US7044441B2 - Valved male luer connector having sequential valve timing - Google Patents

Valved male luer connector having sequential valve timing Download PDF

Info

Publication number
US7044441B2
US7044441B2 US11/010,096 US1009604A US7044441B2 US 7044441 B2 US7044441 B2 US 7044441B2 US 1009604 A US1009604 A US 1009604A US 7044441 B2 US7044441 B2 US 7044441B2
Authority
US
United States
Prior art keywords
valve
connector
male
female
distal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US11/010,096
Other languages
English (en)
Other versions
US20050087715A1 (en
Inventor
Mark C. Doyle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CareFusion 303 Inc
Original Assignee
Cardinal Health 303 Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/927,109 external-priority patent/US6745998B2/en
Priority claimed from US10/389,652 external-priority patent/US6964406B2/en
Application filed by Cardinal Health 303 Inc filed Critical Cardinal Health 303 Inc
Assigned to CARDINAL HEALTH 303, INC. reassignment CARDINAL HEALTH 303, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DOYLE, MARK C.
Priority to US11/010,096 priority Critical patent/US7044441B2/en
Publication of US20050087715A1 publication Critical patent/US20050087715A1/en
Priority to NZ555751A priority patent/NZ555751A/en
Priority to CA2591329A priority patent/CA2591329C/en
Priority to CN2005800463623A priority patent/CN101111282B/zh
Priority to AU2005325153A priority patent/AU2005325153B2/en
Priority to RU2007125990/14A priority patent/RU2394608C2/ru
Priority to KR1020077015417A priority patent/KR101227399B1/ko
Priority to EP05848813.1A priority patent/EP1827567B1/en
Priority to JP2007545517A priority patent/JP5285911B2/ja
Priority to ES05848813T priority patent/ES2728599T3/es
Priority to PCT/US2005/043338 priority patent/WO2006078355A1/en
Priority to BRPI0518974-8A priority patent/BRPI0518974A2/pt
Priority to US11/435,334 priority patent/US20060202146A1/en
Publication of US7044441B2 publication Critical patent/US7044441B2/en
Application granted granted Critical
Priority to ZA200705175A priority patent/ZA200705175B/xx
Priority to NO20073466A priority patent/NO20073466L/no
Priority to HK08107432.3A priority patent/HK1117087A1/xx
Assigned to CAREFUSION 303, INC. reassignment CAREFUSION 303, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: CARDINAL HEALTH 303, INC.
Priority to JP2012112594A priority patent/JP5688046B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/02Access sites
    • A61M39/04Access sites having pierceable self-sealing members
    • A61M39/045Access sites having pierceable self-sealing members pre-slit to be pierced by blunt instrument
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/02Access sites
    • A61M39/06Haemostasis valves, i.e. gaskets sealing around a needle, catheter or the like, closing on removal thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/22Valves or arrangement of valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/22Valves or arrangement of valves
    • A61M39/26Valves closing automatically on disconnecting the line and opening on reconnection thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/18Check valves with actuating mechanism; Combined check valves and actuated valves
    • F16K15/182Check valves with actuating mechanism; Combined check valves and actuated valves with actuating mechanism
    • F16K15/1825Check valves with actuating mechanism; Combined check valves and actuated valves with actuating mechanism for check valves with flexible valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L29/00Joints with fluid cut-off means
    • F16L29/04Joints with fluid cut-off means with a cut-off device in each of the two pipe ends, the cut-off devices being automatically opened when the coupling is applied
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/22Valves or arrangement of valves
    • A61M39/26Valves closing automatically on disconnecting the line and opening on reconnection thereof
    • A61M2039/261Valves closing automatically on disconnecting the line and opening on reconnection thereof where the fluid space within the valve is increasing upon disconnection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/22Valves or arrangement of valves
    • A61M39/26Valves closing automatically on disconnecting the line and opening on reconnection thereof
    • A61M2039/263Valves closing automatically on disconnecting the line and opening on reconnection thereof where the fluid space within the valve is decreasing upon disconnection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/22Valves or arrangement of valves
    • A61M39/26Valves closing automatically on disconnecting the line and opening on reconnection thereof
    • A61M2039/267Valves closing automatically on disconnecting the line and opening on reconnection thereof having a sealing sleeve around a tubular or solid stem portion of the connector
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/22Valves or arrangement of valves
    • A61M39/26Valves closing automatically on disconnecting the line and opening on reconnection thereof
    • A61M2039/267Valves closing automatically on disconnecting the line and opening on reconnection thereof having a sealing sleeve around a tubular or solid stem portion of the connector
    • A61M2039/268Valves closing automatically on disconnecting the line and opening on reconnection thereof having a sealing sleeve around a tubular or solid stem portion of the connector wherein the stem portion is moved for opening and closing the valve, e.g. by translation, rotation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/10Tube connectors; Tube couplings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/10Tube connectors; Tube couplings
    • A61M39/14Tube connectors; Tube couplings for connecting tubes having sealed ends

