.
  • the aspect ratio of an image obtained by the fixed focal distance lens 2 and the image sensor 12 may differ from the aspect ratio of an image obtained by the zoom lens 3 and the image sensor 14 .
  • the image sensor 12 may be set so as to have an aspect ratio of 16:9 with 2730 pixels ⁇ 1530 pixels and 4.2 effective mega pixels.
  • the LCD 70 can be set to have a wide aspect ratio (for example, 16:9).
  • the aspect ratio of the image sensor 12 corresponds to a panorama image (panorama image of 16:9), and the aspect ratio of the image sensor 14 corresponds to a typical television aspect ratio image (image of 4:3).
  • the user controls 42 input a user command into the control processor and timing generator 40 , and change the aspect ratio supplied from the image sensor 12 and stored, in order to obtain a variable panorama effect of narrowing the aspect ratio from that of the fixed focal distance lens (wide-angle lens) 2 to the aspect ratio of 4:3 of the zoom lens 3 .
  • the change is attained by cutting out the image data stored in the DRAM buffer memory 38 , and only the midsection of the image data from the image sensor 12 is processed by the image processor 50 to be stored in the memory card 54 .
  • the wide control portion of the zoom button 42 c is pressed, the vertical direction margin of an image is continuously adjusted to a wider aspect ratio from the normal aspect ratio of 16:9.
  • the upper end and the lower end of the image in the DRAM buffer memory 38 are cut off by the image processor 50 , and wider aspect ratios such as 17:9, 18:9 (2:1), and 19:9 are generated.
  • the horizontal direction margin of an image is adjusted to a narrower aspect ratio from the aspect ratio of 16:9.
  • the left end and the right end of the image in the DRAM buffer memory 38 are cut off by the image processor 50 , and narrower aspect ratios such as 15:9, 14:9, and 3:2 are generated.
  • the variable panorama effect is digitally acquired on the basis of the image data from the first image sensor 12 .
  • FIGS. 3 , 4 , and 5 show the internal arrangement of the digital camera 10 A.
  • FIG. 3 is the front view of the digital camera 10 A, and shows how a fixed focal distance lens subassembly 1 a and a zoom lens subassembly 1 b are located on one side of the lenses 2 and 3 and are located under the electronic flash 48 .
  • a battery unit 204 is located on the other side of the lenses 2 and 3 .
  • FIG. 4 is a plan, cross-sectional view of the digital camera 10 A with respect to a line IV-IV of FIG. 3 , and further shows the memory card 54 and the color LCD 70 .
  • FIG. 5 is a side, cross-sectional view of the digital camera 10 A with respect to a line V-V of FIG.
  • FIGS. 6A and 6B show an optical relay subassembly 1 a supporting the fixed focal distance lens 2 in relation to the image sensor 12 along the bent optical path.
  • FIG. 6A shows a lens barrel 6 a supporting an object lens of the fixed focal distance lens 2 , the image sensor 12 , and relay lens parts 7 a on an optical path bent by a mirror prism 8 a .
  • the lens barrel 6 a supports an iris shutter assembly 9 a on the optical path.
  • FIG. 6B is a view taken along a line VIB-VIB in FIG. 6A , showing the external appearance of the optical subassembly 1 a as seen from the front of the camera.
  • FIG. 7 shows an optical relay subassembly 1 b supporting the zoom lens 3 in relation to the image sensor 14 along a bent optical path.
  • the subassembly 1 b includes the object lens of the zoom lens 3 , the second image sensor 14 , and a fixture 6 b supporting movable relay (zoom) lens parts 7 b on the optical path bent by a mirror prism 8 b .
  • the fixture 6 b supports an iris shutter assembly 9 b on the optical path.
  • the movements of the lens parts 7 b are controlled by the zoom and focus motor 5 a.
  • the zoom lens 3 is set at a default position.
  • the default position is suitably the wide end; i.e., the minimum focal distance II ow of the zoom lens 3 .
  • the control processor and timing generator 40 controls the analog MUX 34 to use the analog signal processor (ASP 1 ) 22 for supplying the output of the first image sensor 12 to the A/D converter 36 .
  • ASP 1 analog signal processor
  • a preview image from the image sensor 12 is displayed on the LCD 70 .
  • the electronic zoom of the fixed focal distance lens (wide angle lens) 2 is executed.
  • the shutter button 42 a is pushed, a still image is photographed by use of the output of the first sensor 12 , and the photographed image is stored in the memory card 54 .
  • the control processor and timing generator 40 controls the analog multiplexer 34 to use the second analog signal processor (ASP 2 ) 24 for supplying the output of the second image sensor 14 to the A/D converter 36 . Then, the preview image from the second image sensor 14 is displayed on the LCD 70 .
  • the zoom button is operated at this point, the position of the zoom lens is adjusted, and the zoom effect from the wide end of the zoom lens 3 to the telephoto end thereof is acquired.
  • the shutter button is pushed, a still image is photographed by use of the output of the second image sensor 14 .
