US7214283B2 - Working range setting method for bonding device for fabricating liquid crystal display devices - Google Patents

Working range setting method for bonding device for fabricating liquid crystal display devices Download PDF

Info

Publication number
US7214283B2
US7214283B2 US10/259,698 US25969802A US7214283B2 US 7214283 B2 US7214283 B2 US 7214283B2 US 25969802 A US25969802 A US 25969802A US 7214283 B2 US7214283 B2 US 7214283B2
Authority
US
United States
Prior art keywords
substrate
working range
substrate support
support system
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US10/259,698
Other versions
US20030178120A1 (en
Inventor
Sang Seok Lee
Sang Ho Park
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Display Co Ltd
Original Assignee
LG Display Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KRP2002-15960 priority Critical
Priority to KR20020015960A priority patent/KR100720420B1/en
Application filed by LG Display Co Ltd filed Critical LG Display Co Ltd
Assigned to LG.PHILIPS LCD CO., LTD. reassignment LG.PHILIPS LCD CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LEE, SANG SEOK, PARK, SANG HO
Publication of US20030178120A1 publication Critical patent/US20030178120A1/en
Publication of US7214283B2 publication Critical patent/US7214283B2/en
Application granted granted Critical
Assigned to LG DISPLAY CO., LTD. reassignment LG DISPLAY CO., LTD. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: LG.PHILIPS LCD CO., LTD.
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/18Handling of layers or the laminate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/60In a particular environment
    • B32B2309/68Vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S414/00Material or article handling
    • Y10S414/135Associated with semiconductor wafer handling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S414/00Material or article handling
    • Y10S414/135Associated with semiconductor wafer handling
    • Y10S414/136Associated with semiconductor wafer handling including wafer orienting means

Abstract

A working range setting method of a bonding device includes identifying a model of a first substrate, extracting a set value corresponding to a working range of working elements according to the identified model, and setting the working range of the corresponding working elements with the extracted set value.

Description

The present invention claims the benefit of Korean Patent Application No. P2002-15960 filed in Korea on Mar. 25, 2002, which is hereby incorporated by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a method for manufacturing a liquid crystal display (LCD) device, and more particularly, a working range setting method for a bonding device for manufacturing an LCD device.

2. Discussion of the Related Art

In response to an increasing demand for various types of display devices, liquid crystal display (LCD), plasma display panel (PDP), electro-luminescent display (ELD), and vacuum fluorescent display (VFD) have been developed. In particular, LCD devices are commonly used because of their high resolution, light weight, thin profile, and low power consumption. In addition, LCD devices have been implemented in mobile devices, such as monitors for notebook computers, and have been developed for monitors of computers and televisions. Accordingly, efforts to improve image quality of LCD devices contrast with the benefits of their high resolution, light weight, thin profile, and low power consumption. In order to incorporate LCD devices as a general image display, image quality such as fineness, brightness, large-sized area, for example, must be improved.

LCD devices are provided with an LCD panel for displaying image data and a driving unit for applying a driving signal to the LCD panel. The LCD panel is provided with first and second glass substrates bonded at a certain distance with liquid crystal material injected therebetween. A plurality of gate lines are formed along a first direction at fixed intervals on a first glass substrate (TFT array substrate), and a plurality of data lines are formed along a second direction perpendicular to the first direction, thereby defining a plurality of pixel regions. Then, a plurality of pixel electrodes are formed in a matrix arrangement at the pixel regions, and a plurality of thin film transistors (TFT) are formed at the pixel regions. Accordingly, the plurality of thin film transistors are enabled by signals transmitted along the gate lines and transfer signals transmitted along the data lines to each pixel electrode.

In order to prevent light leakage, black matrix films are commonly formed on a second glass substrate (color filter substrate) except at regions of the second glass substrate corresponding to the pixel regions of the first glass substrate. Also, a red, green, and blue color filter substrate is formed on the second glass substrate to generate colored light, and a common electrode is formed on the color filter substrate to produce images.

Processes for manufacturing LCD devices include injection and drop methods. The injection method, according to the related art, includes steps of forming a sealant pattern on one of the first and second substrates to form an injection inlet, bonding the first and second substrates to each other within a vacuum processing chamber, and injecting liquid crystal material through the injection inlet. The drop method according to the related art, which is disclosed in Japanese Patent Application Nos. 11-089612 and 11-172903,includes steps of dropping liquid crystal material on a first substrate, arranging a second substrate over the first substrate, and moving the first and second substrates to be adjacent to each other, thereby bonding the first and second substrates to each other.

However, the injection method required a considerably long process time since liquid crystal material is injected by osmotic pressure in a vacuum state. Accordingly, the injection method is inadequate for fabrication of large-sized LCD devices. On the other hand, the drop method is a considerably shorter process time since the liquid crystal material is deposited on a first substrate and then bonded with a second substrate.

FIG. 1 is a cross sectional view of a bonding device for a liquid crystal display device according to the related art prior to a bonding process. In FIG. 1, a substrate bonding device includes a frame 10, an upper stage 21, a lower stage 22, a sealant dispenser (not shown), a liquid crystal material dispenser 30, a processing chamber including an upper chamber unit 31 and a lower chamber unit 32, a chamber moving system 40, and a stage moving system 50. The chamber moving system 40 includes a driving motor driven to selectively move the lower chamber unit 32 to a location at which the bonding process is carried out, or to a location at which outflow of the sealant and dropping of the liquid crystal material occur. The stage moving system 50 includes another driving motor driven to selectively move the upper stage 21 along a vertical direction perpendicular to the upper and lower stages 21 and 22.

A receiver-stopper system temporarily supports a substrate 52, which is attached to the upper stage 21, at both diagonal positions of the substrate 52 when an interior of the chamber is in a vacuum pressure state. At this time, the receiver-stopper system includes a rotation shaft 61, a rotation actuator 63, an elevation actuator 64 and support plates 62 for supporting corners of the substrate 52.

A process of manufacturing a liquid crystal display device using the substrate assembly device according to the prior art will be described with reference to FIG. 2, which is a cross sectional view of a bonding device for a liquid crystal display device according to the related art during a bonding process, and FIG. 3 is a perspective view of a substrate support system of a bonding device for a liquid crystal display device according to the related art.