Definitions

  • This invention relates to an improved male luer connector device that attaches to a female luer valve to open a flow channel through the male luer. Once the engagement of the luers has been established, these valves are used to make connections in hospitals for intravenous (IV) devices in order to be used in medical liquid flow applications.
  • IV intravenous
  • Luer devices are used in particular in a variety of medical applications where there is a desire to interconnect together male and female connector parts onto tubing material that is connected to an IV.
  • the most common types of IV fluid exchanges use a syringe fitted with a nozzle that is designed to be received into a corresponding receiver attached to the IV device.
  • the receiver often has a hollow tubular cannula or post that routes fluid into a line inserted into the IV extending into the patient's veins.
  • Typical luer connections utilize a male luer connector that is inserted into a female luer connector.
  • the male luer connector is threaded onto corresponding threads of the female luer connector to engage the two so that fluid may be passed between them without escaping or leaking from the connection. Because these connections are subject to coming loose or disengaging, there is always a possibility that fluid being passed within these tubes can escape.
  • hazardous drugs such as those used for chemotherapy treatments, the possibility of escaping fluids can be a dangerous problem.
  • the fluid does not leak when the connectors are engaged, once they are disengaged, the residual amount of fluid remaining on the tip of the connectors can still be harmful. While this amount may be less than an amount
  • a luer connection that securely contains the fluid materials included therein when luers are engaged to one another.
  • a luer connection that seals off the male luer connector in a male-female connection so that users of the connector are protected from hazardous drugs that remain on the luer tip surface when disengaged.
  • the invention is directed to a male valved connector that creates a partial vacuum upon disengagement from a female connector to draw fluid disposed at an interface between the male and female connectors away from the interface.
  • a male Luer connector for connection with a female Luer connector for medical fluid flow, the female connector having a front contact surface and an internal valve, the male Luer connector comprising a tubular housing having a distal end and a proximal end, the distal end configured to engage the female Luer connector and establish an interface and vacuum means for creating a partial vacuum at the distal end of the tubular housing during disengagement of the male connector from the female connector during a time period when the female valve is closed, whereby the vacuum means draws fluid residing at the interface away from the interface during disengagement of the male and female connectors.
  • the vacuum means is located within the tubular housing, and comprises a first valve controlling the flow of fluid through the proximal end of the tubular housing.
  • the vacuum means also comprises a second valve controlling the flow of fluid through the distal end of the tubular housing and the vacuum means is also for controlling the second valve to remain open while the vacuum means creates the partial vacuum.
  • the vacuum means is also for controlling the first valve to close first, and controlling the second valve to remain open after the female connector valve closes during disengagement of the female connector from the male connector.
  • the vacuum means comprises an actuator that controls the opening and closing of the first and second valves and further comprises an actuation surface disposed so as to be moveable by the front contact surface of the female connector to control the actuator to open and close the first and second valves.
  • the first valve comprises a proximal valve disposed at the proximal end of the tubular housing
  • the second valve comprises a distal valve disposed at the distal end of the tubular housing
  • the actuator is disposed within the tubular housing to open and close both the proximal and distal valves.
  • the vacuum means further comprises a resilient member disposed to bias the actuator to close both the proximal and distal valves.
  • the resilient member has an inner variable-volume cavity through which fluid flows, the cavity having a first volume when the male connector is disengaged from the female connector, the cavity having a second volume smaller than the first volume when the male connector is engaged with the female connector, whereby the resilient member creates a partial vacuum when moving from the second volume to the first volume during closure of the distal valve occurring when the female and male connectors are being disengaged.
  • the cavity has the second volume when the male and female connectors are engaged and the cavity moves to the first volume thereby creating the partial vacuum when the male and female connectors are being disengaged.
  • the resilient member forms a valve seat for the distal valve and a valve seat for the proximal valve and the actuator provides a distal valve member for the distal valve that fits into the distal valve seat to close the distal valve and provides a proximal valve member for the proximal valve that fits into the proximal valve seat to close the proximal valve.
  • the resilient member provides the actuation surface, the actuator is disposed within the resilient member in contact with the resilient member, and movement of the resilient member due to engagement with the front contact surface of the female connector causes corresponding movement of the actuator to open and close the distal and proximal valves.
  • a male connector for connection with a female connector to establish a path for medical fluid flow
  • the female connector having a front contact surface and an internal valve
  • the male connector comprising a tubular housing having a distal end and a proximal end, the distal end configured to engage the female Luer connector and establish an interface, a first valve seat disposed for use in controlling the flow of fluid through the distal end of the tubular housing, an internal plug disposed within the tubular housing, the internal plug having a first valve member that engages the first valve seat to prevent the flow of fluid past the first valve seat, and a resilient member disposed within the tubular housing so as to bias the internal plug to engage the first valve seat, the resilient member having an inner variable-volume cavity through which fluid flows, the cavity having a first volume when the first valve is closed, the cavity having a second volume smaller than the first volume when the first valve is open, wherein the resilient member is disposed so that engagement of the female connector with the male connector causes the resilient member cavity to move to the second volume and dis
  • a method for disengaging a male connector from a female connector comprising closing a first valve in the male connector at the proximal end of the male connector to isolate an interface between the male connector and the female connector from fluid at the proximal end of the male connector, and creating a partial vacuum at the interface of the male connector and female connector to draw fluid at the interface away from the interface.
  • the method further comprises the step of closing the internal valve of the female connector during the step of creating a partial vacuum.
  • the method also further comprises the step of closing a valve at the distal end of the male connector after the step of creating a partial vacuum.
  • the method wherein the step of creating a partial vacuum comprises creating a partial vacuum within the male connector and drawing fluid at the interface into the male connector.
  • FIG. 1 is a side view of the two components of the male to female luer connection of the luer fitting
  • FIG. 2 is an enlarged sectional view taken on line 2 — 2 of FIG. 1 ;
  • FIG. 3 is a view similar to FIG. 2 , with the components partially engaged;
  • FIG. 4 is a view similar to FIG. 3 , with the components fully engaged;
  • FIG. 5 is a view similar to a portion of FIG. 2 , showing an alternative integrated spring member
  • FIG. 6 is a view similar to FIG. 5 , showing an alternative single stage valve
  • FIG. 7 is a view similar to FIG. 6 , showing the valve opened
  • FIG. 8 is a view similar to FIG. 5 , showing a ball type valve
  • FIG. 9 is a sectional view showing an alternative slide actuated valve
  • FIG. 10 is a view similar to FIG. 9 , showing the valve opened;
  • FIG. 11 is a view similar to FIG. 9 , showing an alternative slide actuated valve
  • FIG. 12 is a view similar to FIG. 10 , showing an alternative valve for use with a female luer valve that does not have a cannula or post;
  • FIG. 13 is an illustration of a male luer valve that does not contain a housing element
  • FIGS. 14 and 15 are views similar to FIG. 11 illustrating a male luer which does not contain a sleeve and showing the movement from a closed position ( FIG. 14 ) to an open position ( FIG. 15 ) for the male luer during contact with a female luer having no core rod or cannula;
  • FIGS. 16 and 17 are views similar to FIGS. 14 and 15 illustrating a male luer having a central sealing member internally of the resilient member and showing the movement from a closed position ( FIG. 16 ) to an open position ( FIG. 17 ) for the male luer during contact with a female luer having no core rod or cannula;
  • FIG. 18 is a view similar to FIG. 11 illustrating a male luer which has a peripheral flange incorporated into the resilient member which upon contact with the contract surface of a female luer (which has no core rod or cannula) is urged backwards causing the resilient member to retract and open;
  • FIGS. 19 , 20 and 21 illustrate appearance and operation of male luers which have resilient members with smooth outer contact surfaces which upon contact with the contract surface of a female luer (which has no core rod or cannula) provide a sufficiently frictional connection such that the resilient member is urged backwards causing it to retract and open;
  • FIGS. 22 and 23 are views similar to FIGS. 16 and 17 illustrating a male luer having a central sealing member internally of the resilient member which has a radially extending portion which protrudes into the wall of the resilient member and extends it outward, allowing it to extend into or through a guide in the housing of the male luer, which guide is engaged by a contact surface of a female luer having no core rod or cannula, such engagement causing the resilient member to retract and open to permit fluid flow between and through the luers; and
  • FIGS. 24 , 25 , 26 and 27 are side elevation views ( FIGS. 24 and 26 ) and end elevation view ( FIGS. 25 and 27 ) of another embodiment of a resilient member of a male luer which has a slightly bulbous tip with a slit opening, which slit is compressed and opened during contact with the interior surface of a female luer with a generally conical contact recess;
  • FIG. 28 is a cutaway perspective view of multi-valved male Luer connector in accordance with aspects of the invention for use in obtaining sequential valve timing and generating a partial vacuum at the male Luer connector end to remove excess fluid from the tip during separation from a female connector;
  • FIG. 29 is a side, cross-sectional view of the male connector of FIG. 28 showing it aligned with a compatible female valved connector prior to engagement;
  • FIG. 30 is a view similar to FIG. 29 except that the male and female connectors have become partially engaged to the point where a distal valve of the male connector has opened while the proximal valve of the male connector and the valve of the female connector remain closed;
  • FIG. 31 is a view similar to FIG. 30 except that the male and female connectors have become further partially engaged to the point where the distal valve of the male connector has opened and the valve of the female connector has opened while the proximal valve of the male connector remains closed;
  • FIG. 32 is a view similar to FIG. 31 except that the male and female connectors have become fully engaged and both distal and proximal valves of the male connector are open and the valve of the female connector is also open for complete fluid flow through both connectors.
  • FIG. 1 is a side view of the two components of the male to female luer connection of the luer fitting.
  • the fitting is comprised of a male luer 10 that is intended to engage with a female luer that has an existing flush top female luer valve.
  • the female luer 24 is not limited to a particular type but an exemplar luer is illustrated here.
  • the female luer illustrated here is one where the valve shuts off.
  • This female luer 24 contains a housing element 28 with a cannula or post 26 . On the outer surface of the forward end of the housing 28 there are threads 30 that permit engagement of the female luer 24 with the male luer 10 .
  • the male luer 10 is comprised of a housing element 12 .
  • the inner wall of the housing 12 contains threads 32 that engage the complimentary threads 30 of the female luer connector.
  • Housing 12 has an inner tubular portion 16 of reduced diameter that projects forwardly that has a first necked area 36 and a second necked area 38 (See FIG. 2 ).
  • the inner tubular portion defines an internal chamber 13 with a forward opening 33 (See FIG. 2 ).
  • a valve member 18 is biased into an extended position sealing opening 33 by resilient member or spring 14 .
  • Spring 14 acts between distal end of chamber 13 and valve member 18 .
  • distal is the rearward end of the male luer and “proximal” is the forward end, i.e., the left and right ends in the views as illustrated in FIGS. 1 and 2 ).
  • Valve member 18 includes a resilient portion 20 and a forward tip member 22 .
  • FIG. 1 illustrates the two luers 10 , 24 in the unengaged position.
  • Other types of female luer valves that do not contain a cannula or post.
  • U.S. Pat. No. 5,676,346 by Leinsing and U.S. Pat. No. 5,782,816 by Werschmidt illustrate these types of luer valves.
  • FIGS. 2 to 5 illustrate the male luer 10 and the female luer 24 as they become engaged with one another.
  • FIG. 2 illustrates the two luers 10 , 24 when they are completely unengaged.
  • the cannula or post 26 may have an opening 40 for entrance and exit of fluid between the two luers. Other duct systems (not shown) are possible and may be used.
  • the cannula or post 26 is mounted in a chamber within a sleeve 34 .
  • This sleeve 34 can be made of rubber or any other suitable resilient material and serves as a valve member stopper.
  • Sleeve 34 has a forward end opening 35 which is sealed shut in the unengaged position of FIG. 2 .
  • the male luer has a forward end that has a first necked area 36 and a second necked area 38 spaced rearwardly from the first necked area 36 .
  • FIG. 3 illustrates the male luer 10 beginning to be inserted into the female luer 24 .
  • the forward end 33 of housing 12 pushes the sleeve 34 back until the opening 35 is forced to open over the end of the cannula 26 .
  • the cannula or post 26 then comes into contact with the tip of valve member 18 and begins to push it rearwardly so that the cannula or post 26 displaces the valve element front section 22 . This movement begins to separate the seal surface of the first necked area 36 from its seat.
  • the second resilient portion 20 is collapsed, compressing the valve element cavity 19 . This unseals the first necked area 36 and displaces the liquid contained within the cavity 19 . This displaced liquid flows temporarily into the female luer valve 24 . As this pressure is applied, the valve member is compressed and pushed further inwardly into chamber 13 .
  • FIG. 4 illustrates the positioning of the luer members when the female 24 and male 10 luers have been even further engaged.
  • the cannula or post 26 begins to push even more onto the tip member 22 and collapse the first resilient member 14 so that the second necked area 38 is unsealed. At this point, more liquid is displaced by the further insertion of the cannula or post into the vacuum section 21 of the male luer as indicated by the arrows in FIG. 4 .
  • the opening 40 on the cannula or post 26 permits fluid to pass into and out of the female luer 24 . This displaced liquid creates the volume which will be refilled when the action is reversed.
  • FIG. 5 illustrates the same type of dual stage valve as above only that it is formed with the spring 14 integrally connected to the valve member 42 .
  • the housing 12 contains the inner sleeve 16 and positioned inside of the inner sleeve 16 is an inner chamber 13 .
  • the function of this embodiment is the same as the previously described embodiments with the exception that the spring 14 can be comprised of elastomeric or other types of material that are integrally connected with the valve member 42 .
  • FIGS. 6 and 7 illustrate a male luer according to another embodiment of the present invention.
  • This apparatus is a single stage luer valve with an integral resilient member.
  • the male luer has a housing 12 with threads 32 on the inner wall of the housing for engagement to the complimentary threads on the female luer 30 .
  • the inner chamber 13 is sealed by a valve member 42 that is integrally formed with the resilient member and the tip.
  • This new valve member 42 therefore functions as in the previous embodiment except that all members are formed in one piece, rather than including a separate resilient member.
  • This embodiment demonstrates a single stage luer valve in that once the female luer engages with the valve member 42 , the member 42 moves as a single piece rather than as several different pieces as described above.
  • FIG. 7 illustrates the luer of FIG. 6 engaged with a female luer 24 and permitting fluid flow.
  • FIG. 8 illustrates another embodiment of the present invention.
  • the housing 12 of the male luer is similar to the previous embodiments.
  • a resilient member or spring 14 contained within the inner sleeve 16 .
  • the valve contained on the end of the resilient member is shown as a ball 46 .
  • This ball may be made of various types of materials as for example, elastomeric material.
  • the forward end opening of chamber 13 is exemplified as a part-spherical seat 47 to accommodate for ball valve 46 .
  • the valve contained on the end of the resilient member or spring 14 can be of a variety of shapes.
  • the shape of the tip of the male luer 10 needs to be one that corresponds to the shape of the tip of the female luer 24 .
  • FIGS. 9 and 10 illustrate a modified connector according to yet another embodiment of the present invention, in which a modified male luer is releaseably securable to the female luer 24 of the previous embodiments.
  • the modified male luer comprises a housing with a cylindrical outer wall 52 and an inner tubular support 54 which projects into the cylindrical housing from rear end 53 and extends along part of the length of the housing.
  • Outer wall 52 has internal threads 32 for engaging the female luer threads 30 and a larger diameter than the inner support 54 which extends from the rear end 53 of the housing and projects out of the forward end of the housing.
  • a resilient sleeve or bladder member 56 is secured between the tubular member 55 and support 54 at its rear end, and projects forwardly within tubular member 55 to its forward end opening 57 .
  • Bladder member 56 has a forward end opening 58 which is sealed shut by the inwardly tapered end portion of the tubular member 55 when in the extended, unconnected position of FIG. 9 .
  • the forward end portion 58 of bladder member 56 acts as a valve to seal the end opening 57 of the male luer in the position illustrated in FIG. 9 .
  • Tubular member 55 of the male luer is of smaller diameter than the inner cylindrical wall 52 of the housing, to leave an annular gap between the member 55 and inner wall 52 .
  • a sliding sleeve 60 is slidably mounted over the tubular member 55 in this annular gap.
  • Sleeve 60 has diametrically opposed openings 62
  • the tubular member 55 has opposing elongate, axially extending slots 64 .
  • Oppositely directed guided portions 65 (e.g., tabs, wings or fins) on the inner bladder or sleeve member 56 project radially outwardly through the slots 64 and into the openings 62 .