  • an electronic zoom range 700 of the fixed focal distance lens 2 and an optical zoom range 800 of the zoom lens 3 are set so that they may partially overlap.
  • the electronic zoom range 700 of the fixed focal distance lens 2 and the optical zoom range 800 of the zoom lens 3 of the present embodiment are shown in FIG. 8 .
  • the electronic zoom range 700 of the fixed focal distance lens 2 does not only simply fill up the focal distance gap between the focal distances of the fixed focal distance lens 2 and the zoom lens 3 , but also partially overlaps the zoom range 800 of the zoom lens 3 to form an overlapping range 750 .
  • I DW denotes the wide end of the electronic zoom range 700 of the fixed focal distance lens 2
  • I DT-1 the telephoto end thereof
  • II OW-1 the wide end of the optical zoom range 800 of the zoom lens 3
  • II OT the telephoto end thereof
  • I DW is located at the wider side in relation to II OW-1
  • I DT-1 is located at the wider side in relation II OT and more towards the telephoto side than II OW-1 .
  • the change can be performed at an arbitrary position within the overlapping range 750 .
  • the change can be performed at the telephoto end I DT-1 of the electronic zoom range 700 .
  • the change can be performed at an arbitrary position within the overlapping range 750 .
  • a change can be performed at the wide end II OW-1 of the optical zoom range 800 .
  • the zoom and focus motor 5 a drives the zoom lens 3 stepwise, or discretely. Consequently, the optical zoom range 800 of the zoom lens 3 is also not continuous, but stepwise or discrete. This situation is satisfactory when the zoom position set by the user operating the zoom button 42 c coincides with a discrete optical zoom position of the zoom lens 3 .
  • the zoom position set by the user does not coincide with any discrete optical zoom positions of the zoom lens 3 ; namely, when the zoom button 42 c can set a zoom position (angle of view) continuously or at a width finer than the step width of the optical zoom of a zoom lens 3 and the zoom position (angle of view) which the user set exists between the discrete optical zoom positions
  • the compensation of zoom can be performed by the electronic zoom of the fixed focal distance lens 2 .
  • the image obtained by the electronic zoom causes deterioration in image quality. Accordingly, in the present embodiment, when the zoom position which the user set is located within the overlapping range 750 and it exists between discrete optical zooms, photographing is performed by using both the fixed focal distance lens 2 and the zoom lens 3 .
  • photographing is performed by executing the electronic zoom.
  • photographing is performed at the step nearest the set zoom position among the zoom positions of the optical zoom.
  • a photograph may be taken at a time point when the optical zoom passes the specified zoom position, as described below.
  • FIGS. 9A , 9 B, and 9 C show the electronic zoom of the fixed focal distance lens 2 and the optical zoom of the zoom lens 3 when the user sets the zoom button 42 c on the “wide” side.
  • the focal distance of the fixed focal distance lens 2 and the focal distance of a zoom lens 3 are schematically shown in these figures.
  • the overlapping range 750 of the electronic zoom range 700 and the optical zoom range 800 is set to 40 mm-80 mm, for example.
  • FIG. 9A depicts a case where the user operates the zoom button 42 c to the “wide” side and sets a zoom position at a focal distance of about 45 mm.
  • reference numeral 900 indicates the zoom position set by the user.
  • the zoom lens 3 is supposed to be set at a zoom position of a focal distance of 80 mm.
  • the control processor and timing generator 40 selects the output of the first image sensor 12 , and supplies it to the image processor 50 .
  • the image processor 50 performs the zoom of the digital image from the first image sensor 12 electronically, and displays it on the LCD 70 .
  • FIG. 9B shows a case where the electronic zoom is performed.
  • reference numeral 910 indicates the zoom position of the electronic zoom. This electronic zoom position coincides with the zoom position set by the user. Because an image having been received as a result of electronic zoom of the digital image obtained by the first image sensor 12 is displayed on the LCD 70 , the angle of view of the image is the one which the user intended. However, the image quality thereof is inferior.
  • the control processor and timing generator 40 obtains an optical zoom image in place of the electronic zoom image, or in combination with the electronic zoom image, and stores the obtained images in the memory card 54 .
  • FIG. 9C shows the drive state of the zoom lens 3 after the electronic zoom is performed.
  • the zoom and focus motor 5 a drives the zoom lens 3 towards the zoom position 900 set by the user in accordance with a command from the control processor and timing generator 40 .
  • the zoom lens 3 is driven discretely.
  • reference numeral 4 indicates discrete zoom positions of the zoom lens 3 .
  • the zoom lens 3 cannot be stopped at the user's setting zoom position 900 , it passes through the user's setting position 900 .