First, a second substrate 52 is attached to the upper stage 21, and a first substrate 51 is attached to the lower stage 22. Then, the lower chamber unit 32, having the lower stage 22, is moved by the chamber transfer means 40 to a working position for dispensing sealant and dropping liquid crystal material, as shown in FIG. 1. After the sealant dispensing process and the liquid crystal material dropping process are completed on the first substrate 51, the lower chamber unit 32 is moved again by the chamber transfer means 40 toward another working position for bonding between the substrates, as shown in FIG. 2. Then, the upper and lower chamber units 31 and 32 are coupled together by the chamber transfer means 40 to enclose a space where the stages 21 and 22 are positioned, and the elevation actuator 64 and the rotation actuator 63 constituting the receiver-stopper system are actuated to place the support plates 62 under two corners of the second substrate, which is attached to the upper stage 31. From this position, adsorptive force fixing the second substrate 52 is released to drop the second substrate 52 onto each of the support plates 62 of the receiver-stopper means as shown in FIG. 3.

At this time, pressure in an interior of the processing chamber is reduced to produce a vacuum state by a vacuum system. When the interior of the processing chamber is evacuated, an electrostatic force is applied to the upper stage 31 to attach the second substrate 52 while the rotation actuator 63 and the elevation actuator 64 are actuated so that the support plates 62 and the rotation shaft 61 do not obstruct bonding of the substrates. In the vacuum state, the upper stage 21 is moved downward by the stage transfer means 50, and bonds the second substrate 52, which is attached to the upper stage 21, and the first substrate 51, which is fixedly settled on the lower stage, thereby completing manufacturing processes of an LCD device.

The bonding device according the related art includes a number of working elements, specifically, working elements that require a considerable degree of precision, such as the stages and the substrate support means within the processing chamber. Accordingly, it is necessary to maintain the working elements at a precise distance according to the size and configuration of the first and second substrates. Moreover, since the first and second substrates may be different in their overall size and configuration and the substrates may have different cell configurations, it is necessary to carry out a selective operation according to the size and configuration of each substrate.

Considering that overall size of substrates are gradually increasing, there is a need to prevent drooping of the substrate by supporting an inside of the substrate rather than by supporting the corners during bonding processes. Accordingly, the working position of each working element preferrably should be changed according to the size and configuration of each substrate. Moreover, it is necessary to prevent any damage in the cell area by the working elements supporting dummy areas rather than the cell area including the color filter or TFT arrays.

However, as overall size and configuration of the substrates changes, positions and overall size of the cell area on the substrate is altered. Thus, once the working element is reproducibly positioned for a substrate having a first type of configuration, the working element may need to be repositioned to a substrate having a second type of configuration different from the first configuration. The bonding devices according to the related art are disadvantageous since different configurations of substrates require changing the configuration of the working elements. Specifically, when bonding substrates have a configuration different from a previously processed set of substrates, the bonding device must be reconfigured to establish a new set of working ranges corresponding to the new bonded substrates. Accordingly, in order to perform the bonding process with a new configuration of substrates in the conventional bonding process the working range of the each working element must be reconfigured. Thus, a significant increase is production processing time is required.

SUMMARY OF THE INVENTION

Accordingly, the present invention is directed to a working range setting method of a working element for an LCD device that substantially obviates one or more problems due to limitations and disadvantages of the related art.

An object of the present invention is to provide a controlling method of a bonding device used in manufacturing an LCD device.

Additional features and advantages of the invention will be set forth in the description which follows, and in part will become apparent from the description, or may be learned from practice of the invention. The objectives and other advantages of the invention will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.

To achieve these objects and other advantages and in accordance with the purpose of the invention, as embodied and broadly described herein, a working range setting method of a bonding device includes identifying a model of a first substrate, extracting a set value corresponding to a working range of working elements according to the identified model, and setting the working range of the corresponding working elements with the extracted set value.

It is to be understood that both the foregoing general description and the following detailed description of the present invention are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this application, illustrate embodiments of the invention and together with the description serve to explain the principle of the invention. In the drawings:

FIG. 1 is a cross sectional view of a bonding device for a liquid crystal display device according to the related art prior to a bonding process;

FIG. 2 is a cross sectional view of a bonding device for a liquid crystal display device according to the related art during a bonding process;

FIG. 3 is a perspective view of a substrate support system of a bonding device for a liquid crystal display device according to the related art;

FIG. 4 is a schematic view showing an exemplary arrangement of a bonding device for a liquid crystal display device according to the present invention;

FIG. 5 is a flow chart showing an exemplary process of a bonding device for a liquid crystal display device according to the present invention;

FIG. 6A is a plane view of an exemplary substrate support system for a bonding device according to the present invention;

FIG. 6B is a plane view of another exemplary substrate support system for a bonding device according to the present invention; and

FIG. 7 is a flow chart showing an exemplary process of a bonding device for a liquid crystal display device according to the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings.

FIG. 4 is a schematic view showing an exemplary arrangement of a bonding device for a liquid crystal display device according to the present invention. In FIG. 4, an arrangement may include a substrate 100, a controller 210, a storage unit 220, and a substrate reading unit 230. The controller 210 may control behaviors of various working elements of the bonding device and may collect various data from the storage unit 220. The storage unit 220 may set the working range of the working elements according to a configuration of each substrate 100 and may store set values for each of the working elements and substrates 100. The substrate reading unit 230 may identify a configuration of each substrate 100 that is transferred into the bonding device. For example, the substrate reading unit 230 may read out a code 110 positioned on the each substrate 100 to identify the specific configuration of the substrate 100.

FIG. 5 is a flow chart showing an exemplary process of a bonding device for a liquid crystal display device according to the present invention, FIG. 6A is a plane view of an exemplary substrate support system for a bonding device according to the present invention, and FIG. 6B is a plane view of another exemplary substrate support system for a bonding device according to the present invention. In FIG. 5, step S110 may include identifying a substrate configuration (i.e., model) using the substrate reading unit 230 (in FIG. 4) to read a code 110 (in FIG. 4) positioned on the substrate 100 (in FIG. 4). The code 110 (in FIG. 4) is stored in the controller 210 (in FIG. 4).

At step S120, if the code of the identified substrate 100 is identical to a code of the substrates that were used in a previous bonding process, the working elements are operated under the control of the controller to bond the corresponding substrates 100 without any change in the working range of the substrate support means 310 (in FIGS. 6A and 6B). However, if the code of the identified substrates 100 is different than a code of the substrates that were used in a previous bonding process, the controller 210 searches the storage unit 220 to extract a value set according to the working range of the substrate support means 310 with respect to the corresponding model.