  • the corrugated portion 66 of bladder member 56 acts as a spring to bias the forward end of the bladder member 56 and the sliding sleeve 60 into the extended position.
  • FIG. 10 illustrates a female luer 24 connected to male luer 50 .
  • the forward end of the female luer housing As the forward end of the female luer housing is threaded into the cylindrical wall of the male housing, it will engage the forward end 67 of the sliding sleeve 60 , urging the sleeve, and thus the bladder member 56 , rearwardly and moving the forward end portion of the bladder member out of sealing engagement with the forward end opening of tubular member 55 .
  • the forward end of tubular member 55 will force the sleeve 34 in the female luer rearwardly so that it passes over the end of cannula 26 , which then extends into the open forward end of the tubular member.
  • FIG. 11 is a view similar to FIG. 9 , showing an alternative slide actuated valve except that the resilient sleeve or bladder member 56 does not have a corrugated portion and instead has a separate spring member 68 .
  • the spring member 68 can any type as for example, those made of metal or elastomeric material.
  • the function of the male luer valve is the same; it is merely the spring member 68 that replaces the previous corrugated member.
  • FIG. 12 is a view similar to FIG. 10 , showing an alternative valve for use with a female luer valve that does not have a cannula or post.
  • the outer surface of the forward end of the housing 28 engages and compresses the forward end 67 of the sliding sleeve 60 of the male luer valve.
  • the bladder member 56 continues to move rearwardly and moves the forward end portion of the bladder member out of sealing engagement with the forward end opening of the tubular member 55 .
  • FIG. 13 is an illustration of a male luer valve that does not contain a housing element. This view is similar to FIG. 2 except that the male luer valve is not contained within a housing element and instead can be self-sustained. However, the function of the male luer valve is the same as that explained for FIG. 2 only that the engagement with the female luer housing does not occur with the male luer housing.
  • FIGS. 14 and 15 illustrate an embodiment of a male luer 100 which does not contain a sliding sleeve 60 .
  • the luer housing 102 has a tubular projecting conduit 118 over which is positioned resilient sleeve or member 106 .
  • the base 114 of resilient member 106 is butted against the interior end wall 112 of housing 102 and secured in place by the inner end of tubular projecting member 104 .
  • the resilient member 106 has one or more laterally projecting fins 108 which are disposed respectively in slots 110 in the tubular portion of member 104 .
  • peripheral projections 132 function as O-ring seals and when the luers are engaged the projecting front edge 130 of the resilient member 106 engages the inner sloped surface 134 of member 104 to provide a sealing or “stopper” effect and keep the O-ring seal area free of the fluid flow and dry.
  • the female luer 128 is not itself shown and only the movement of elements of the male luer 100 is illustrated. It will be understood that such movement is the result of the male/female luer engagement in the manner illustrated in other Figures such as (but not limited to) FIGS. 2 , 3 , 12 and 15 .
  • threads or other securing devices to retain the male and female luers in their engaged positions during flow of fluid through them are also for simplicity not shown in all Figures, but it will understood that such are present as illustrated in (but not limited to) FIGS. 2 , 3 , 4 , 10 and 12 .
  • FIGS. 16 and 17 illustrate an embodiment similar to that of FIGS. 14 and 15 , but in which there is an internal plug 138 within the conduit 118 with channels 148 past the plug 138 .
  • These channels can be formed in the wall of conduit 118 or can be formed by having plug 138 mounted on spaced apart supports (not shown) connected to conduit 118 , or in any other convenient manner.
  • the peripheral surface 142 of plug 138 contacts radial land 144 on the inner surface of resilient member 106 as shown at 140 when the male luer is closed ( FIG. 16 ).
  • the contact surface 126 contacts the fins 108 and pushes them backward as shown at 108 ′ in FIG.
  • FIGS. 18–21 illustrate embodiments of a “soft” male luer 100 in which the engagement with the female luer 128 results in the contact area 126 of the female luer being the interior surface of the luer which is in contact directly with the exterior surface 152 of the resilient member 106 , as illustrated in FIG. 21 .
  • shoulder 150 and projections 109 which can be fins such as 108 , a peripheral flange, protruding structure which can engage the contact surface of the female luer.
  • the shoulder 150 can be a continuous radial shoulder within the portion 102 ′ of the housing 102 or it can consist of spaced-apart projections aligned radially within portion 102 ′.
  • FIGS. 18 and 19 are shown in FIGS. 18 and 19 as a member separate but attached to the rest of housing 102 , but it can also be integral with the rest of housing 102 ).
  • Shoulder 150 serves as a limiting device to engage contact surface 126 of the female luer 128 and stop the relative movement of the two luers, thus limiting the depth to which the male and female luers can be engaged.
  • Projections 109 can assist the compressions of the resilient member 106 by sharing engagement with the contact surface 126 with the surface 152 of the member 106 .
  • the tip area 116 of the member 106 can be thickened as shown in FIGS. 18 and 19 to provide some expansion into the engaging neck of the female luer and thus create an additional sealing effect.
  • the soft male luer 100 is illustrated as having an optional extended housing 102 , such that engagement of the surface 152 of member 106 in contact with surface 126 provides the entire engagement of the male and female luers. That engagement and the compression of member 106 over the rigid conduit 118 allow opening of tip 116 and flow through end 120 .
  • FIGS. 22–27 Additional embodiments are shown in FIGS. 22–27 .
  • an internal plug 154 similar in function to that of valve member 42 is shown.
  • the plug 154 has a integral fins or radial flange 158 which is inserted into a radial pocket 156 in resilient member 106 .
  • Engagement with the female luer causes the female luer's contact surface to push the resilient member 106 , its pocket 156 and fins or flange 158 backward as shown as 106 ′, 156 ′ and 158 ′ respectively, thus withdrawing plug head 160 of plug 154 to the position shown at 160 ′ thus opening end 120 for flow into conduit 124 .
  • FIGS. 24–27 show a shaped resilient member 106 a which has a slit 162 in its tip 116 ′′.
  • frictional engagement of the outer surface 152 of the resilient member 106 a with the contact surface 126 of the female luer causes the resilient member 106 a to deform as shown in the Figures, thus opening slit 162 as shown at 162 ′ to allow fluid flow into conduit 124 .
  • a male connector 200 in accordance with aspects of the invention and a female connector 202 are shown in various configurations of engagement to demonstrate the sequential valve timing in accordance with aspects of the invention.
  • the male connector 200 is shown in a cutaway perspective form and includes a resilient member 210 having an internal cavity 212 .
  • the resilient member is uncollapsed and the internal cavity has a first internal volume.
  • the resilient member is mounted within a housing 214 and within a tubular projecting member 216 .
  • the base 218 of the resilient member is butted against the interior wall 220 of the housing and secured in place by the proximal end 222 of the tubular projecting member.
  • An internal plug 224 is mounted within the resilient member.
  • the plug includes a distal valve member 226 that mates with a valve seat 228 provided by the distal end 230 of the resilient member.
  • the internal plug includes a proximal valve member 232 that mates with a proximal valve seat 234 provided by the resilient member, which in this embodiment, results in a type of poppet valve 208 .
  • the internal plug includes integral fins or radial flanges 236 that are inserted into radial pockets 238 formed in the resilient member.
  • the resilient member provides a biasing force in the distal direction and tends to return itself and the internal plug to the configuration shown in FIG. 28 unless opposing forces in the proximal direction cause partial collapse or compression of the resilient member, as is discussed below.
  • FIG. 29 depicts the two luer connectors 200 and 202 just separated. In this position, a valve 204 in the female luer connector 202 is closed, and a first distal valve 206 and a second proximal valve 208 in the male luer connector 200 are closed. Flow through either connector is prevented because the respective valves are closed.
  • the connector includes a resilient member 210 having an internal cavity 212 .
  • the resilient member is uncollapsed and the internal cavity has a first internal volume.
  • the resilient member is mounted within a housing 214 and within a tubular projecting member 216 .
  • the base 218 of the resilient member is butted against the interior wall 220 of the housing and secured in place by the proximal end 222 of the tubular projecting member.
  • An internal plug 224 is mounted within the resilient member.
  • the plug includes a distal valve member 226 that mates with a valve seat 228 provided by the distal end 230 of the resilient member.
  • the internal plug includes a proximal valve member 232 that mates with a proximal valve seat 234 provided by the resilient member, which in this embodiment, results in a type of poppet valve 208 .
  • the internal plug includes integral fins or radial flanges 236 that are inserted into radial pockets 238 formed in the resilient member.
  • the resilient member provides a biasing force in the distal direction and tends to return itself and the internal plug to the configuration shown in FIG. 28 unless opposing forces in the proximal direction cause compression of the resilient member, as is discussed below.
  • engagement of the male connector 200 with a female connector 202 causes the female connector's contact surface 240 to push the actuation surface 244 of the resilient member in the proximal direction, which causes the resilient member's contact surface 244 , pockets 238 , and the fins 236 and internal plug 224 to also move in the proximal direction.
  • the plug Upon the occurrence of enough proximal direction movement, the plug will disengage from the distal valve seat 228 thus opening the distal valve 206 and will disengage from the proximal valve seat 234 thus opening the proximal valve 208 , as is described in more detail below.
  • the tubular projecting member 216 includes slots 242 through which the actuation surface 244 of the resilient member projects so that it may contact the female connector contact surface 240 .
  • the tubular projecting member 216 is formed in the shape of a standard Luer in this embodiment, although other shapes are possible.
  • the housing 214 may include internal threads 246 with which to engage threads 248 of the female connector for more secure locking of the two together.
  • the female connector 202 includes an internal piston 250 having an opening at its proximal end 252 that forms the female valve 204 . As the piston is moved into the housing 254 of the female connector by a certain distance, it will open to thereby open the female valve and permit the flow of fluid through the female connector.
  • FIG. 30 there is depicted the male 200 and female 202 connectors partially joined together.
  • the forward contact surface 240 of the female luer connector has driven the actuation surface 244 of the male luer connector in the proximal direction far enough to open the first distal valve 206 while the second proximal valve 208 in the male connector remains closed.
  • the cavity 212 of the resilient member in this position is now slightly collapsed and has an internal volume that is less than the first volume of the cavity shown in FIG. 28 .
  • the distal end 256 of the tubular projecting member or male luer portion 216 has driven the piston 250 of the female luer connector 202 a partial distance in the distal direction.
  • the valve 204 of the female Luer connector is still closed, despite the displacement of the piston.
  • the distal valve 206 of the male connector has first opened while the proximal valve 208 of the male connector and the female connector valve 204 remain closed. This is due to the relative distances of movement and sizes of the various parts.
  • the proximal valve seat 234 in the male connector resilient member 210 is designed to be long enough such that its valve 208 does not open until after the plug 224 has moved by a distance longer than the distance required to open the distal valve 206 .
  • the length of movement of the proximal valve required for opening is longer than the length of movement of the distal valve to achieve opening.
  • the distance of movement of the plug to open the distal valve of the male connector is selected to be less than the distance of movement of the piston 250 of the female connector that is required to open the female connector valve.
  • FIG. 31 depicts the male 200 and female 202 luer connectors further joined together than in FIG. 30 .
  • the distal end 256 of the male luer connector has driven the piston 250 of the female connector farther in the distal direction, so much so that the female connector valve 204 has now opened and fluid flow through the female connector may now occur.
  • the contact surface 240 of the female connector has further driven the actuation surface 244 of the resilient member 210 further in the proximal direction further opening the distal valve 206 ; however, the proximal valve 208 is still closed.
  • two valves of the three valves between the male and female connectors are now open.
  • the length of movement of the proximal valve required for opening is longer than the length of movement of the distal valve 206 of the male connector 200 , and the length of movement to the female connector's valve 204 to achieve opening.
  • the distance of movement of the internal plug 224 to open the distal valve of the male connector is selected to be less than the distance of movement of the piston 250 of the female connector that is required to open the female connector valve 204 , yet more to open the proximal valve 208 than to open the female connector's valve.
  • FIG. 32 depicts the complete operative engagement of the male 200 and female 202 Luer connectors such that all three depicted valves are open and fluid flow can occur between and through both connectors.
  • the female connector contact surface 240 has driven the actuation surface 244 of the male connector far enough in the proximal direction to open the proximal valve 208 .
  • the compressible collapsible cavity 212 of the resilient member 210 is fully collapsed having now an even smaller internal volume that shown in the preceding FIGS. 28 through 31 .
  • the first valve that opens is the distal male connector valve.
  • the second valve to open is the female connector valve, and the last valve to open is the proximal male connector valve.
  • Fluid can now flow from the upstream line 260 , through the male connector 200 , through the female connector 202 , and out through the downstream line 262 .
  • both upstream and downstream lines are shown as medical tubing, although other devices may be used.
  • the upstream connecting device 258 of the male connector 200 is shown as a Luer female connector but other types of coupling devices may be used.
  • the downstream coupling device 264 of the female connector 202 is shown as a male Luer connector but other types of coupling devices may be used.
  • Disengagement or disconnection of the male connector 200 and the female connector 202 from each other will result in a sequence of valve closure that is opposite the sequence of valve opening as discussed above.
  • the connectors are shown fully operatively engaged together in FIG. 32 and fluid flow through both valves can occur.
  • a first stage of valve closure upon disengagement is shown in FIG. 31 .
  • movement of the contact surface 240 of the female luer connector in the distal direction permits the actuation surface 244 of the resilient member 210 of the male Luer connector to also move in the distal direction due to the biasing force provided by the resilient member.
  • FIG. 31 As is shown in FIG.
  • the proximal valve 208 of the male connector has closed although the distal valve 206 of the male connector and the female connector valve 204 remain open.
  • the male connector is now closed to any fluid existing in an upstream line such as may be connected to the male connector's proximal female connector 258 .
  • the upstream line 260 is shown in exaggerated form in FIG. 31 . In this configuration then, the internal components of the male connector, and consequently the female connector, are isolated from any upstream fluids.
  • FIG. 30 depicts the second stage of valve closure upon disconnection of the male connector 200 and female connector 202 .
  • the distal end of the male luer connector 256 has retreated moving in the proximal direction which has allowed the piston 250 of the female luer connector to resile also in the proximal direction thereby closing the female connector valve 204 .
  • Fluid flow through the female connector is now prevented.
  • both the male and female connectors are now isolated from any fluids in the upstream line 260 and in the downstream line 262 .
  • a partial vacuum is created within the male connector. This is because the cavity 212 of the resilient member 210 is increasing in internal volume as the resilient member resiles to the configuration of FIG. 29 from the configuration of FIG. 30 . As soon as the internal volume of the resilient member begins increasing, a partial vacuum forms which may be used to draw fluid into the male connector. By proper sequencing of the valves of the connector in conjunction with each other and with the valve of the female connector, the force of this partial vacuum is directed to the interface between the male connector and the female connector 202 to thereby draw fluid residing on that interface into the male connector.
  • both the upstream line 260 having the male connector 200 at its distal end
  • the downstream line 262 having the female connector 202 at its proximal end
  • the respective connectors each of which has at least one internal valve to isolate the line.
  • the male connector 200 will seal the distal end of the line, and even withdraws excess fluid from the distal end of the connector upon disengagement or disconnection from the female connector 202 . This is an especially useful feature in the case where caustic fluids may have been conducted by the upstream line and some of that fluid may have reached surfaces at the interface between the female and male connectors.
  • caustic fluid may be transferred to the clinician handling the connectors.
  • Such fluids may cause injury to health care workers and patients if applied to skin surfaces thus their containment in the upstream line by means of this vacuum, draw-back feature is especially useful.
  • tubing 260 and 262 at the ends of the connectors in FIGS. 28 through 32 , this is for example purposes only and is not meant to be restrictive.
  • Various conductive, container, or other components may be used in place of the tubing shown.
  • the male connector 200 may form the nozzle end of a syringe instead of being connected to tubing.
  • the female connector 202 may form part of a vial adapter or vial access device so that liquid from the syringe connected to the male connector may be injected into a vial of medical substance, mixed and then withdrawn back into the syringe, as an example.
  • Other applications are possible.
  • the various embodiments of the male luer described above provide for automatic sealing of the end opening in the male luer as the male and female luers are disconnected, reducing the risk of an operator coming into contact with the potentially hazardous fluid flowing through the connector.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pulmonology (AREA)
  • Mechanical Engineering (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • Quick-Acting Or Multi-Walled Pipe Joints (AREA)
US11/010,096 2001-08-10 2004-12-10 Valved male luer connector having sequential valve timing Expired - Lifetime US7044441B2 (en)