  • the control processor and timing generator 40 supplies the digital image obtained by the second image sensor 14 to the image processor 50 at the point of time when the zoom lens 3 passes the user's setting zoom position 900 , and the image processor 50 processes the digital image to store the digital image in the memory card 54 . Consequently, although an electronic zoom image is displayed on the LCD 70 , the image which is photographed and is stored in the memory card 54 is an optical zoom image only, or the electronic zoom image and the optical zoom image.
  • FIG. 13 shows a flowchart of the above-mentioned processing.
  • the control processor and timing generator 40 and the image processor 50 make the electronic zoom of the fixed focal distance lens 2 operate (S 101 ), and display the image obtained, by expanding the image of the first image sensor 12 electronically on the LCD 70 (S 102 ).
  • the user can confirm the desired angle of view on the LCD 70 .
  • the control processor and timing generator 40 drives the zoom and focus motor 5 a to control the optical zoom of the zoom lens 3 to be located at a step position nearest the zoom position (angle of view) of the electronic zoom among the step positions of the zoom lens 3 (S 103 ).
  • the control processor and timing generator 40 and the image processor 50 judges whether or not the shutter button has been operated, and stands by in this state (S 104 ).
  • the control processor and timing generator 40 moves the optical zoom of the zoom lens 3 from the standby position to the side of the angle of view of the electronic zoom of the fixed focal distance lens 2 by only one step (S 105 ).
  • the control processor and timing generator 40 stores the image of the optical zoom; i.e., the image obtained by the second image sensor 14 , in the memory card 54 (S 107 ).
  • FIG. 10 shows the optical zoom position near the user's setting zoom position 900 (namely, an electronic zoom position 910 ).
  • the zoom lens 3 can stop at discrete zoom positions 4 a and 4 b , the zoom lens 3 cannot stop at the user's setting zoom position 900 between the discrete zoom positions 4 a and 4 b , but passes through the user's setting zoom position 900 .
  • the zoom and focus motor 5 a maintains unchanged the focus at the time point when the zoom lens 3 has reached the zoom position 4 a just before the user's setting zoom position 900 , and drives the zoom lens 3 to the zoom position 4 b just behind the user's setting zoom position 900 .
  • the control processor and timing generator 40 stores in the memory card 54 the digital image from the second image sensor 14 at the time point when the zoom lens 3 has passed the user's setting zoom position (the photographing timing ts shown in the figure).
  • the zoom and focus motor 5 a stops the zoom lens 3 at the zoom position 4 b just behind the user's setting zoom position 900 .
  • the zoom button 42 c to the “telephoto” side
  • the zoom and focus motor 5 a maintains unchanged the focus at the zoom position 4 b just before the user's setting zoom position 900
  • the zoom lens 3 takes a photograph at the user's setting zoom position 900 .
  • the zoom and focus motor 5 a stops the zoom lens 3 at the zoom position 4 a just behind the user's setting zoom position 900 .
  • FIG. 11 shows the optical zoom positions near the user's setting zoom position 900 in another embodiment.
  • the time point when the zoom lens 3 has passed the user's setting zoom position 900 is set as the photographing timing ts.
  • FIG. 11 shows the case where auto bracketing photography is performed.
  • auto bracketing photography a subject is continuously photographed at an exposure corrected to be under the exposure considered to be proper and at an exposure corrected to be over to the exposure considered to be proper.
  • a user can select the image of favorite exposure from the images photographed at the different exposures.
  • FIG. 11 a plurality of optical zoom images which do not differ in exposure but differ in zoom position (angle of view) is photographed.
  • the zoom and focus motor 5 a discretely drives the zoom lens 3 toward the user's setting zoom position 900 .
  • the zoom and focus motor 5 a stops the zoom lens 3 at the time point when the zoom lens 3 reaches the zoom position 4 a just before the user's setting zoom position 900 , and first stores an electronic zoom image in a memory. Then, the zoom lens 3 photographs a subject. Subsequently, the zoom and focus motor 5 a again drives the zoom lens 3 , and the zoom lens 3 photographs the subject when the zoom lens 3 passes the user's setting zoom position 900 .
  • the zoom and focus motor 5 a stops the zoom lens 3 , and the zoom lens 3 photographs the subject (three times of photographing timing ts are shown in the figure).
  • the zoom and focus motor 5 a stops the zoom lens 3 , and the zoom lens 3 photographs the subject (three times of photographing timing ts are shown in the figure).
  • the zoom and focus motor 5 a stops the zoom lens 3 , and the zoom lens 3 photographs the subject (three times of photographing timing ts are shown in the figure).