At step S130, the controller 210 then re-sets the working range of the substrate support means 140 with the extracted value set.

For example, in a case where substrates each have twelve cells 120 (i.e. a model different from the previous one), are transferred as shown in FIG. 6B in a state that the substrate support means 310 is pre-set at a rotation angle to support substrates 100 each having six cells 120 and a size of 1000×1200 mm as shown in FIG. 6A, a rotation angle of the corresponding substrate support means 310 is adjusted under the control of the controller 210.

After resetting of the rotation angle of the substrate support means 310 with respect to the corresponding substrate model is completed, the controller 210 performs a control adjustment of the set values, so that the substrate support means 310 rotates at a rotation angle α different than a previous angle θ to support the corresponding substrate 100.

FIG. 7 is a flow chart showing an exemplary process of a bonding device for a liquid crystal display device according to the present invention. In FIG. 7, when the set value for the working range of the working element is not registered in the storage unit 220 corresponding to the model of the substrate 100 carried in for the bonding process, a new set of corresponding working ranges of the substrate support means 310 based upon various information according to the model of the corresponding substrate 100 is produced. Then, this new working range is stored in the storage unit 220, and is re-set as the working range of the substrate support means.

Although the working range of the substrate support means 310, for a new model of substrate, can be manually entered by an operator, it is also proposed that the rotation angle of the substrate support means 310 can be automatically set based upon the number and position of the cells 120 formed in the corresponding substrate 100 and values entered with respect to the position of dummy area formed in the corresponding substrate 100. In particular, this may be done by extracting the rotation angle or the working range of the substrate support means 310 by using a virtual working simulation program.

The virtual working simulation program is established to simulate and display the working position based upon the specification (i.e., length, height, and thickness) of each working element that was previously registered. Various information is entered according to the model of the each substrate 100, and may be provided in the form of a Computer Aided Design (CAD) program. Accordingly, when the entire size of the corresponding substrate 100 and the number and position of the cells 120 are entered into the working simulation program, the program uses information, such as the length of support parts 311 of the substrate support means 310, the position of support projections 312 formed in the support parts 311, and the position of rotation shafts 313 for rotating the support parts 311 to simulate the position of the support projections 312 that is varied as the support parts 311 are varied in angle. In this manner, the program can extract the position where the support projections 312 can stably support the corresponding substrate 100 without droop. In addition, a plurality of the support projections 312 may be provided to enable correspondence with respect to the model of each substrate or varied in position according to the model of each substrate.

The value extracted may be entered into the storage unit 220 as the working range of the substrate support means 310, which is sorted according to the model of the corresponding substrate 100, so that control can be executed based upon the set value in the above entered working range when the corresponding model of substrate is transferred later. Moreover, each working element presented in the invention is not necessarily restricted to the substrate support means 310, but may include various other elements such as the upper and lower stages for loading a pair of substrates to execute a bonding process between the substrates, auxiliary loading means for loading a substrate onto the lower stage when the substrate is transferred to be loaded onto the lower stage, alignment means for aligning the position between substrates loaded onto the stages, clamping means for loading or fixing the substrates which are respectively fixed to the stages, and auxiliary process means for assisting various procedures for bonding between the substrates.

It will be apparent to those skilled in the art that various modifications and variations can be made in the working range setting method for a bonding device for fabricating liquid crystal display devices of the present invention. Thus, it is intended that the present invention covers the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.

Claims (11)

1. A working range setting method of a bonding device for a liquid crystal display device, the bonding device having a substrate support system capable of being elevated and rotated to support a dummy area of a central portion of a substrate, comprising steps of:
identifying a model of a first substrate for the liquid crystal display device;
extracting a set value corresponding to a working range of the substrate support system according to the identified model; and
setting the working range of the substrate support system with the extracted set value such that said substrate support system contacts dummy areas of the substrate.
2. The method according to claim 1, wherein the step of identifying includes a step of reading a code formed on the first substrate.
3. The method according to claim 1, wherein the step of identifying includes reading a signal selected according to the first substrate.
4. The method according to claim 1, wherein the step of extracting includes a step of identifying the set value corresponding to the working range of the substrate support system according to the model of the first substrate stored in a storage unit based upon the identified model of the first substrate.
5. The method according to claim 1, further comprising a step of re-setting a new value corresponding to the working range of the substrate support system according to the model of a second substrate.
6. The method according to claim 5, wherein the step of re-setting includes receiving the new value from an operator.
7. The method according to claim 5, wherein the step of re-setting includes extracting the new value by using a stored program for simulating the desired working range of the substrate support system when the substrate support system operates.
8. The method according to claim 1, wherein the working range includes information regarding positioning of the substrate support system.
9. The method according to claim 8, wherein the positioning of the substrate support system includes angular positioning of substrate support arms.
10. The method according to claim 9, wherein the substrate support arms support the first substrate at dummy regions.
11. A working range setting method of a bonding device for a liquid crystal display device, the bonding device having a substrate support system capable of being elevated and rotated to support a dummy area of a central portion of a substrate, comprising steps of:
identifying a model of a first substrate for the liquid crystal display device;
extracting a set value corresponding to a working range of the substrate support system according to the identified model;
setting the working range of the substrate support system with the extracted set value; and
rotating supports of the substrate support system such that said supports contact dummy areas of the substrate.
US10/259,698 2002-03-25 2002-09-30 Working range setting method for bonding device for fabricating liquid crystal display devices Active US7214283B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KRP2002-15960 2002-03-25
KR20020015960A KR100720420B1 (en) 2002-03-25 2002-03-25 method for motion contoling in bonding device for LCD and device the same

Publications (2)

Publication Number Publication Date
US20030178120A1 US20030178120A1 (en) 2003-09-25
US7214283B2 true US7214283B2 (en) 2007-05-08

Family

ID=28036175

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/259,698 Active US7214283B2 (en) 2002-03-25 2002-09-30 Working range setting method for bonding device for fabricating liquid crystal display devices

Country Status (2)

Country Link
US (1) US7214283B2 (en)
KR (1) KR100720420B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9117057B2 (en) * 2005-06-21 2015-08-25 International Business Machines Corporation Identifying unutilized or underutilized software license

Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5165656A (en) 1974-12-04 1976-06-07 Shinshu Seiki Kk
US3978580A (en) 1973-06-28 1976-09-07 Hughes Aircraft Company Method of fabricating a liquid crystal display
JPS52149725A (en) 1976-06-07 1977-12-13 Ichikoh Ind Ltd Non contact system lamp checker for vehicle
US4094058A (en) 1976-07-23 1978-06-13 Omron Tateisi Electronics Co. Method of manufacture of liquid crystal displays
JPS5738414A (en) 1980-08-20 1982-03-03 Showa Denko Kk Spacer for display panel
JPS5788428A (en) 1980-11-20 1982-06-02 Ricoh Elemex Corp Manufacture of liquid crystal display body device
JPS5827126A (en) 1981-08-11 1983-02-17 Nec Corp Production of liquid crystal display panel
JPS5957221A (en) 1982-09-28 1984-04-02 Asahi Glass Co Ltd Production of display element
JPS59195222A (en) 1983-04-19 1984-11-06 Matsushita Electric Ind Co Ltd Manufacture of liquid-crystal panel
JPS60111221A (en) 1983-11-19 1985-06-17 Nippon Denso Co Ltd Method and device for charging liquid crystal
JPS60164723A (en) 1984-02-07 1985-08-27 Seiko Instr & Electronics Ltd Liquid crystal display device
JPS60217343A (en) 1984-04-13 1985-10-30 Matsushita Electric Ind Co Ltd Liquid crystal display device and its preparation
JPS617822A (en) 1984-06-22 1986-01-14 Canon Inc Production of liquid crystal element
JPS6155625A (en) 1984-08-24 1986-03-20 Nippon Denso Co Ltd Manufacture of liquid crystal element
US4653864A (en) 1986-02-26 1987-03-31 Ovonic Imaging Systems, Inc. Liquid crystal matrix display having improved spacers and method of making same
JPS6289025A (en) 1985-10-15 1987-04-23 Matsushita Electric Ind Co Ltd Liquid crystal display panel and its production
JPS6290622A (en) 1985-10-17 1987-04-25 Seiko Epson Corp Liquid crystal display device
US4691995A (en) 1985-07-15 1987-09-08 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal filling device
JPS62205319A (en) 1986-03-06 1987-09-09 Canon Inc Ferroelectric liquid crystal element
US4696712A (en) * 1983-11-07 1987-09-29 Disco Abrasive Systems, Ltd. Semiconductor wafer mounting and cutting system
JPS63109413A (en) 1986-10-27 1988-05-14 Fujitsu Ltd Production of liquid crystal display
JPS63110425A (en) 1986-10-29 1988-05-14 Toppan Printing Co Ltd Cell for sealing liquid crystal
JPS63128315A (en) 1986-11-19 1988-05-31 Victor Co Of Japan Ltd Liquid crystal display element
US4775225A (en) 1985-05-16 1988-10-04 Canon Kabushiki Kaisha Liquid crystal device having pillar spacers with small base periphery width in direction perpendicular to orientation treatment
JPS63311233A (en) 1987-06-12 1988-12-20 Toyota Motor Corp Liquid crystal cell
JPH05127179A (en) 1991-11-01 1993-05-25 Ricoh Co Ltd Production of liquid crystal display element
JPH05154923A (en) 1991-12-06 1993-06-22 Hitachi Ltd Substrate assembling device
US5247377A (en) 1988-07-23 1993-09-21 Rohm Gmbh Chemische Fabrik Process for producing anisotropic liquid crystal layers on a substrate
JPH05265011A (en) 1992-03-19 1993-10-15 Seiko Instr Inc Production of liquid crystal display element
JPH05281557A (en) 1992-04-01 1993-10-29 Matsushita Electric Ind Co Ltd Manufacture of liquid crystal panel
JPH05281562A (en) 1992-04-01 1993-10-29 Matsushita Electric Ind Co Ltd Manufacture of liquid crystal panel
US5263888A (en) 1992-02-20 1993-11-23 Matsushita Electric Industrial Co., Ltd. Method of manufacture of liquid crystal display panel
JPH0651256A (en) 1992-07-30 1994-02-25 Matsushita Electric Ind Co Ltd Device for discharging liquid crystal
JPH06148657A (en) 1992-11-06 1994-05-27 Matsushita Electric Ind Co Ltd Method and device for manufacturing cell for liquid crystal display
JPH06160871A (en) 1992-11-26 1994-06-07 Matsushita Electric Ind Co Ltd Liquid crystal display panel and its production
JPH06235925A (en) 1993-02-10 1994-08-23 Matsushita Electric Ind Co Ltd Manufacture of liquid crystal display element
JPH06265915A (en) 1993-03-12 1994-09-22 Matsushita Electric Ind Co Ltd Discharge device for filling liquid crystal
JPH06313870A (en) 1993-04-28 1994-11-08 Hitachi Ltd Substrate assembly device
US5379139A (en) 1986-08-20 1995-01-03 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal device and method for manufacturing same with spacers formed by photolithography
JPH0784268A (en) 1993-09-13 1995-03-31 Hitachi Ltd Method for plotting sealing material
US5406989A (en) 1993-10-12 1995-04-18 Ayumi Industry Co., Ltd. Method and dispenser for filling liquid crystal into LCD cell
JPH07128674A (en) 1993-11-05 1995-05-19 Matsushita Electric Ind Co Ltd Production of liquid crystal display element
JPH07181507A (en) 1993-12-21 1995-07-21 Canon Inc Liquid crystal display device and information transmission device having the liquid crystal display device
US5499128A (en) 1993-03-15 1996-03-12 Kabushiki Kaisha Toshiba Liquid crystal display device with acrylic polymer spacers and method of manufacturing the same
JPH0895066A (en) 1994-09-27 1996-04-12 Matsushita Electric Ind Co Ltd Manufacture of liquid crystal element and device thereof
US5507323A (en) 1993-10-12 1996-04-16 Fujitsu Limited Method and dispenser for filling liquid crystal into LCD cell
JPH08101395A (en) 1994-09-30 1996-04-16 Matsushita Electric Ind Co Ltd Production of liquid crystal display element
JPH08106101A (en) 1994-10-06 1996-04-23 Fujitsu Ltd Production of liquid crystal display panel
JPH08171094A (en) 1994-12-19 1996-07-02 Nippon Soken Inc Liquid crystal injecting method and liquid crystal injecting device to liquid crystal display device
JPH08190099A (en) 1995-01-11 1996-07-23 Fujitsu Ltd Production of liquid crystal display device and apparatus for producing liquid crystal display device
US5539545A (en) 1993-05-18 1996-07-23 Semiconductor Energy Laboratory Co., Ltd. Method of making LCD in which resin columns are cured and the liquid crystal is reoriented
US5548429A (en) 1993-06-14 1996-08-20 Canon Kabushiki Kaisha Process for producing liquid crystal device whereby curing the sealant takes place after pre-baking the substrates
JPH08240807A (en) 1995-03-06 1996-09-17 Fujitsu Ltd Method for sealing liquid crystal display panel
JPH095762A (en) 1995-06-20 1997-01-10 Matsushita Electric Ind Co Ltd Production of liquid crystal panel