Priority Applications (17)

Application Number Priority Date Filing Date Title
US11/010,096 US7044441B2 (en) 2001-08-10 2004-12-10 Valved male luer connector having sequential valve timing
CA2591329A CA2591329C (en) 2004-12-10 2005-12-01 Valved male luer connector having sequential valve timing
PCT/US2005/043338 WO2006078355A1 (en) 2004-12-10 2005-12-01 Valved male luer connector having sequential valve timing
BRPI0518974-8A BRPI0518974A2 (pt) 2004-12-10 2005-12-01 conector luer macho provido de vÁlvula apresentando uma regulaÇço de vÁlvula seqÜencial
EP05848813.1A EP1827567B1 (en) 2004-12-10 2005-12-01 Valved male luer connector having sequential valve timing
ES05848813T ES2728599T3 (es) 2004-12-10 2005-12-01 Conector luer macho valvulado que tiene sincronización secuencial de válvula
CN2005800463623A CN101111282B (zh) 2004-12-10 2005-12-01 具有顺序阀门定时的阀控公螺旋接头
AU2005325153A AU2005325153B2 (en) 2004-12-10 2005-12-01 Valved male luer connector having sequential valve timing
RU2007125990/14A RU2394608C2 (ru) 2004-12-10 2005-12-01 Штыревой клапанный моэр-соединитель с регулированием последовательности работы клапанов
KR1020077015417A KR101227399B1 (ko) 2004-12-10 2005-12-01 순차적 밸브 타이밍을 갖는 밸브식 수형 루어 커넥터
NZ555751A NZ555751A (en) 2004-12-10 2005-12-01 Valved male luer connector having sequential valve timing
JP2007545517A JP5285911B2 (ja) 2004-12-10 2005-12-01 逐次的弁タイミングを有する弁付き雄型ルアー・コネクタ
US11/435,334 US20060202146A1 (en) 2001-08-10 2006-05-15 Valved male luer connector having sequential valve timing
ZA200705175A ZA200705175B (en) 2004-12-10 2007-06-26 Valved male Luer connector having sequential valve timing
NO20073466A NO20073466L (no) 2004-12-10 2007-07-06 Hann-ventil-Luer-forbindelse med sekvensiel ventil-tidsstyring
HK08107432.3A HK1117087A1 (en) 2004-12-10 2008-07-07 Valved male luer connector having sequential valve timing
JP2012112594A JP5688046B2 (ja) 2004-12-10 2012-05-16 逐次的弁タイミングを有する弁付き雄型ルアー・コネクタ

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/927,109 US6745998B2 (en) 2001-08-10 2001-08-10 Valved male luer
US10/389,652 US6964406B2 (en) 2001-08-10 2003-03-13 Valved male luer
US11/010,096 US7044441B2 (en) 2001-08-10 2004-12-10 Valved male luer connector having sequential valve timing

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/389,652 Continuation-In-Part US6964406B2 (en) 2001-08-10 2003-03-13 Valved male luer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/435,334 Continuation US20060202146A1 (en) 2001-08-10 2006-05-15 Valved male luer connector having sequential valve timing

Publications (2)

Publication Number Publication Date
US20050087715A1 US20050087715A1 (en) 2005-04-28
US7044441B2 true US7044441B2 (en) 2006-05-16

Family

ID=35966970

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/010,096 Expired - Lifetime US7044441B2 (en) 2001-08-10 2004-12-10 Valved male luer connector having sequential valve timing
US11/435,334 Abandoned US20060202146A1 (en) 2001-08-10 2006-05-15 Valved male luer connector having sequential valve timing

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/435,334 Abandoned US20060202146A1 (en) 2001-08-10 2006-05-15 Valved male luer connector having sequential valve timing

Country Status (15)

Country Link
US (2) US7044441B2 (es)
EP (1) EP1827567B1 (es)
JP (2) JP5285911B2 (es)
KR (1) KR101227399B1 (es)
CN (1) CN101111282B (es)
AU (1) AU2005325153B2 (es)
BR (1) BRPI0518974A2 (es)
CA (1) CA2591329C (es)
ES (1) ES2728599T3 (es)
HK (1) HK1117087A1 (es)
NO (1) NO20073466L (es)
NZ (1) NZ555751A (es)
RU (1) RU2394608C2 (es)
WO (1) WO2006078355A1 (es)
ZA (1) ZA200705175B (es)

Cited By (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060015086A1 (en) * 2004-04-01 2006-01-19 Kelly Rasmussen Catheter connector system
US20060163514A1 (en) * 2001-08-10 2006-07-27 Doyle Mark C Valved male luer with vacuum feature
US20070088293A1 (en) * 2005-07-06 2007-04-19 Fangrow Thomas F Jr Medical connector with closeable male luer
US20080009822A1 (en) * 2003-12-18 2008-01-10 Halkey-Roberts Corporation Needleless access vial
US20090204080A1 (en) * 2008-02-12 2009-08-13 Baxter International Inc. Two-way valve connector
US20100004634A1 (en) * 2004-12-10 2010-01-07 Cardinal Health 303, Inc. Self-sealing male luer connector with multiple seals
US20100010445A1 (en) * 2004-03-18 2010-01-14 C. R. Bard, Inc. Connector system for a proximally trimmable catheter
US20100030164A1 (en) * 2008-08-04 2010-02-04 Np Medical Inc. Medical Valve with Raised Seal
US7753338B2 (en) 2006-10-23 2010-07-13 Baxter International Inc. Luer activated device with minimal fluid displacement
US7758566B2 (en) 2003-12-30 2010-07-20 Icu Medical, Inc. Valve assembly
US20100249724A1 (en) * 2009-03-30 2010-09-30 Np Medical Inc. Medical Valve with Distal Seal Actuator
WO2010109449A1 (en) 2009-03-22 2010-09-30 Elcam Medical Agricultural Cooperative Association Ltd. Closed male luer connector
US20100269932A1 (en) * 2006-08-17 2010-10-28 Richmond Frank M Resealable Components And Systems
US7854731B2 (en) 2004-03-18 2010-12-21 C. R. Bard, Inc. Valved catheter
US7875019B2 (en) 2005-06-20 2011-01-25 C. R. Bard, Inc. Connection system for multi-lumen catheter
US20110073324A1 (en) * 2009-09-30 2011-03-31 Vetco Gray Inc. Self Sealing Hydraulic Coupler
US7981090B2 (en) 2006-10-18 2011-07-19 Baxter International Inc. Luer activated device
US7998134B2 (en) 2007-05-16 2011-08-16 Icu Medical, Inc. Medical connector
USD644731S1 (en) 2010-03-23 2011-09-06 Icu Medical, Inc. Medical connector
US8083728B2 (en) 2004-03-18 2011-12-27 C. R. Bard, Inc. Multifunction adaptor for an open-ended catheter
US8105314B2 (en) 2006-10-25 2012-01-31 Icu Medical, Inc. Medical connector
US8177771B2 (en) 2004-03-18 2012-05-15 C. R. Bard, Inc. Catheter connector
US8177772B2 (en) 2005-09-26 2012-05-15 C. R. Bard, Inc. Catheter connection systems
US8221363B2 (en) 2006-10-18 2012-07-17 Baxter Healthcare S.A. Luer activated device with valve element under tension
US20120247513A1 (en) * 2011-03-30 2012-10-04 Liqui-Box Corporation Flush adaptor for use with a valve fitment assembly for cleaning of the assembly
US8337475B2 (en) 2004-10-12 2012-12-25 C. R. Bard, Inc. Corporeal drainage system
US8337484B2 (en) 2009-06-26 2012-12-25 C. R. Band, Inc. Proximally trimmable catheter including pre-attached bifurcation and related methods
US8414555B2 (en) 2008-05-14 2013-04-09 J & J Solutions, Inc. Systems and methods for safe medicament transport
US8444628B2 (en) 2000-07-11 2013-05-21 Icu Medical, Inc. Needleless medical connector
US8454579B2 (en) 2009-03-25 2013-06-04 Icu Medical, Inc. Medical connector with automatic valves and volume regulator
US8545479B2 (en) 2005-12-28 2013-10-01 Covidien Lp Male luer connector
US20130306676A1 (en) * 2012-05-21 2013-11-21 The Coca-Cola Company Bag in Box Cleanable Connector System
US20130327794A1 (en) * 2012-05-21 2013-12-12 The Coca-Cola Company Bag in Box Cleanable Connector System Having Conical Plunger
US8636721B2 (en) 2003-11-20 2014-01-28 Henry M. Jackson Foundation For The Advancement Of Military Medicine, Inc. Portable hand pump for evacuation of fluids
US8647310B2 (en) 2010-05-06 2014-02-11 Icu Medical, Inc. Medical connector with closeable luer connector
US8679090B2 (en) 2008-12-19 2014-03-25 Icu Medical, Inc. Medical connector with closeable luer connector
CN103727336A (zh) * 2013-12-31 2014-04-16 辽宁东泰自动化设备制造有限公司 一种快速连接器
US8758306B2 (en) 2010-05-17 2014-06-24 Icu Medical, Inc. Medical connectors and methods of use
US9107809B2 (en) 2010-05-27 2015-08-18 J & J Solutions, Inc. Closed fluid transfer system
US9168366B2 (en) 2008-12-19 2015-10-27 Icu Medical, Inc. Medical connector with closeable luer connector
US9186494B2 (en) 2004-11-05 2015-11-17 Icu Medical, Inc. Medical connector
US20160199634A1 (en) * 2013-08-21 2016-07-14 Cedic S. R. L. Needlefree valve device
USD786427S1 (en) 2014-12-03 2017-05-09 Icu Medical, Inc. Fluid manifold
USD793551S1 (en) 2014-12-03 2017-08-01 Icu Medical, Inc. Fluid manifold
US9877895B2 (en) 2013-08-02 2018-01-30 J&J Solutions, Inc. Compounding systems and methods for safe medicament transport
US9933094B2 (en) 2011-09-09 2018-04-03 Icu Medical, Inc. Medical connectors with fluid-resistant mating interfaces
US10369349B2 (en) 2013-12-11 2019-08-06 Icu Medical, Inc. Medical fluid manifold
US10695550B2 (en) 2011-05-20 2020-06-30 Excelsior Medical Corporation Caps for needleless connectors
US10744316B2 (en) 2016-10-14 2020-08-18 Icu Medical, Inc. Sanitizing caps for medical connectors
US20200316359A1 (en) * 2019-04-04 2020-10-08 Becton, Dickinson And Company Multi-use blood control catheter assembly
US10821278B2 (en) 2014-05-02 2020-11-03 Excelsior Medical Corporation Strip package for antiseptic cap
US10888496B2 (en) 2015-09-17 2021-01-12 Corvida Medical, Inc. Medicament vial assembly
US10894317B2 (en) 2015-10-13 2021-01-19 Corvida Medical, Inc. Automated compounding equipment for closed fluid transfer system
US11344318B2 (en) 2016-07-18 2022-05-31 Merit Medical Systems, Inc. Inflatable radial artery compression device
US11351353B2 (en) 2008-10-27 2022-06-07 Icu Medical, Inc. Packaging container for antimicrobial caps
US11389634B2 (en) 2011-07-12 2022-07-19 Icu Medical, Inc. Device for delivery of antimicrobial agent into trans-dermal catheter
US11400195B2 (en) 2018-11-07 2022-08-02 Icu Medical, Inc. Peritoneal dialysis transfer set with antimicrobial properties
US11433215B2 (en) 2018-11-21 2022-09-06 Icu Medical, Inc. Antimicrobial device comprising a cap with ring and insert
US11471647B2 (en) 2014-11-07 2022-10-18 C. R. Bard, Inc. Connection system for tunneled catheters
US11517732B2 (en) 2018-11-07 2022-12-06 Icu Medical, Inc. Syringe with antimicrobial properties
US11517733B2 (en) 2017-05-01 2022-12-06 Icu Medical, Inc. Medical fluid connectors and methods for providing additives in medical fluid lines
US11534595B2 (en) 2018-11-07 2022-12-27 Icu Medical, Inc. Device for delivering an antimicrobial composition into an infusion device
US20220412495A1 (en) * 2019-11-22 2022-12-29 Overx Medical Limited A connector for forming a fluid flow pathway
US11541220B2 (en) 2018-11-07 2023-01-03 Icu Medical, Inc. Needleless connector with antimicrobial properties
US11541221B2 (en) 2018-11-07 2023-01-03 Icu Medical, Inc. Tubing set with antimicrobial properties
US11559467B2 (en) 2015-05-08 2023-01-24 Icu Medical, Inc. Medical connectors configured to receive emitters of therapeutic agents
US11806497B2 (en) 2017-03-31 2023-11-07 Becton Dickinson France Adaptor for connecting a drug delivery device to a connector
US11896782B2 (en) 2017-08-23 2024-02-13 C. R. Bard, Inc. Priming and tunneling system for a retrograde catheter assembly
US11944776B2 (en) 2020-12-07 2024-04-02 Icu Medical, Inc. Peritoneal dialysis caps, systems and methods
WO2024102192A1 (en) * 2022-11-08 2024-05-16 Carefusion 303, Inc. Fluid connector assembly with neutral fluid displacement that limits connector damage