  • three images of different zoom positions are obtained, and the obtained images are stored in the memory card 54 (auto zoom bracketing photography).
  • an electronic zoom image is displayed on the LCD 70 .
  • the images which are shifted from each other in time can be taken in, and the images can be compared and selected.
  • FIG. 11 depicts three timings for obtaining images; i.e., the user's setting zoom position, the discrete zoom position 4 a just before the user's setting zoom position 900 , and the discrete zoom position 4 b just behind the user's setting zoom position 900 , the user may suitably set an arbitrary photographing number in the ordinal auto bracketing photography.
  • FIG. 12 shows optical zoom ranges 800 - 2 , 800 - 3 of each zoom lens and electronic zoom ranges 700 - 1 , 700 - 2 , and 700 - 3 in the case where one fixed focal distance lens and two zoom lenses are mounted on the digital camera 10 A.
  • the digital camera shown in FIG. 12 is that obtained by further adding a third zoom lens to the digital camera 10 A equipped with the two imaging optical systems shown in FIG. 1 in order to equip the digital camera 10 A with three imaging optical systems.
  • the first lens is a fixed focal distance lens of 20 mm, and has the first electronic zoom range 700 - 1 .
  • the second lens is a zoom lens of 40 mm-80 mm, and has the second optical zoom range 800 - 2 and the second electronic zoom range 700 - 2 .
  • the third lens is a zoom lens of 160 mm-320 mm, and has the third optical zoom range 800 - 3 and the third electronic zoom range 700 - 3 .
  • the relation between the first electronic zoom range 700 - 1 of the first lens and the second optical zoom range of the second lens is the same as that, mentioned above, between the electronic zoom range 700 of the fixed focal distance lens 2 and the optical zoom range 800 of the zoom lens 3 .
  • the telephoto end of the second electronic zoom range 700 - 2 of the second lens is towards the telephoto side in relation to the wide end of the third optical zoom range 800 - 3 of the third lens, and is toward the wide side in relation to the telephoto end of the third optical zoom range 800 - 3 .
  • the wide end of the second electronic zoom range 700 - 2 of the second lens is located toward the wide side in relation to the wide end of the third optical zoom range 800 - 3 of the third lens.
  • the present embodiment has exemplified a digital camera which has two imaging optical systems or three imaging optical systems
  • the present invention may be applied to a digital camera which has a single imaging optical system.
  • a digital camera is equipped with only a single zoom lens, and has an electronic zoom function and an optical zoom function.
  • the optical zoom is discretely driven by the focus and zoom motor.
  • the zoom position set by the user is located between the discrete zoom positions, and the electronic zoom is first set as the user's setting zoom position to be displayed on the LCD 70 . After that, the optical zoom is driven. Then, the focus at the discrete zoom position just before the user's setting zoom position is maintained.
  • the optical zoom passes the user's setting zoom position, a photograph is taken.
  • the image obtained by the photographing is stored in the memory card 54 .
  • the optical zoom position of the zoom lens stops at the discrete zoom position just behind the user's setting zoom position.
  • the present invention may be applied to a digital camera having only a single zoom lens and having only the optical zoom function. Without performing the electronic zoom, the image obtained by the optical zoom is displayed in an optical viewfinder, and photographing is performed at the time when the optical zoom passes the user's setting zoom position.
  • the electronic zoom image is displayed on the LCD 70 and the optical zoom image is acquired with the display being maintained to be stored in the memory card 54 , the following modes are possible.
  • the photograph may be taken twice in total, at the user's setting zoom position 900 and the discrete zoom position 4 a , or at the user's setting zoom position 900 and the discrete zoom position 4 b .
  • an image in which the zoom position has been shifted by the set number of photos to the wide side or to the telephoto side including the user's setting zoom position 900 may be obtained.
  • the fixed focal distance lens 2 is used, both of the two optical systems may be used as the zoom lenses.
  • the present embodiment is configured so that the user operates the zoom button 42 c to specify the angle of view and operates the shutter button 42 a to input a photography command, there may be adopted a configuration in which the angle of view and the shutter are controlled in accordance with the signals from another control unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Structure And Mechanism Of Cameras (AREA)
US11/410,970 2005-11-29 2006-04-25 Imaging apparatus Active US7397609B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-344624 2005-11-29
JP2005344624A JP4624245B2 (ja) 2005-11-29 2005-11-29 撮像装置