JPH0926578A (en) 1995-07-10 1997-01-28 Fujitsu Ltd Liquid crystal display panel and manufacture thereof
JPH0961829A (en) 1995-08-21 1997-03-07 Matsushita Electric Ind Co Ltd Production of liquid crystal display element
JPH0973075A (en) 1995-09-05 1997-03-18 Matsushita Electric Ind Co Ltd Production of liquid crystal display element and apparatus for producing liquid crystal display element
JPH0973096A (en) 1995-09-05 1997-03-18 Matsushita Electric Ind Co Ltd Production of liquid crystal display device
JPH09127528A (en) 1995-10-27 1997-05-16 Fujitsu Ltd Production of liquid crystal panel
US5642214A (en) 1991-07-19 1997-06-24 Sharp Kabushiki Kaisha Optical modulating element and electronic apparatus using it
JPH09230357A (en) 1996-02-22 1997-09-05 Canon Inc Production of liquid crystal panel and liquid crystal cell used for the same
JPH09281511A (en) 1996-04-17 1997-10-31 Fujitsu Ltd Production of liquid crystal display panel
JPH09311340A (en) 1996-05-21 1997-12-02 Matsushita Electric Ind Co Ltd Manufacture of liquid crystal display device
US5742370A (en) 1996-09-12 1998-04-21 Korea Institute Of Science And Technology Fabrication method for liquid crystal alignment layer by magnetic field treatment
JPH10123538A (en) 1996-10-22 1998-05-15 Matsushita Electric Ind Co Ltd Production for liquid crystal display element
JPH10123537A (en) 1996-10-15 1998-05-15 Matsushita Electric Ind Co Ltd Liquid crystal display element and its production
US5757451A (en) 1995-09-08 1998-05-26 Kabushiki Kaisha Toshiba Liquid crystal display device spacers formed from stacked color layers
JPH10142616A (en) 1996-11-14 1998-05-29 Ayumi Kogyo Kk Liquid crystal injection method and liquid dispenser
JPH10177178A (en) 1996-12-17 1998-06-30 Matsushita Electric Ind Co Ltd Production of liquid crystal display element
JPH10221700A (en) 1997-02-10 1998-08-21 Fujitsu Ltd Liquid crystal display device manufacturing method
JPH10282512A (en) 1997-04-07 1998-10-23 Ayumi Kogyo Kk Method for injecting liquid crystal and dispenser used for the same
JPH10333157A (en) 1997-06-03 1998-12-18 Matsushita Electric Ind Co Ltd Manufacture of liquid crystal display device
JPH10333159A (en) 1997-06-03 1998-12-18 Matsushita Electric Ind Co Ltd Liquid crystal display device
US5852484A (en) 1994-09-26 1998-12-22 Matsushita Electric Industrial Co., Ltd. Liquid crystal display panel and method and device for manufacturing the same
US5861932A (en) 1997-03-31 1999-01-19 Denso Corporation Liquid crystal cell and its manufacturing method
JPH1114953A (en) 1997-06-20 1999-01-22 Matsushita Electric Ind Co Ltd Manufacture of multi-numbered liquid crystal display panel, and multi-numbered liquid crystal panel
JPH1138424A (en) 1997-07-23 1999-02-12 Fujitsu Ltd Liquid crystal display panel and its production
US5875922A (en) 1997-10-10 1999-03-02 Nordson Corporation Apparatus for dispensing an adhesive
JPH1164811A (en) 1997-08-21 1999-03-05 Matsushita Electric Ind Co Ltd Method and device for producing liquid crystal display element
US5882451A (en) * 1996-03-27 1999-03-16 Matsushita Electric Industrial Co., Ltd. Method and apparatus for applying an electronic component adhesive
JPH11133438A (en) 1997-10-24 1999-05-21 Matsushita Electric Ind Co Ltd Liquid crystal display element and its production
US5952676A (en) 1986-08-20 1999-09-14 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal device and method for manufacturing same with spacers formed by photolithography
US5956112A (en) 1995-10-02 1999-09-21 Sharp Kabushiki Kaisha Liquid crystal display device and method for manufacturing the same
US6001203A (en) 1995-03-01 1999-12-14 Matsushita Electric Industrial Co., Ltd. Production process of liquid crystal display panel, seal material for liquid crystal cell and liquid crystal display
US6011609A (en) 1996-10-05 2000-01-04 Samsung Electronics Co., Ltd. Method of manufacturing LCD by dropping liquid crystals on a substrate and then pressing the substrates
US6016181A (en) 1996-11-07 2000-01-18 Sharp Kabushiki Kaisha Liquid crystal device having column spacers with portion on each of the spacers for reflecting or absorbing visible light and method for fabricating the same
US6016178A (en) 1996-09-13 2000-01-18 Sony Corporation Reflective guest-host liquid-crystal display device
US6055035A (en) 1998-05-11 2000-04-25 International Business Machines Corporation Method and apparatus for filling liquid crystal display (LCD) panels
EP1003066A1 (en) 1998-11-16 2000-05-24 Matsushita Electric Industrial Co., Ltd. Method of manufacturing liquid crystal display devices
US6163357A (en) 1996-09-26 2000-12-19 Kabushiki Kaisha Toshiba Liquid crystal display device having the driving circuit disposed in the seal area, with different spacer density in driving circuit area than display area
US6219126B1 (en) 1998-11-20 2001-04-17 International Business Machines Corporation Panel assembly for liquid crystal displays having a barrier fillet and an adhesive fillet in the periphery
US6226067B1 (en) 1997-10-03 2001-05-01 Minolta Co., Ltd. Liquid crystal device having spacers and manufacturing method thereof
US6236445B1 (en) 1996-02-22 2001-05-22 Hughes Electronics Corporation Method for making topographic projections
US20010021000A1 (en) 2000-02-02 2001-09-13 Norihiko Egami Apparatus and method for manufacturing liquid crystal display
US6304306B1 (en) 1995-02-17 2001-10-16 Sharp Kabushiki Kaisha Liquid crystal display device and method for producing the same
US6337730B1 (en) 1998-06-02 2002-01-08 Denso Corporation Non-uniformly-rigid barrier wall spacers used to correct problems caused by thermal contraction of smectic liquid crystal material
US20020047983A1 (en) * 2000-08-31 2002-04-25 Hannstar Display Corp. Apparatus and method for pressing and combining two substrates of a LCD panel
US6414733B1 (en) 1999-02-08 2002-07-02 Dai Nippon Printing Co., Ltd. Color liquid crystal display with a shielding member being arranged between sealing member and display zone
US20020117267A1 (en) * 2001-02-01 2002-08-29 Shibaura Mechatronics Corporation Electric component compression bonding machine and method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH086910A (en) * 1994-06-23 1996-01-12 Hitachi Ltd Cluster type computer system