Families Citing this family (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7611503B2 (en) * 2004-04-16 2009-11-03 Medrad, Inc. Fluid delivery system, fluid path set, sterile connector and improved drip chamber and pressure isolation mechanism
US8540698B2 (en) * 2004-04-16 2013-09-24 Medrad, Inc. Fluid delivery system including a fluid path set and a check valve connector
GB0225075D0 (en) * 2002-10-29 2002-12-04 Smiths Group Plc Valves
US20050082828A1 (en) * 2003-09-12 2005-04-21 Wicks Jeffrey C. Releasable connection assembly for joining tubing sections
US10478607B2 (en) 2004-08-09 2019-11-19 Carefusion 303, Inc. Connector for transferring fluid and method of use
US7600530B2 (en) 2004-08-09 2009-10-13 Medegen, Inc. Connector with check valve and method of use
PT1848913E (pt) * 2005-02-14 2013-10-16 Borla Ind Conector de fluido equipado com uma válvula
EP1885460B1 (en) 2005-05-10 2019-11-06 Oridion Medical, Ltd. Fluid drying mechanism
US20070225647A1 (en) * 2006-03-23 2007-09-27 Luther Ronald B Flush entrance hemostasis valve with unobstructed passageway
US7547300B2 (en) 2006-04-12 2009-06-16 Icu Medical, Inc. Vial adaptor for regulating pressure
US10369343B2 (en) * 2006-06-30 2019-08-06 Biocompatibles Uk Limited Apparatus and method to convey a fluid
US7883499B2 (en) 2007-03-09 2011-02-08 Icu Medical, Inc. Vial adaptors and vials for regulating pressure
RU2468273C2 (ru) * 2007-08-22 2012-11-27 Сосьете Бик Не взаимозаменяемые соединительные клапаны для топливных баллончиков
EP2227282A1 (en) 2007-11-25 2010-09-15 Oridion Medical (1987) Ltd. Improved endoscopic bite block
US8142418B2 (en) * 2007-12-19 2012-03-27 Kimberly-Clark Worldwide, Inc. Automatic shut-off connector for enteral feeding devices
US8251346B2 (en) * 2008-03-04 2012-08-28 Infusion Innovations, Inc. Devices, assemblies, and methods for controlling fluid flow
JP2011522583A (ja) 2008-05-28 2011-08-04 オリディオン メディカル 1987 リミテッド Co2をモニタリングする方法、装置および系
US8235426B2 (en) 2008-07-03 2012-08-07 Nordson Corporation Latch assembly for joining two conduits
WO2010022095A1 (en) 2008-08-20 2010-02-25 Icu Medical, Inc. Anti-reflux vial adaptors
US8888758B2 (en) 2008-09-05 2014-11-18 Carefusion 303, Inc. Closed male luer device for minimizing leakage during connection and disconnection
US8182452B2 (en) * 2009-04-06 2012-05-22 Carefusion 303, Inc. Closed male luer device for use with needleless access devices
US8221388B2 (en) * 2009-04-22 2012-07-17 Tyco Healthcare Group Lp Biased clamping assemblies
KR101659640B1 (ko) 2009-06-22 2016-09-26 엔피 메디컬 인크. 개선된 역압 밀봉을 갖는 의료용 밸브
IT1396791B1 (it) * 2009-11-26 2012-12-14 Borla Ind Connettore luer maschio valvolare
US9388929B2 (en) 2009-12-09 2016-07-12 Nordson Corporation Male bayonet connector
USD783815S1 (en) 2009-12-09 2017-04-11 General Electric Company Male dual lumen bayonet connector
US10711930B2 (en) 2009-12-09 2020-07-14 Nordson Corporation Releasable connection assembly
KR101762427B1 (ko) 2009-12-23 2017-07-28 제너럴 일렉트릭 캄파니 외팔보 스프링이 일체로 성형된 버튼 래치
CN102753877B (zh) 2009-12-23 2014-11-12 诺信公司 具有轮廓导入部分的流体连接器闩
FR2956326A1 (fr) * 2010-02-17 2011-08-19 Vygon Ensemble de connecteurs pour un circuit liquide
US9056163B2 (en) * 2010-02-24 2015-06-16 Becton, Dickinson And Company Safety drug delivery system
US9205248B2 (en) * 2010-02-24 2015-12-08 Becton, Dickinson And Company Safety Drug delivery connectors
JP5562130B2 (ja) 2010-06-14 2014-07-30 日本コヴィディエン株式会社 雄コネクター及びこれを備えた輸液ラインの接続装置
US8465461B2 (en) 2010-07-27 2013-06-18 Becton, Dickinson And Company Blunt needle safety drug delivery system
EP2600932A4 (en) * 2010-08-06 2015-04-08 Nordson Corp DISCONNECT VALVES FOR FLUID CONDUIT FITTINGS
CN102553027B (zh) * 2010-12-22 2015-06-03 潘秀凤 无正负压免针式注射连接器
US8945068B2 (en) 2011-02-22 2015-02-03 Medtronic Minimed, Inc. Fluid reservoir having a fluid delivery needle for a fluid infusion device
US9463309B2 (en) 2011-02-22 2016-10-11 Medtronic Minimed, Inc. Sealing assembly and structure for a fluid infusion device having a needled fluid reservoir
US9283318B2 (en) * 2011-02-22 2016-03-15 Medtronic Minimed, Inc. Flanged sealing element and needle guide pin assembly for a fluid infusion device having a needled fluid reservoir
US11266823B2 (en) 2011-02-22 2022-03-08 Medtronic Minimed, Inc. Retractable sealing assembly for a fluid reservoir of a fluid infusion device
US9393399B2 (en) 2011-02-22 2016-07-19 Medtronic Minimed, Inc. Sealing assembly for a fluid reservoir of a fluid infusion device
USD699840S1 (en) 2011-07-29 2014-02-18 Nordson Corporation Male body of connector for fluid tubing
USD698440S1 (en) 2011-07-29 2014-01-28 Nordson Corporation Connector for fluid tubing
USD699841S1 (en) 2011-07-29 2014-02-18 Nordson Corporation Female body of connector for fluid tubing
WO2013025946A1 (en) 2011-08-18 2013-02-21 Icu Medical, Inc. Pressure-regulating vial adaptors
DE202012013299U1 (de) * 2011-12-13 2016-02-02 Oridion Medical 1987 Ltd. Luer-verbindungen
USD709612S1 (en) 2011-12-23 2014-07-22 Nordson Corporation Female dual lumen connector
CN104168948B (zh) 2012-01-13 2017-03-01 Icu医学有限公司 控压型管形瓶接头和方法
EP3974018A1 (en) * 2012-03-07 2022-03-30 DEKA Products Limited Partnership Infusion pump assembly
AU2013204180B2 (en) 2012-03-22 2016-07-21 Icu Medical, Inc. Pressure-regulating vial adaptors
IN2015DN00291A (es) * 2012-06-28 2015-06-12 Saint Gobain Performance Plast
WO2014055407A1 (en) 2012-10-01 2014-04-10 Circulite, Inc. Implantable connector assembly and method of communicating an element to an implantable device
US9089475B2 (en) 2013-01-23 2015-07-28 Icu Medical, Inc. Pressure-regulating vial adaptors
ES2739291T3 (es) 2013-01-23 2020-01-30 Icu Medical Inc Adaptadores de vial de regulación de presión
US8814849B1 (en) * 2013-02-14 2014-08-26 Nexus Medical, Llc Infusion check valve for medical devices
US9604184B2 (en) 2013-03-06 2017-03-28 Orthovita, Inc. Mixing system and valve assembly
US9308362B2 (en) 2013-03-12 2016-04-12 Carefusion 303, Inc. Male luer with fluid path and vent path seals
US9278205B2 (en) 2013-03-13 2016-03-08 Carefusion 303, Inc. Collapsible valve with internal dimples
US9089682B2 (en) 2013-03-14 2015-07-28 Carefusion 303, Inc. Needleless connector with support member
US9370651B2 (en) 2013-03-13 2016-06-21 Carefusion 303, Inc. Needleless connector with reduced trapped volume
US9144672B2 (en) 2013-03-13 2015-09-29 Carefusion 303, Inc. Needleless connector with compressible valve
US8840577B1 (en) 2013-03-14 2014-09-23 Carefusion 303, Inc. Needleless connector with flexible valve
EP2967516A4 (en) 2013-03-15 2016-11-16 Prabhat K Ahluwalia EXPANSION AND CONTENT DELIVERY SYSTEM
CN104096283B (zh) * 2013-04-12 2017-09-19 蔡溪进 防止药液外漏的免针输液接头
US9415199B2 (en) * 2013-06-14 2016-08-16 Skill Partner Limited Leak proof needleless medical connector
CA3183752A1 (en) * 2013-07-03 2015-01-08 Deka Products Limited Partnership Fluid connector assembly
WO2015009746A2 (en) 2013-07-19 2015-01-22 Icu Medical, Inc. Pressure-regulating fluid transfer systems and methods
ITMO20130264A1 (it) * 2013-09-25 2015-03-26 Giuseppe Maffei Connettore senza ago
JP5952791B2 (ja) * 2013-09-27 2016-07-13 溪進 蔡 薬液漏れ防止タイプの針なし輸液用コネクタ
DE102013220073A1 (de) 2013-10-02 2015-04-16 Parker Hannifin Manufacturing Germany GmbH & Co. KG Verbindungselement
AU2015277135B2 (en) 2014-06-20 2020-02-20 Icu Medical, Inc. Pressure-regulating vial adaptors
WO2016051759A1 (ja) * 2014-09-29 2016-04-07 テルモ株式会社 メスコネクタ、オスコネクタ及びコネクタ接続体
EP3270979B1 (en) 2015-03-18 2020-08-19 Puracath Medical, Inc. Catheter connection system for ultraviolet light disinfection
BR112017023001B1 (pt) 2015-06-12 2022-07-19 Becton Dickinson France Adaptador para um dispositivo de administração de fármaco e dispositivo de administração de fármaco
ITUB20151860A1 (it) * 2015-07-02 2017-01-02 Gvs Spa Connettore medicale perfezionato
WO2017008012A1 (en) * 2015-07-08 2017-01-12 Infusion Innovations, Inc. Valve assembly and methods of use
US9987479B2 (en) * 2015-07-09 2018-06-05 Carefusion 303, Inc. Closed male luer device for use with needleless access devices
CN105311691B (zh) * 2015-11-28 2017-06-30 庄奕虹 一种带有自动连接头的引流袋装置
US10271935B2 (en) * 2016-01-25 2019-04-30 Team Technologies, Inc. Unit dose package with ball seal
JP2019503256A (ja) 2016-01-29 2019-02-07 アイシーユー・メディカル・インコーポレーテッド 圧力調節バイアルアダプタ
DE102016203518A1 (de) * 2016-03-03 2017-09-07 B. Braun Melsungen Ag Verbindungseinrichtung eines medizinischen Infusionssystems
CN110049790A (zh) 2016-07-11 2019-07-23 普拉卡斯医疗公司 用于紫外线消毒的导管连接系统
JP7010923B2 (ja) 2016-07-29 2022-01-26 アヴェント インコーポレイテッド 経腸栄養デバイス用のタンパ防止コネクタ及び経腸栄養システム
US10537727B2 (en) * 2016-09-21 2020-01-21 Avasys, Llc Sterile connection access system for fluid fittings
JP6962923B2 (ja) 2016-09-26 2021-11-05 テルモ株式会社 オスコネクタ、医療器具及び接続方法
CA3037577A1 (en) 2016-09-30 2018-04-05 Icu Medical, Inc. Pressure-regulating vial access devices and methods
USD838366S1 (en) 2016-10-31 2019-01-15 Nordson Corporation Blood pressure connector
US11491317B2 (en) * 2017-01-09 2022-11-08 Fresenius Kabi Deutschland Gmbh Connector assembly for connecting medical lines to each other
EP3600213A1 (en) 2017-03-24 2020-02-05 CareFusion 303, Inc. Automatic drug compounder with hygroscopic member
DE102017210795A1 (de) * 2017-06-27 2018-12-27 B. Braun Melsungen Ag Medizinische Fluidverbindungsvorrichtung
JP6992235B2 (ja) * 2017-08-31 2022-01-13 株式会社トップ オスコネクタ及びコネクタシステム
CN107387916B (zh) * 2017-09-01 2023-08-15 哈尔滨工程大学 一种无污染的水下单路液压接头
WO2019074716A1 (en) * 2017-10-11 2019-04-18 Heartware, Inc. DRY / NO BUBBLE COUPLING FOR BLOOD TRANSFER
US11491275B2 (en) * 2018-01-11 2022-11-08 Michael A. Merchant Closed system elastomeric pumping mechanism
CN108508901A (zh) * 2018-06-04 2018-09-07 西南石油大学 一种石油化工厂智能巡检机器人
DE102019217309A1 (de) * 2019-11-08 2021-05-12 B. Braun Melsungen Aktiengesellschaft Gegendorn-Kupplungselement, Dorn-Kupplungselement sowie Kupplungssystem für ein geschlossenes Fluidtransfersystem
DE102019217987A1 (de) * 2019-11-21 2021-05-27 B. Braun Melsungen Aktiengesellschaft Kupplungselement für ein geschlossenes Fluidtransfersystem, Gegenkupplungselement für ein solches Kupplungselement sowie Kupplungssystem
CN111255967B (zh) * 2020-01-14 2022-03-29 华为技术有限公司 一种液体插接头、液体插接组件及设备互连系统
TWI748600B (zh) * 2020-08-14 2021-12-01 蔡溪進 具有壓縮對接拆卸吸取殘留藥液的封閉連接器
US11779750B2 (en) * 2020-09-29 2023-10-10 Carefusion 303, Inc. Needleless connector with valve pivot support
CN113144320B (zh) * 2021-05-21 2024-07-12 端源医疗科技无锡有限公司 一种自动止流血液透析留置针及使用方法
JP2024531159A (ja) * 2021-08-09 2024-08-29 サイト セイバー インコーポレーテッド 離脱コネクタ
USD1048571S1 (en) 2021-10-07 2024-10-22 Masimo Corporation Bite block
JP7208334B1 (ja) 2021-11-01 2023-01-18 溪進 蔡 分解過程において残留薬液を吸引するための圧縮性突き合わせ継手を備えた密封接続器
US20230213106A1 (en) * 2022-01-05 2023-07-06 Belgravia Wood Limited Air valve, inflation, and deflation apparatuses and methods
US20230321425A1 (en) * 2022-04-07 2023-10-12 Carefusion 303, Inc. Fluid connector system
WO2024100671A1 (en) * 2022-11-12 2024-05-16 Elcam Medical Safe disconnect intra-medical tubing connector assembly
KR102592609B1 (ko) 2023-06-30 2023-10-23 엔지오텍 주식회사 공기 배출부가 구비된 루어 커넥터 구조체