Publications (2)

Publication Number Publication Date
US20070120988A1 US20070120988A1 (en) 2007-05-31
US7397609B2 true US7397609B2 (en) 2008-07-08

Family

ID=38087036

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/410,970 Active US7397609B2 (en) 2005-11-29 2006-04-25 Imaging apparatus

Country Status (2)

Country Link
US (1) US7397609B2 (da)
JP (1) JP4624245B2 (da)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090213239A1 (en) * 2008-02-05 2009-08-27 Akihiro Yoshida Imaging device and method for its image processing
US20140211063A1 (en) * 2011-09-28 2014-07-31 Fujifilm Corporation Image capturing apparatus

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI318071B (en) * 2006-08-28 2009-12-01 Avision Inc Image-acquiring device
US8432465B2 (en) * 2006-09-25 2013-04-30 Siemens Medical Solutions Usa, Inc. System and method for establishing zoom settings for display of an anatomical image
JP4767838B2 (ja) * 2006-12-28 2011-09-07 三星電子株式会社 撮像装置および撮像方法
JP5043635B2 (ja) * 2007-12-28 2012-10-10 キヤノン株式会社 撮像装置
KR101610705B1 (ko) * 2008-12-10 2016-04-11 삼성전자주식회사 카메라를 구비한 단말기 및 그 단말기에서 이미지 처리 방법
CN105681633B (zh) * 2009-03-19 2019-01-18 数字光学公司 双传感器照相机及其方法
US8553106B2 (en) * 2009-05-04 2013-10-08 Digitaloptics Corporation Dual lens digital zoom
JP5950492B2 (ja) * 2010-08-05 2016-07-13 キヤノン株式会社 制御装置および制御方法
WO2013099169A1 (ja) 2011-12-27 2013-07-04 パナソニック株式会社 ステレオ撮影装置
JP2013143753A (ja) 2012-01-12 2013-07-22 Olympus Corp 撮像装置
WO2014190065A1 (en) * 2013-05-21 2014-11-27 Sony Corporation Post production replication of optical processing for digital cinema cameras using metadata
TWI554103B (zh) * 2014-11-13 2016-10-11 聚晶半導體股份有限公司 影像擷取裝置及其數位變焦方法
US10142533B2 (en) * 2015-03-27 2018-11-27 Intel Corporation Technologies for controlling user access to image sensors of a camera device
CN107852453B (zh) 2015-07-10 2020-06-23 深圳市大疆创新科技有限公司 具有分光器的双镜头系统
CN107219710B (zh) * 2016-03-21 2020-12-08 深圳富泰宏精密工业有限公司 多镜头系统及具有该多镜头系统的便携式电子装置
CN107766784A (zh) * 2016-08-20 2018-03-06 宋坤骏 一种新型视频人数统计算法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0818842A (ja) 1994-06-30 1996-01-19 Sony Corp ビデオカメラ
JPH104218A (ja) 1996-06-14 1998-01-06 Isuzu Motors Ltd ポーラス構造熱電素子及びその製造方法
JP2003283910A (ja) 2002-03-27 2003-10-03 Minolta Co Ltd ディジタルカメラ
US6731339B2 (en) * 1996-06-19 2004-05-04 Canon Kabushiki Kaisha Lens control device with operator and signal control
US6757013B2 (en) * 1996-07-22 2004-06-29 Canon Kabushiki Kaisha Image pickup apparatus with electronic and optical zoom functions
US6947074B2 (en) * 2001-04-13 2005-09-20 Olympus Corporation Image pickup apparatus
US7110185B2 (en) * 2004-08-31 2006-09-19 Pentax Corporation Image pickup apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05191704A (ja) * 1992-01-16 1993-07-30 Olympus Optical Co Ltd 電子的撮像装置
JP3750500B2 (ja) * 2000-07-18 2006-03-01 カシオ計算機株式会社 電子カメラ及び撮影方法
JP2004153538A (ja) * 2002-10-30 2004-05-27 Fuji Photo Film Co Ltd ズーム機能付きデジタルカメラ
JP4867136B2 (ja) * 2004-04-16 2012-02-01 カシオ計算機株式会社 撮影装置及びそのプログラム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0818842A (ja) 1994-06-30 1996-01-19 Sony Corp ビデオカメラ
JPH104218A (ja) 1996-06-14 1998-01-06 Isuzu Motors Ltd ポーラス構造熱電素子及びその製造方法
US6731339B2 (en) * 1996-06-19 2004-05-04 Canon Kabushiki Kaisha Lens control device with operator and signal control
US6757013B2 (en) * 1996-07-22 2004-06-29 Canon Kabushiki Kaisha Image pickup apparatus with electronic and optical zoom functions
US6947074B2 (en) * 2001-04-13 2005-09-20 Olympus Corporation Image pickup apparatus
JP2003283910A (ja) 2002-03-27 2003-10-03 Minolta Co Ltd ディジタルカメラ
US7110185B2 (en) * 2004-08-31 2006-09-19 Pentax Corporation Image pickup apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090213239A1 (en) * 2008-02-05 2009-08-27 Akihiro Yoshida Imaging device and method for its image processing
US8111321B2 (en) * 2008-02-05 2012-02-07 Ricoh Company, Ltd. Imaging device and method for its image processing, with face region and focus degree information
US20140211063A1 (en) * 2011-09-28 2014-07-31 Fujifilm Corporation Image capturing apparatus
US8964097B2 (en) * 2011-09-28 2015-02-24 Fujifilm Corporation Image capturing apparatus capable of improving the durability of a viewfinder equipped with a variable magnification lens