Patent Citations (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3978580A (en) 1973-06-28 1976-09-07 Hughes Aircraft Company Method of fabricating a liquid crystal display
JPS5165656A (en) 1974-12-04 1976-06-07 Shinshu Seiki Kk
JPS52149725A (en) 1976-06-07 1977-12-13 Ichikoh Ind Ltd Non contact system lamp checker for vehicle
US4094058A (en) 1976-07-23 1978-06-13 Omron Tateisi Electronics Co. Method of manufacture of liquid crystal displays
JPS5738414A (en) 1980-08-20 1982-03-03 Showa Denko Kk Spacer for display panel
JPS5788428A (en) 1980-11-20 1982-06-02 Ricoh Elemex Corp Manufacture of liquid crystal display body device
JPS5827126A (en) 1981-08-11 1983-02-17 Nec Corp Production of liquid crystal display panel
JPS5957221A (en) 1982-09-28 1984-04-02 Asahi Glass Co Ltd Production of display element
JPS59195222A (en) 1983-04-19 1984-11-06 Matsushita Electric Ind Co Ltd Manufacture of liquid-crystal panel
US4696712A (en) * 1983-11-07 1987-09-29 Disco Abrasive Systems, Ltd. Semiconductor wafer mounting and cutting system
JPS60111221A (en) 1983-11-19 1985-06-17 Nippon Denso Co Ltd Method and device for charging liquid crystal
JPS60164723A (en) 1984-02-07 1985-08-27 Seiko Instr & Electronics Ltd Liquid crystal display device
JPS60217343A (en) 1984-04-13 1985-10-30 Matsushita Electric Ind Co Ltd Liquid crystal display device and its preparation
JPS617822A (en) 1984-06-22 1986-01-14 Canon Inc Production of liquid crystal element
JPS6155625A (en) 1984-08-24 1986-03-20 Nippon Denso Co Ltd Manufacture of liquid crystal element
US4775225A (en) 1985-05-16 1988-10-04 Canon Kabushiki Kaisha Liquid crystal device having pillar spacers with small base periphery width in direction perpendicular to orientation treatment
US4691995A (en) 1985-07-15 1987-09-08 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal filling device
JPS6289025A (en) 1985-10-15 1987-04-23 Matsushita Electric Ind Co Ltd Liquid crystal display panel and its production
JPS6290622A (en) 1985-10-17 1987-04-25 Seiko Epson Corp Liquid crystal display device
US4653864A (en) 1986-02-26 1987-03-31 Ovonic Imaging Systems, Inc. Liquid crystal matrix display having improved spacers and method of making same
JPS62205319A (en) 1986-03-06 1987-09-09 Canon Inc Ferroelectric liquid crystal element
US5379139A (en) 1986-08-20 1995-01-03 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal device and method for manufacturing same with spacers formed by photolithography
US5952676A (en) 1986-08-20 1999-09-14 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal device and method for manufacturing same with spacers formed by photolithography
JPS63109413A (en) 1986-10-27 1988-05-14 Fujitsu Ltd Production of liquid crystal display
JPS63110425A (en) 1986-10-29 1988-05-14 Toppan Printing Co Ltd Cell for sealing liquid crystal
JPS63128315A (en) 1986-11-19 1988-05-31 Victor Co Of Japan Ltd Liquid crystal display element
JPS63311233A (en) 1987-06-12 1988-12-20 Toyota Motor Corp Liquid crystal cell
US5247377A (en) 1988-07-23 1993-09-21 Rohm Gmbh Chemische Fabrik Process for producing anisotropic liquid crystal layers on a substrate
US5642214A (en) 1991-07-19 1997-06-24 Sharp Kabushiki Kaisha Optical modulating element and electronic apparatus using it
JPH05127179A (en) 1991-11-01 1993-05-25 Ricoh Co Ltd Production of liquid crystal display element
JPH05154923A (en) 1991-12-06 1993-06-22 Hitachi Ltd Substrate assembling device
US5263888A (en) 1992-02-20 1993-11-23 Matsushita Electric Industrial Co., Ltd. Method of manufacture of liquid crystal display panel
JPH05265011A (en) 1992-03-19 1993-10-15 Seiko Instr Inc Production of liquid crystal display element
JPH05281562A (en) 1992-04-01 1993-10-29 Matsushita Electric Ind Co Ltd Manufacture of liquid crystal panel
JPH05281557A (en) 1992-04-01 1993-10-29 Matsushita Electric Ind Co Ltd Manufacture of liquid crystal panel
US5511591A (en) 1992-04-13 1996-04-30 Fujitsu Limited Method and dispenser for filling liquid crystal into LCD cell
JPH0651256A (en) 1992-07-30 1994-02-25 Matsushita Electric Ind Co Ltd Device for discharging liquid crystal
JPH06148657A (en) 1992-11-06 1994-05-27 Matsushita Electric Ind Co Ltd Method and device for manufacturing cell for liquid crystal display
JPH06160871A (en) 1992-11-26 1994-06-07 Matsushita Electric Ind Co Ltd Liquid crystal display panel and its production
JPH06235925A (en) 1993-02-10 1994-08-23 Matsushita Electric Ind Co Ltd Manufacture of liquid crystal display element
JPH06265915A (en) 1993-03-12 1994-09-22 Matsushita Electric Ind Co Ltd Discharge device for filling liquid crystal
US5499128A (en) 1993-03-15 1996-03-12 Kabushiki Kaisha Toshiba Liquid crystal display device with acrylic polymer spacers and method of manufacturing the same
JPH06313870A (en) 1993-04-28 1994-11-08 Hitachi Ltd Substrate assembly device
US5680189A (en) 1993-05-18 1997-10-21 Semiconductor Energy Laboratory Co., Ltd. LCD columnar spacers made of a hydrophilic resin and LCD orientation film having a certain surface tension or alignment capability
US5539545A (en) 1993-05-18 1996-07-23 Semiconductor Energy Laboratory Co., Ltd. Method of making LCD in which resin columns are cured and the liquid crystal is reoriented
US5548429A (en) 1993-06-14 1996-08-20 Canon Kabushiki Kaisha Process for producing liquid crystal device whereby curing the sealant takes place after pre-baking the substrates
JPH0784268A (en) 1993-09-13 1995-03-31 Hitachi Ltd Method for plotting sealing material
US5406989A (en) 1993-10-12 1995-04-18 Ayumi Industry Co., Ltd. Method and dispenser for filling liquid crystal into LCD cell
US5507323A (en) 1993-10-12 1996-04-16 Fujitsu Limited Method and dispenser for filling liquid crystal into LCD cell
JPH07128674A (en) 1993-11-05 1995-05-19 Matsushita Electric Ind Co Ltd Production of liquid crystal display element
JPH07181507A (en) 1993-12-21 1995-07-21 Canon Inc Liquid crystal display device and information transmission device having the liquid crystal display device
US5854664A (en) 1994-09-26 1998-12-29 Matsushita Electric Industrial Co., Ltd. Liquid crystal display panel and method and device for manufacturing the same
US5852484A (en) 1994-09-26 1998-12-22 Matsushita Electric Industrial Co., Ltd. Liquid crystal display panel and method and device for manufacturing the same
JPH0895066A (en) 1994-09-27 1996-04-12 Matsushita Electric Ind Co Ltd Manufacture of liquid crystal element and device thereof
JPH08101395A (en) 1994-09-30 1996-04-16 Matsushita Electric Ind Co Ltd Production of liquid crystal display element