Citations (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2931668A (en) 1956-04-30 1960-04-05 Bastian Blessing Co Coupling
US2968497A (en) 1958-02-05 1961-01-17 Avro Aircraft Ltd Self-sealing coupling
US4233982A (en) 1977-11-24 1980-11-18 Richard Wolf Gmbh Trocar sleeves having a ball valve
US4245635A (en) 1979-01-29 1981-01-20 Jelco Laboratories Catheter assembly for intermittent intravenous use
US4379458A (en) 1977-11-24 1983-04-12 Richard Wolf Gmbh Trocar sleeves having a ball valve
US4862913A (en) 1987-07-09 1989-09-05 Dieter Wildfang Kg Check valve
US5065783A (en) 1990-09-20 1991-11-19 George Braddock Ogle, II Valve with self-sealing internal cannula
US5098385A (en) 1990-04-26 1992-03-24 Baxter International Inc. Two-way valve for infusion devices
US5203775A (en) 1990-09-18 1993-04-20 Medex, Inc. Needleless connector sample site
US5211634A (en) 1991-08-06 1993-05-18 Vaillancourt Vincent L Composite seal structure and a coupling arrangement for a cannula
US5334159A (en) 1992-03-30 1994-08-02 Symbiosis Corporation Thoracentesis needle assembly utilizing check valve
US5380306A (en) 1991-11-25 1995-01-10 Vygon Unitary composite connector for a liquid circuit, in particular for medical applications
US5397314A (en) 1992-10-09 1995-03-14 Farley; Kevin Surgical cannula with ball valve
US5405323A (en) 1994-02-22 1995-04-11 Aeroquip Corporation Catheter check valve assembly
US5405333A (en) 1992-12-28 1995-04-11 Richmond; Frank M. Liquid medicament bag with needleless connector fitting using boat assembly
US5492147A (en) 1995-01-17 1996-02-20 Aeroquip Corporation Dry break coupling
US5514117A (en) 1988-09-06 1996-05-07 Lynn; Lawrence A. Connector having a medical cannula
US5520665A (en) 1992-09-07 1996-05-28 Bespak Plc Connecting apparatus for medical conduits
US5540661A (en) 1994-05-03 1996-07-30 Medex, Inc. Needleless valve having a covalently bonded lubricious coating
US5549566A (en) 1994-10-27 1996-08-27 Abbott Laboratories Valved intravenous fluid line infusion device
US5575769A (en) 1995-05-30 1996-11-19 Vaillancourt; Vincent L. Cannula for a slit septum and a lock arrangement therefore
US5578059A (en) 1993-11-30 1996-11-26 Medex, Inc. Anti-reflux valve with environmental barrier
US5584819A (en) 1995-03-13 1996-12-17 Kopfer; Rudolph J. Nested blunt/sharp injection assembly
US5676346A (en) 1995-05-16 1997-10-14 Ivac Holdings, Inc. Needleless connector valve
US5738144A (en) 1996-10-11 1998-04-14 Aeroquip Corporation Luer connecting coupling
US5782816A (en) 1995-09-07 1998-07-21 David R. Kipp Bi-directional valve and method of using same
US5806831A (en) 1993-10-13 1998-09-15 Paradis; Joseph R. Control of fluid flow with internal cannula
US5839715A (en) 1995-05-16 1998-11-24 Alaris Medical Systems, Inc. Medical adapter having needleless valve and sharpened cannula
US5848994A (en) 1993-07-28 1998-12-15 Richmond; Frank M. IV sets with needleless spikeless fittings and valves
US6068011A (en) 1993-10-13 2000-05-30 Paradis; Joseph R. Control of fluid flow
US6079432A (en) 1996-07-02 2000-06-27 Paradis; Joseph R. Control of fluid flow by oval shaped valve member containing a cam interface
US6106502A (en) 1996-12-18 2000-08-22 Richmond; Frank M. IV sets with needleless fittings and valves
US6113068A (en) 1998-10-05 2000-09-05 Rymed Technologies Swabbable needleless injection port system having low reflux
US6206860B1 (en) 1993-07-28 2001-03-27 Frank M. Richmond Spikeless connection and drip chamber with valve
US6299132B1 (en) 1999-03-31 2001-10-09 Halkey-Roberts Corporation Reflux valve
US6485472B1 (en) 1998-03-12 2002-11-26 Frank M. Richmond Spikeless connection and drip chamber with valve
WO2003013646A2 (en) 2001-08-10 2003-02-20 Alaris Medical Systems, Inc. Valved male luer
US20030060779A1 (en) 1996-12-18 2003-03-27 Richmond Frank M. Spikeless connection and drip chamber with valve

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5549556A (en) * 1992-11-19 1996-08-27 Medtronic, Inc. Rapid exchange catheter with external wire lumen
CN2344036Y (zh) * 1998-04-30 1999-10-20 鞍山钢铁集团公司 医用负压引流装置保护阀
US6695817B1 (en) * 2000-07-11 2004-02-24 Icu Medical, Inc. Medical valve with positive flow characteristics
US6964406B2 (en) * 2001-08-10 2005-11-15 Alaris Medical Systems, Inc. Valved male luer
US6802490B2 (en) * 2001-11-29 2004-10-12 Alaris Medical Systems, Inc. Needle free medical connector with expanded valve mechanism and method of fluid flow control

Patent Citations (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2931668A (en) 1956-04-30 1960-04-05 Bastian Blessing Co Coupling
US2968497A (en) 1958-02-05 1961-01-17 Avro Aircraft Ltd Self-sealing coupling
US4233982A (en) 1977-11-24 1980-11-18 Richard Wolf Gmbh Trocar sleeves having a ball valve
US4379458A (en) 1977-11-24 1983-04-12 Richard Wolf Gmbh Trocar sleeves having a ball valve
US4245635A (en) 1979-01-29 1981-01-20 Jelco Laboratories Catheter assembly for intermittent intravenous use
US4862913A (en) 1987-07-09 1989-09-05 Dieter Wildfang Kg Check valve
US5514117A (en) 1988-09-06 1996-05-07 Lynn; Lawrence A. Connector having a medical cannula
US5098385A (en) 1990-04-26 1992-03-24 Baxter International Inc. Two-way valve for infusion devices
US5203775A (en) 1990-09-18 1993-04-20 Medex, Inc. Needleless connector sample site
USRE35841E (en) 1990-09-18 1998-07-07 Medex, Inc. Needleless connector sample site
US5065783A (en) 1990-09-20 1991-11-19 George Braddock Ogle, II Valve with self-sealing internal cannula
US5211634A (en) 1991-08-06 1993-05-18 Vaillancourt Vincent L Composite seal structure and a coupling arrangement for a cannula
US5380306A (en) 1991-11-25 1995-01-10 Vygon Unitary composite connector for a liquid circuit, in particular for medical applications
US5334159A (en) 1992-03-30 1994-08-02 Symbiosis Corporation Thoracentesis needle assembly utilizing check valve
US5520665A (en) 1992-09-07 1996-05-28 Bespak Plc Connecting apparatus for medical conduits
US5397314A (en) 1992-10-09 1995-03-14 Farley; Kevin Surgical cannula with ball valve
US5405333A (en) 1992-12-28 1995-04-11 Richmond; Frank M. Liquid medicament bag with needleless connector fitting using boat assembly
US5848994A (en) 1993-07-28 1998-12-15 Richmond; Frank M. IV sets with needleless spikeless fittings and valves
US6206860B1 (en) 1993-07-28 2001-03-27 Frank M. Richmond Spikeless connection and drip chamber with valve
US5645538A (en) 1993-09-16 1997-07-08 Richmond; Frank M. Needleless valve for use in intravenous infusion
US5806831A (en) 1993-10-13 1998-09-15 Paradis; Joseph R. Control of fluid flow with internal cannula
US6068011A (en) 1993-10-13 2000-05-30 Paradis; Joseph R. Control of fluid flow
US5578059A (en) 1993-11-30 1996-11-26 Medex, Inc. Anti-reflux valve with environmental barrier
US5405323A (en) 1994-02-22 1995-04-11 Aeroquip Corporation Catheter check valve assembly
US5540661A (en) 1994-05-03 1996-07-30 Medex, Inc. Needleless valve having a covalently bonded lubricious coating
US5549566A (en) 1994-10-27 1996-08-27 Abbott Laboratories Valved intravenous fluid line infusion device
US5492147A (en) 1995-01-17 1996-02-20 Aeroquip Corporation Dry break coupling
US5584819A (en) 1995-03-13 1996-12-17 Kopfer; Rudolph J. Nested blunt/sharp injection assembly
US6142446A (en) 1995-05-16 2000-11-07 Alaris Medical Systems, Inc. Medical adapter having needleless valve and sharpened cannula
US5839715A (en) 1995-05-16 1998-11-24 Alaris Medical Systems, Inc. Medical adapter having needleless valve and sharpened cannula
US5676346A (en) 1995-05-16 1997-10-14 Ivac Holdings, Inc. Needleless connector valve
US5575769A (en) 1995-05-30 1996-11-19 Vaillancourt; Vincent L. Cannula for a slit septum and a lock arrangement therefore
US5782816A (en) 1995-09-07 1998-07-21 David R. Kipp Bi-directional valve and method of using same
US6079432A (en) 1996-07-02 2000-06-27 Paradis; Joseph R. Control of fluid flow by oval shaped valve member containing a cam interface
US5738144A (en) 1996-10-11 1998-04-14 Aeroquip Corporation Luer connecting coupling
US6106502A (en) 1996-12-18 2000-08-22 Richmond; Frank M. IV sets with needleless fittings and valves
US20030060779A1 (en) 1996-12-18 2003-03-27 Richmond Frank M. Spikeless connection and drip chamber with valve
US6485472B1 (en) 1998-03-12 2002-11-26 Frank M. Richmond Spikeless connection and drip chamber with valve
US6113068A (en) 1998-10-05 2000-09-05 Rymed Technologies Swabbable needleless injection port system having low reflux
US6299132B1 (en) 1999-03-31 2001-10-09 Halkey-Roberts Corporation Reflux valve
WO2003013646A2 (en) 2001-08-10 2003-02-20 Alaris Medical Systems, Inc. Valved male luer