Also Published As

Publication number Publication date
JP4624245B2 (ja) 2011-02-02
US20070120988A1 (en) 2007-05-31
JP2007150903A (ja) 2007-06-14

Similar Documents

Publication Publication Date Title
US7397609B2 (en) Imaging apparatus
US7509041B2 (en) Image-capturing device having multiple optical systems
US7738016B2 (en) Digital camera with dual optical systems
JP4405069B2 (ja) 画像解像度最大化方法
JP3480446B2 (ja) デジタルカメラ
JP5004726B2 (ja) 撮像装置、レンズユニットおよび制御方法
JP4644883B2 (ja) 撮像装置
US7213215B2 (en) Apparatus and method for controlling position of image when the image enlarged or reduced
US8670064B2 (en) Image capturing apparatus and control method therefor
JP4158304B2 (ja) 画像再生方法及び装置並びに電子カメラ
JP2007221386A (ja) 撮像装置
JP4090276B2 (ja) デジタルカメラ
JP2007081473A (ja) 複数光学系を有する撮像装置
JP2012227839A (ja) 撮像装置
JP3948873B2 (ja) デジタルカメラ、並びに、光学ズーム効果およびデジタルズーム効果を円滑にする方法
US8427556B2 (en) Image pickup apparatus with controlling of setting of position of cropping area
JP5709629B2 (ja) 撮像装置及び制御方法
JP4977569B2 (ja) 撮影制御装置、撮影制御方法、撮影制御プログラム、および撮影装置
JP3931947B2 (ja) 電子撮像装置
JP2005260879A (ja) デジタルカメラ
JP2010135963A (ja) 撮像装置および撮像装置の制御方法
JP2001281533A (ja) デジタルカメラ
JP2000224455A (ja) 改良ズ―ミング機能を有するディジタルカメラ及びその方法
JP2008011244A (ja) 撮像装置及びその制御方法、及びプログラム
JP2006203665A (ja) 撮像装置及び方法、並びに記録媒体及びプログラム