JPH08106101A (en) 1994-10-06 1996-04-23 Fujitsu Ltd Production of liquid crystal display panel
JPH08171094A (en) 1994-12-19 1996-07-02 Nippon Soken Inc Liquid crystal injecting method and liquid crystal injecting device to liquid crystal display device
JPH08190099A (en) 1995-01-11 1996-07-23 Fujitsu Ltd Production of liquid crystal display device and apparatus for producing liquid crystal display device
US6304306B1 (en) 1995-02-17 2001-10-16 Sharp Kabushiki Kaisha Liquid crystal display device and method for producing the same
US6001203A (en) 1995-03-01 1999-12-14 Matsushita Electric Industrial Co., Ltd. Production process of liquid crystal display panel, seal material for liquid crystal cell and liquid crystal display
JPH08240807A (en) 1995-03-06 1996-09-17 Fujitsu Ltd Method for sealing liquid crystal display panel
JPH095762A (en) 1995-06-20 1997-01-10 Matsushita Electric Ind Co Ltd Production of liquid crystal panel
JPH0926578A (en) 1995-07-10 1997-01-28 Fujitsu Ltd Liquid crystal display panel and manufacture thereof
JPH0961829A (en) 1995-08-21 1997-03-07 Matsushita Electric Ind Co Ltd Production of liquid crystal display element
JPH0973096A (en) 1995-09-05 1997-03-18 Matsushita Electric Ind Co Ltd Production of liquid crystal display device
JPH0973075A (en) 1995-09-05 1997-03-18 Matsushita Electric Ind Co Ltd Production of liquid crystal display element and apparatus for producing liquid crystal display element
US5757451A (en) 1995-09-08 1998-05-26 Kabushiki Kaisha Toshiba Liquid crystal display device spacers formed from stacked color layers
US5956112A (en) 1995-10-02 1999-09-21 Sharp Kabushiki Kaisha Liquid crystal display device and method for manufacturing the same
JPH09127528A (en) 1995-10-27 1997-05-16 Fujitsu Ltd Production of liquid crystal panel
JPH09230357A (en) 1996-02-22 1997-09-05 Canon Inc Production of liquid crystal panel and liquid crystal cell used for the same
US6236445B1 (en) 1996-02-22 2001-05-22 Hughes Electronics Corporation Method for making topographic projections
US5882451A (en) * 1996-03-27 1999-03-16 Matsushita Electric Industrial Co., Ltd. Method and apparatus for applying an electronic component adhesive
JPH09281511A (en) 1996-04-17 1997-10-31 Fujitsu Ltd Production of liquid crystal display panel
JPH09311340A (en) 1996-05-21 1997-12-02 Matsushita Electric Ind Co Ltd Manufacture of liquid crystal display device
US5742370A (en) 1996-09-12 1998-04-21 Korea Institute Of Science And Technology Fabrication method for liquid crystal alignment layer by magnetic field treatment
US6016178A (en) 1996-09-13 2000-01-18 Sony Corporation Reflective guest-host liquid-crystal display device
US6163357A (en) 1996-09-26 2000-12-19 Kabushiki Kaisha Toshiba Liquid crystal display device having the driving circuit disposed in the seal area, with different spacer density in driving circuit area than display area
US6011609A (en) 1996-10-05 2000-01-04 Samsung Electronics Co., Ltd. Method of manufacturing LCD by dropping liquid crystals on a substrate and then pressing the substrates
JPH10123537A (en) 1996-10-15 1998-05-15 Matsushita Electric Ind Co Ltd Liquid crystal display element and its production
JPH10123538A (en) 1996-10-22 1998-05-15 Matsushita Electric Ind Co Ltd Production for liquid crystal display element
US6016181A (en) 1996-11-07 2000-01-18 Sharp Kabushiki Kaisha Liquid crystal device having column spacers with portion on each of the spacers for reflecting or absorbing visible light and method for fabricating the same
JPH10142616A (en) 1996-11-14 1998-05-29 Ayumi Kogyo Kk Liquid crystal injection method and liquid dispenser
JPH10177178A (en) 1996-12-17 1998-06-30 Matsushita Electric Ind Co Ltd Production of liquid crystal display element
JPH10221700A (en) 1997-02-10 1998-08-21 Fujitsu Ltd Liquid crystal display device manufacturing method
US5861932A (en) 1997-03-31 1999-01-19 Denso Corporation Liquid crystal cell and its manufacturing method
JPH10282512A (en) 1997-04-07 1998-10-23 Ayumi Kogyo Kk Method for injecting liquid crystal and dispenser used for the same
JPH10333159A (en) 1997-06-03 1998-12-18 Matsushita Electric Ind Co Ltd Liquid crystal display device
JPH10333157A (en) 1997-06-03 1998-12-18 Matsushita Electric Ind Co Ltd Manufacture of liquid crystal display device
JPH1114953A (en) 1997-06-20 1999-01-22 Matsushita Electric Ind Co Ltd Manufacture of multi-numbered liquid crystal display panel, and multi-numbered liquid crystal panel
JPH1138424A (en) 1997-07-23 1999-02-12 Fujitsu Ltd Liquid crystal display panel and its production
JPH1164811A (en) 1997-08-21 1999-03-05 Matsushita Electric Ind Co Ltd Method and device for producing liquid crystal display element
US6226067B1 (en) 1997-10-03 2001-05-01 Minolta Co., Ltd. Liquid crystal device having spacers and manufacturing method thereof
US5875922A (en) 1997-10-10 1999-03-02 Nordson Corporation Apparatus for dispensing an adhesive
JPH11133438A (en) 1997-10-24 1999-05-21 Matsushita Electric Ind Co Ltd Liquid crystal display element and its production
US6055035A (en) 1998-05-11 2000-04-25 International Business Machines Corporation Method and apparatus for filling liquid crystal display (LCD) panels
US6337730B1 (en) 1998-06-02 2002-01-08 Denso Corporation Non-uniformly-rigid barrier wall spacers used to correct problems caused by thermal contraction of smectic liquid crystal material
US6304311B1 (en) 1998-11-16 2001-10-16 Matsushita Electric Industrial Co., Ltd. Method of manufacturing liquid crystal display device
EP1003066A1 (en) 1998-11-16 2000-05-24 Matsushita Electric Industrial Co., Ltd. Method of manufacturing liquid crystal display devices
US6219126B1 (en) 1998-11-20 2001-04-17 International Business Machines Corporation Panel assembly for liquid crystal displays having a barrier fillet and an adhesive fillet in the periphery
US6414733B1 (en) 1999-02-08 2002-07-02 Dai Nippon Printing Co., Ltd. Color liquid crystal display with a shielding member being arranged between sealing member and display zone
US20010021000A1 (en) 2000-02-02 2001-09-13 Norihiko Egami Apparatus and method for manufacturing liquid crystal display
US20020047983A1 (en) * 2000-08-31 2002-04-25 Hannstar Display Corp. Apparatus and method for pressing and combining two substrates of a LCD panel
US6623577B2 (en) * 2001-02-01 2003-09-23 Shibaura Mechatronics Corporation Electric component compression bonding machine and method
US20020117267A1 (en) * 2001-02-01 2002-08-29 Shibaura Mechatronics Corporation Electric component compression bonding machine and method