Cited By (186)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8444628B2 (en) 2000-07-11 2013-05-21 Icu Medical, Inc. Needleless medical connector
US8870850B2 (en) 2000-07-11 2014-10-28 Icu Medical, Inc. Medical connector
US9238129B2 (en) 2000-07-11 2016-01-19 Icu Medical, Inc. Medical connector
US20060163514A1 (en) * 2001-08-10 2006-07-27 Doyle Mark C Valved male luer with vacuum feature
US7306198B2 (en) * 2001-08-10 2007-12-11 Cardinal Health 303, Inc. Valved male luer with vacuum feature
US8636721B2 (en) 2003-11-20 2014-01-28 Henry M. Jackson Foundation For The Advancement Of Military Medicine, Inc. Portable hand pump for evacuation of fluids
US9907887B2 (en) 2003-11-20 2018-03-06 The Henry M. Jackson Foundation For The Advancement Of Military Medicine, Inc. Portable hand pump for evacuation of fluids
US10213532B2 (en) 2003-11-20 2019-02-26 The Henry M. Jackson Foundation For The Advancement Of Military Medicine, Inc. Portable hand pump for evacuation of fluids
US9393353B2 (en) 2003-11-20 2016-07-19 The Henry M. Jackson Foundation For The Advancement Of Military Medicine, Inc. Portable hand pump for evacuation of fluids
US20080009822A1 (en) * 2003-12-18 2008-01-10 Halkey-Roberts Corporation Needleless access vial
US11266785B2 (en) 2003-12-30 2022-03-08 Icu Medical, Inc. Medical connector with internal valve member movable within male projection
US10105492B2 (en) 2003-12-30 2018-10-23 Icu Medical, Inc. Medical connector with internal valve member movable within male luer projection
US9592344B2 (en) 2003-12-30 2017-03-14 Icu Medical, Inc. Medical connector with internal valve member movable within male luer projection
US9707346B2 (en) 2003-12-30 2017-07-18 Icu Medical, Inc. Medical valve connector
US7758566B2 (en) 2003-12-30 2010-07-20 Icu Medical, Inc. Valve assembly
US9913945B2 (en) 2003-12-30 2018-03-13 Icu Medical, Inc. Medical connector with internal valve member movable within male luer projection
US8066692B2 (en) 2003-12-30 2011-11-29 Icu Medical, Inc. Medical male luer connector with increased closing volume
US8556868B2 (en) 2003-12-30 2013-10-15 Icu Medical, Inc. Syringe with multi-pronged actuator
US8083728B2 (en) 2004-03-18 2011-12-27 C. R. Bard, Inc. Multifunction adaptor for an open-ended catheter
US7854731B2 (en) 2004-03-18 2010-12-21 C. R. Bard, Inc. Valved catheter
US8523840B2 (en) 2004-03-18 2013-09-03 C. R. Bard, Inc. Connector system for a proximally trimmable catheter
US7883502B2 (en) 2004-03-18 2011-02-08 C. R. Bard, Inc. Connector system for a proximally trimmable catheter
US8177771B2 (en) 2004-03-18 2012-05-15 C. R. Bard, Inc. Catheter connector
US20100010445A1 (en) * 2004-03-18 2010-01-14 C. R. Bard, Inc. Connector system for a proximally trimmable catheter
US20080200901A1 (en) * 2004-04-01 2008-08-21 C. R. Bard, Inc. Catheter connector system
US20060015086A1 (en) * 2004-04-01 2006-01-19 Kelly Rasmussen Catheter connector system
US8177770B2 (en) 2004-04-01 2012-05-15 C. R. Bard, Inc. Catheter connector system
US7377915B2 (en) 2004-04-01 2008-05-27 C. R. Bard, Inc. Catheter connector system
US8814839B2 (en) 2004-10-12 2014-08-26 C. R. Bard, Inc. Corporeal drainage system
US10946123B2 (en) 2004-10-12 2021-03-16 Merit Medical Systems, Inc. Corporeal drainage system
US9295764B2 (en) 2004-10-12 2016-03-29 C. R. Bard, Inc. Corporeal drainage system
US9913935B2 (en) 2004-10-12 2018-03-13 C. R. Bard, Inc. Corporeal drainage system
US8337475B2 (en) 2004-10-12 2012-12-25 C. R. Bard, Inc. Corporeal drainage system
US9186494B2 (en) 2004-11-05 2015-11-17 Icu Medical, Inc. Medical connector
US9415200B2 (en) 2004-11-05 2016-08-16 Icu Medical, Inc. Medical connector
US9884176B2 (en) 2004-11-05 2018-02-06 Icu Medical, Inc. Medical connector
US11883623B2 (en) 2004-11-05 2024-01-30 Icu Medical, Inc. Medical connector
US10722698B2 (en) 2004-11-05 2020-07-28 Icu Medical, Inc. Medical connector
US20100004634A1 (en) * 2004-12-10 2010-01-07 Cardinal Health 303, Inc. Self-sealing male luer connector with multiple seals
US7993328B2 (en) 2004-12-10 2011-08-09 Carefusion 303, Inc. Self-sealing male luer connector with multiple seals
US7875019B2 (en) 2005-06-20 2011-01-25 C. R. Bard, Inc. Connection system for multi-lumen catheter
US8206376B2 (en) 2005-06-20 2012-06-26 C. R. Bard, Inc. Connection system for multi-lumen catheter
US8852168B2 (en) 2005-06-20 2014-10-07 C. R. Bard, Inc. Connection system for multi-lumen catheter
US8617138B2 (en) 2005-06-20 2013-12-31 C. R. Bard, Inc. Connection system for multi-lumen catheter
US9724504B2 (en) 2005-07-06 2017-08-08 Icu Medical, Inc. Medical connector
US9126028B2 (en) 2005-07-06 2015-09-08 Icu Medical, Inc. Medical connector
US8211069B2 (en) * 2005-07-06 2012-07-03 Icu Medical, Inc. Medical connector with closeable male luer
US20070088293A1 (en) * 2005-07-06 2007-04-19 Fangrow Thomas F Jr Medical connector with closeable male luer
US9358379B2 (en) 2005-07-06 2016-06-07 Icu Medical, Inc. Medical connector with closeable male luer
US20070088292A1 (en) * 2005-07-06 2007-04-19 Fangrow Thomas F Jr Medical connector with closeable male luer
US10842982B2 (en) 2005-07-06 2020-11-24 Icu Medical, Inc. Medical connector
US20070088294A1 (en) * 2005-07-06 2007-04-19 Fangrow Thomas F Jr Medical connector with closeable male luer
US9636492B2 (en) 2005-07-06 2017-05-02 Icu Medical, Inc. Medical connector with translating rigid internal valve member and narrowed passage
US8777909B2 (en) * 2005-07-06 2014-07-15 Icu Medical, Inc. Medical connector with closeable male luer
US9974939B2 (en) 2005-07-06 2018-05-22 Icu Medical, Inc. Medical connector
US7803139B2 (en) 2005-07-06 2010-09-28 Icu Medical, Inc. Medical connector with closeable male luer
US8262628B2 (en) * 2005-07-06 2012-09-11 Icu Medical, Inc. Medical connector with closeable male luer
US9974940B2 (en) 2005-07-06 2018-05-22 Icu Medical, Inc. Medical connector
US8777908B2 (en) * 2005-07-06 2014-07-15 Icu Medical, Inc. Medical connector with closeable male luer
US9126029B2 (en) 2005-07-06 2015-09-08 Icu Medical, Inc. Medical connector
US9114242B2 (en) 2005-07-06 2015-08-25 Icu Medical, Inc. Medical connector
US7803140B2 (en) 2005-07-06 2010-09-28 Icu Medical, Inc. Medical connector with closeable male luer
US7815614B2 (en) 2005-07-06 2010-10-19 Icu Medical, Inc. Medical connector with closeable male luer
US8177772B2 (en) 2005-09-26 2012-05-15 C. R. Bard, Inc. Catheter connection systems
US8235971B2 (en) 2005-09-26 2012-08-07 C. R. Bard, Inc. Catheter connection systems
US8545479B2 (en) 2005-12-28 2013-10-01 Covidien Lp Male luer connector
US20100269932A1 (en) * 2006-08-17 2010-10-28 Richmond Frank M Resealable Components And Systems
US8221363B2 (en) 2006-10-18 2012-07-17 Baxter Healthcare S.A. Luer activated device with valve element under tension
US7981090B2 (en) 2006-10-18 2011-07-19 Baxter International Inc. Luer activated device
US7753338B2 (en) 2006-10-23 2010-07-13 Baxter International Inc. Luer activated device with minimal fluid displacement
US8105314B2 (en) 2006-10-25 2012-01-31 Icu Medical, Inc. Medical connector
US8628515B2 (en) 2006-10-25 2014-01-14 Icu Medical, Inc. Medical connector
US9533137B2 (en) 2006-10-25 2017-01-03 Icu Medical, Inc. Medical connector
US8398607B2 (en) 2006-10-25 2013-03-19 Icu Medical, Inc. Medical connector
US10398887B2 (en) 2007-05-16 2019-09-03 Icu Medical, Inc. Medical connector
US11786715B2 (en) 2007-05-16 2023-10-17 Icu Medical, Inc. Medical connector
US7998134B2 (en) 2007-05-16 2011-08-16 Icu Medical, Inc. Medical connector
US20090204080A1 (en) * 2008-02-12 2009-08-13 Baxter International Inc. Two-way valve connector
US10058483B2 (en) 2008-05-14 2018-08-28 J&J Solutions, Inc. Systems and methods for safe medicament transport
US8414556B2 (en) 2008-05-14 2013-04-09 J & J Solutions, Inc. Systems and methods for safe medicament transport
US8894627B2 (en) 2008-05-14 2014-11-25 J & J Solutions, Inc. Systems and methods for safe medicament transport
US8414554B2 (en) 2008-05-14 2013-04-09 J & J Solutions, Inc. Systems and methods for safe medicament transport
US8414555B2 (en) 2008-05-14 2013-04-09 J & J Solutions, Inc. Systems and methods for safe medicament transport
US10966905B2 (en) 2008-05-14 2021-04-06 Corvida Medical, Inc. Systems and methods for safe medicament transport
US8469940B2 (en) 2008-05-14 2013-06-25 J & J Solutions, Inc. Systems and methods for safe medicament transport
US9220661B2 (en) 2008-05-14 2015-12-29 J & J Solutions, Inc. Systems and methods for safe medicament transport
US20100030164A1 (en) * 2008-08-04 2010-02-04 Np Medical Inc. Medical Valve with Raised Seal
US11351353B2 (en) 2008-10-27 2022-06-07 Icu Medical, Inc. Packaging container for antimicrobial caps
US10046154B2 (en) 2008-12-19 2018-08-14 Icu Medical, Inc. Medical connector with closeable luer connector
US10716928B2 (en) 2008-12-19 2020-07-21 Icu Medical, Inc. Medical connector with closeable luer connector
US11478624B2 (en) 2008-12-19 2022-10-25 Icu Medical, Inc. Medical connector with closeable luer connector
US9168366B2 (en) 2008-12-19 2015-10-27 Icu Medical, Inc. Medical connector with closeable luer connector
US8679090B2 (en) 2008-12-19 2014-03-25 Icu Medical, Inc. Medical connector with closeable luer connector
US9366371B2 (en) * 2009-03-22 2016-06-14 Elcam Medical Agricultural Cooperative Association Ltd. Closed male luer connector
US20140217719A1 (en) * 2009-03-22 2014-08-07 Elcam Medical Agricultural Cooperative Association Closed male luer connector
WO2010109449A1 (en) 2009-03-22 2010-09-30 Elcam Medical Agricultural Cooperative Association Ltd. Closed male luer connector
US10112039B2 (en) 2009-03-22 2018-10-30 Elcam Medical Agricultural Cooperative Association Ltd. Closed male luer connector
US8628516B2 (en) 2009-03-22 2014-01-14 Elcam Medical Agricultural Cooperative Association Ltd. Closed male luer connector