Legal Events

Date Code Title Description
AS Assignment

Owner name: EASTMAN KODAK COMPANY, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:AKIYAMA, HIDEKI;LABAZIEWICZ, PETER;REEL/FRAME:017939/0852;SIGNING DATES FROM 20060614 TO 20060714

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: CITICORP NORTH AMERICA, INC., AS AGENT, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNORS:EASTMAN KODAK COMPANY;PAKON, INC.;REEL/FRAME:028201/0420

Effective date: 20120215

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: EASTMAN KODAK INTERNATIONAL CAPITAL COMPANY, INC.,

Free format text: PATENT RELEASE;ASSIGNORS:CITICORP NORTH AMERICA, INC.;WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:029913/0001

Effective date: 20130201

Owner name: NPEC INC., NEW YORK

Free format text: PATENT RELEASE;ASSIGNORS:CITICORP NORTH AMERICA, INC.;WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:029913/0001

Effective date: 20130201

Owner name: FPC INC., CALIFORNIA

Free format text: PATENT RELEASE;ASSIGNORS:CITICORP NORTH AMERICA, INC.;WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:029913/0001

Effective date: 20130201

Owner name: KODAK AMERICAS, LTD., NEW YORK

Free format text: PATENT RELEASE;ASSIGNORS:CITICORP NORTH AMERICA, INC.;WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:029913/0001

Effective date: 20130201

Owner name: KODAK PORTUGUESA LIMITED, NEW YORK

Free format text: PATENT RELEASE;ASSIGNORS:CITICORP NORTH AMERICA, INC.;WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:029913/0001

Effective date: 20130201

Owner name: QUALEX INC., NORTH CAROLINA

Free format text: PATENT RELEASE;ASSIGNORS:CITICORP NORTH AMERICA, INC.;WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:029913/0001

Effective date: 20130201

Owner name: KODAK AVIATION LEASING LLC, NEW YORK

Free format text: PATENT RELEASE;ASSIGNORS:CITICORP NORTH AMERICA, INC.;WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:029913/0001

Effective date: 20130201

Owner name: KODAK (NEAR EAST), INC., NEW YORK

Free format text: PATENT RELEASE;ASSIGNORS:CITICORP NORTH AMERICA, INC.;WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:029913/0001

Effective date: 20130201

Owner name: KODAK IMAGING NETWORK, INC., CALIFORNIA

Free format text: PATENT RELEASE;ASSIGNORS:CITICORP NORTH AMERICA, INC.;WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:029913/0001

Effective date: 20130201

Owner name: PAKON, INC., INDIANA

Free format text: PATENT RELEASE;ASSIGNORS:CITICORP NORTH AMERICA, INC.;WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:029913/0001

Effective date: 20130201

Owner name: EASTMAN KODAK COMPANY, NEW YORK

Free format text: PATENT RELEASE;ASSIGNORS:CITICORP NORTH AMERICA, INC.;WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:029913/0001

Effective date: 20130201

Owner name: FAR EAST DEVELOPMENT LTD., NEW YORK

Free format text: PATENT RELEASE;ASSIGNORS:CITICORP NORTH AMERICA, INC.;WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:029913/0001

Effective date: 20130201

Owner name: LASER-PACIFIC MEDIA CORPORATION, NEW YORK

Free format text: PATENT RELEASE;ASSIGNORS:CITICORP NORTH AMERICA, INC.;WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:029913/0001

Effective date: 20130201

Owner name: KODAK REALTY, INC., NEW YORK

Free format text: PATENT RELEASE;ASSIGNORS:CITICORP NORTH AMERICA, INC.;WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:029913/0001

Effective date: 20130201

Owner name: CREO MANUFACTURING AMERICA LLC, WYOMING

Free format text: PATENT RELEASE;ASSIGNORS:CITICORP NORTH AMERICA, INC.;WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:029913/0001

Effective date: 20130201

Owner name: KODAK PHILIPPINES, LTD., NEW YORK

Free format text: PATENT RELEASE;ASSIGNORS:CITICORP NORTH AMERICA, INC.;WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:029913/0001

Effective date: 20130201

AS Assignment

Owner name: APPLE INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EASTMAN KODAK COMPANY;REEL/FRAME:029939/0508

Effective date: 20130211

FPAY Fee payment

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12