Also Published As

Publication number Publication date
KR20030077068A (en) 2003-10-01
KR100720420B1 (en) 2007-05-22
US20030178120A1 (en) 2003-09-25

Similar Documents

Publication Publication Date Title
US7275577B2 (en) Substrate bonding machine for liquid crystal display device
US7364633B2 (en) Device and method for fabricating liquid crystal display device
US7710534B2 (en) System and method for manufacturing liquid crystal display devices
US7271904B2 (en) Seal dispenser for fabricating liquid crystal display panel and method for detecting discontinuous portion of seal pattern using the same
US7426951B2 (en) LCD bonding machine and method for fabricating LCD by using the same
CN101183184B (en) Liquid crystal display and method of manufacturing same
US8593600B2 (en) Liquid crystal panel fabrication method
CN100543557C (en) The friction system of alignment layer of LCD and method thereof
DE10227824B4 (en) Method and device for producing an LCD
US8189167B2 (en) Mask holder for irradiating UV-rays
US6912025B2 (en) Liquid crystal display device
KR20040019893A (en) Method of manufacturing liquid crystal display device
US7647959B2 (en) LCD bonding machine and method for fabricating LCD by using the same
KR100606446B1 (en) Fabrication method of liquid crystal display device
US7384322B2 (en) Apparatus and method for manufacturing liquid crystal display devices
US6870591B2 (en) Liquid crystal display with separating wall
US7250989B2 (en) Substrate bonding apparatus having alignment system with one end provided inside vacuum chamber for liquid crystal display device
US7992482B2 (en) Apparatus for cutting substrate and method thereof
US8248572B2 (en) Apparatus for transferring a liquid crystal display panel
US7607971B2 (en) Method for fabricating liquid crystal display panels
US7253866B2 (en) Method of fabricating liquid crystal display device
US8810751B2 (en) Liquid crystal display panel and manufacturing method thereof
US7808630B2 (en) Inspection apparatus for liquid crystal display device and inspection method using same
DE10227826B4 (en) Method for producing an LCD
EP0990942A1 (en) Liquid crystal display device and method of manufacturing the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: LG.PHILIPS LCD CO., LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEE, SANG SEOK;PARK, SANG HO;REEL/FRAME:013345/0968

Effective date: 20020925

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: LG DISPLAY CO., LTD., KOREA, REPUBLIC OF

Free format text: CHANGE OF NAME;ASSIGNOR:LG.PHILIPS LCD CO., LTD.;REEL/FRAME:021754/0230

Effective date: 20080304

Owner name: LG DISPLAY CO., LTD.,KOREA, REPUBLIC OF

Free format text: CHANGE OF NAME;ASSIGNOR:LG.PHILIPS LCD CO., LTD.;REEL/FRAME:021754/0230

Effective date: 20080304

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12