US8757590B2 (en) 2009-03-22 2014-06-24 Elcam Medical Agricultural Cooperative Association Ltd. Closed male luer connector
US12059545B2 (en) 2009-03-25 2024-08-13 Icu Medical, Inc. Medical connector with elongated portion within seal collar
US9440060B2 (en) 2009-03-25 2016-09-13 Icu Medical, Inc. Medical connectors and methods of use
US10391293B2 (en) 2009-03-25 2019-08-27 Icu Medical, Inc. Medical connectors and methods of use
US9278206B2 (en) 2009-03-25 2016-03-08 Icu Medical, Inc. Medical connectors and methods of use
US11986618B1 (en) 2009-03-25 2024-05-21 Icu Medical, Inc. Medical connector having elongated portion within seal collar
US12102786B2 (en) 2009-03-25 2024-10-01 Icu Medical, Inc. Medical connector with elongated portion within seal collar
US8454579B2 (en) 2009-03-25 2013-06-04 Icu Medical, Inc. Medical connector with automatic valves and volume regulator
US11931539B2 (en) 2009-03-25 2024-03-19 Icu Medical, Inc. Medical connectors and methods of use
US11896795B2 (en) 2009-03-25 2024-02-13 Icu Medical, Inc Medical connector having elongated portion within closely conforming seal collar
US11376411B2 (en) 2009-03-25 2022-07-05 Icu Medical, Inc. Medical connectors and methods of use
US10799692B2 (en) 2009-03-25 2020-10-13 Icu Medical, Inc. Medical connectors and methods of use
US10086188B2 (en) 2009-03-25 2018-10-02 Icu Medical, Inc. Medical connectors and methods of use
US20100249724A1 (en) * 2009-03-30 2010-09-30 Np Medical Inc. Medical Valve with Distal Seal Actuator
US8337484B2 (en) 2009-06-26 2012-12-25 C. R. Band, Inc. Proximally trimmable catheter including pre-attached bifurcation and related methods
US20120118581A1 (en) * 2009-09-30 2012-05-17 Vetco Gray Inc. Self sealing hydraulic coupler
US20110073324A1 (en) * 2009-09-30 2011-03-31 Vetco Gray Inc. Self Sealing Hydraulic Coupler
US8113287B2 (en) * 2009-09-30 2012-02-14 Vetco Gray Inc. Self sealing hydraulic coupler
US8403055B2 (en) * 2009-09-30 2013-03-26 Vetco Gray Inc. Self sealing hydraulic coupler
USD1003434S1 (en) 2010-03-23 2023-10-31 Icu Medical, Inc. Medical connector seal
USD1029246S1 (en) 2010-03-23 2024-05-28 Icu Medical, Inc. Medical connector seal
USD644731S1 (en) 2010-03-23 2011-09-06 Icu Medical, Inc. Medical connector
US8647310B2 (en) 2010-05-06 2014-02-11 Icu Medical, Inc. Medical connector with closeable luer connector
US8758306B2 (en) 2010-05-17 2014-06-24 Icu Medical, Inc. Medical connectors and methods of use
US9750926B2 (en) 2010-05-17 2017-09-05 Icu Medical, Inc. Medical connectors and methods of use
US9192753B2 (en) 2010-05-17 2015-11-24 Icu Medical, Inc. Medical connectors and methods of use
US10195413B2 (en) 2010-05-17 2019-02-05 Icu Medical, Inc. Medical connectors and methods of use
US9205243B2 (en) 2010-05-17 2015-12-08 Icu Medical, Inc. Medical connectors and methods of use
US11071852B2 (en) 2010-05-17 2021-07-27 Icu Medical, Inc. Medical connectors and methods of use
US9107809B2 (en) 2010-05-27 2015-08-18 J & J Solutions, Inc. Closed fluid transfer system
US9381137B2 (en) 2010-05-27 2016-07-05 J & J Solutions, Inc. Closed fluid transfer system with syringe adapter
US10238576B2 (en) 2010-05-27 2019-03-26 J & J Solutions, Inc. Closed fluid transfer system
US9364396B2 (en) 2010-05-27 2016-06-14 J & J Solutions, Inc. Closed fluid transfer system with syringe adapter
US9358182B2 (en) 2010-05-27 2016-06-07 J & J Solutions, Inc. Closed fluid transfer system with syringe adapter
US11219577B2 (en) 2010-05-27 2022-01-11 Corvida Medical, Inc. Closed fluid transfer system
US9351906B2 (en) 2010-05-27 2016-05-31 J & J Solutions, Inc. Closed fluid transfer system with syringe adapter
US9370466B2 (en) 2010-05-27 2016-06-21 J&J Solutions, Inc. Closed fluid transfer system with syringe adapter
US9027582B2 (en) * 2011-03-30 2015-05-12 Liqui-Box Corporation Flush adaptor for use with a valve fitment assembly for cleaning of the assembly
US20120247513A1 (en) * 2011-03-30 2012-10-04 Liqui-Box Corporation Flush adaptor for use with a valve fitment assembly for cleaning of the assembly
US10695550B2 (en) 2011-05-20 2020-06-30 Excelsior Medical Corporation Caps for needleless connectors
US11826539B2 (en) 2011-07-12 2023-11-28 Icu Medical, Inc. Device for delivery of antimicrobial agent into a medical device
US11389634B2 (en) 2011-07-12 2022-07-19 Icu Medical, Inc. Device for delivery of antimicrobial agent into trans-dermal catheter
US11168818B2 (en) 2011-09-09 2021-11-09 Icu Medical, Inc. Axially engaging medical connector system that inhibits fluid penetration between mating surfaces
US10156306B2 (en) 2011-09-09 2018-12-18 Icu Medical, Inc. Axially engaging medical connector system with fluid-resistant mating interfaces
US10697570B2 (en) 2011-09-09 2020-06-30 Icu Medical, Inc. Axially engaging medical connector system with diminished fluid remnants
US11808389B2 (en) 2011-09-09 2023-11-07 Icu Medical, Inc. Medical connectors with luer-incompatible connection portions
US9933094B2 (en) 2011-09-09 2018-04-03 Icu Medical, Inc. Medical connectors with fluid-resistant mating interfaces
USD1042817S1 (en) 2011-09-09 2024-09-17 Icu Medical, Inc. Medical connector
US20130327794A1 (en) * 2012-05-21 2013-12-12 The Coca-Cola Company Bag in Box Cleanable Connector System Having Conical Plunger
US9162806B2 (en) * 2012-05-21 2015-10-20 The Coca-Cola Company Bag in box cleanable connector system having conical plunger
US9085399B2 (en) * 2012-05-21 2015-07-21 The Coca-Cola Company Bag in box cleanable connector system
US20130306676A1 (en) * 2012-05-21 2013-11-21 The Coca-Cola Company Bag in Box Cleanable Connector System
US9877895B2 (en) 2013-08-02 2018-01-30 J&J Solutions, Inc. Compounding systems and methods for safe medicament transport
US10286203B2 (en) * 2013-08-21 2019-05-14 Cedic S.R. L. Needlefree valve device
US20160199635A1 (en) * 2013-08-21 2016-07-14 Cedic s.r.I. Needlefree valve device
US20160199634A1 (en) * 2013-08-21 2016-07-14 Cedic S. R. L. Needlefree valve device
US11364372B2 (en) 2013-12-11 2022-06-21 Icu Medical, Inc. Check valve
US10369349B2 (en) 2013-12-11 2019-08-06 Icu Medical, Inc. Medical fluid manifold
CN103727336A (zh) * 2013-12-31 2014-04-16 辽宁东泰自动化设备制造有限公司 一种快速连接器
US10821278B2 (en) 2014-05-02 2020-11-03 Excelsior Medical Corporation Strip package for antiseptic cap
US11998715B2 (en) 2014-05-02 2024-06-04 Excelsior Medical Corporation Strip package for antiseptic cap
US11471647B2 (en) 2014-11-07 2022-10-18 C. R. Bard, Inc. Connection system for tunneled catheters
USD786427S1 (en) 2014-12-03 2017-05-09 Icu Medical, Inc. Fluid manifold
USD793551S1 (en) 2014-12-03 2017-08-01 Icu Medical, Inc. Fluid manifold
USD826400S1 (en) 2014-12-03 2018-08-21 Icu Medical, Inc. Fluid manifold
USD849939S1 (en) 2014-12-03 2019-05-28 Icu Medical, Inc. Fluid manifold
USD890335S1 (en) 2014-12-03 2020-07-14 Icu Medical, Inc. Fluid manifold
US11559467B2 (en) 2015-05-08 2023-01-24 Icu Medical, Inc. Medical connectors configured to receive emitters of therapeutic agents
US10888496B2 (en) 2015-09-17 2021-01-12 Corvida Medical, Inc. Medicament vial assembly
US10894317B2 (en) 2015-10-13 2021-01-19 Corvida Medical, Inc. Automated compounding equipment for closed fluid transfer system
US11344318B2 (en) 2016-07-18 2022-05-31 Merit Medical Systems, Inc. Inflatable radial artery compression device
US10744316B2 (en) 2016-10-14 2020-08-18 Icu Medical, Inc. Sanitizing caps for medical connectors
US11497904B2 (en) 2016-10-14 2022-11-15 Icu Medical, Inc. Sanitizing caps for medical connectors
US11806497B2 (en) 2017-03-31 2023-11-07 Becton Dickinson France Adaptor for connecting a drug delivery device to a connector
US11517733B2 (en) 2017-05-01 2022-12-06 Icu Medical, Inc. Medical fluid connectors and methods for providing additives in medical fluid lines
US11896782B2 (en) 2017-08-23 2024-02-13 C. R. Bard, Inc. Priming and tunneling system for a retrograde catheter assembly
US11541220B2 (en) 2018-11-07 2023-01-03 Icu Medical, Inc. Needleless connector with antimicrobial properties
US11400195B2 (en) 2018-11-07 2022-08-02 Icu Medical, Inc. Peritoneal dialysis transfer set with antimicrobial properties
US11541221B2 (en) 2018-11-07 2023-01-03 Icu Medical, Inc. Tubing set with antimicrobial properties
US11534595B2 (en) 2018-11-07 2022-12-27 Icu Medical, Inc. Device for delivering an antimicrobial composition into an infusion device
US11517732B2 (en) 2018-11-07 2022-12-06 Icu Medical, Inc. Syringe with antimicrobial properties
US11433215B2 (en) 2018-11-21 2022-09-06 Icu Medical, Inc. Antimicrobial device comprising a cap with ring and insert
US12109365B2 (en) 2018-11-21 2024-10-08 Icu Medical, Inc Antimicrobial device comprising a cap with ring and insert
US20200316359A1 (en) * 2019-04-04 2020-10-08 Becton, Dickinson And Company Multi-use blood control catheter assembly
US11708926B2 (en) * 2019-11-22 2023-07-25 Overx Medical Limited Connector for forming a fluid flow pathway
US20220412495A1 (en) * 2019-11-22 2022-12-29 Overx Medical Limited A connector for forming a fluid flow pathway
US11944776B2 (en) 2020-12-07 2024-04-02 Icu Medical, Inc. Peritoneal dialysis caps, systems and methods
WO2024102192A1 (en) * 2022-11-08 2024-05-16 Carefusion 303, Inc. Fluid connector assembly with neutral fluid displacement that limits connector damage

Also Published As

Publication number Publication date
RU2007125990A (ru) 2009-01-20
AU2005325153A1 (en) 2006-07-27
EP1827567A1 (en) 2007-09-05
KR20070086944A (ko) 2007-08-27
ES2728599T3 (es) 2019-10-25
RU2394608C2 (ru) 2010-07-20
US20060202146A1 (en) 2006-09-14
US20050087715A1 (en) 2005-04-28
KR101227399B1 (ko) 2013-01-29
ZA200705175B (en) 2008-11-26
JP2008522729A (ja) 2008-07-03
CA2591329A1 (en) 2006-07-27
HK1117087A1 (en) 2009-01-09
JP5285911B2 (ja) 2013-09-11
EP1827567B1 (en) 2019-02-06
BRPI0518974A2 (pt) 2008-12-16
CN101111282B (zh) 2010-09-22
NZ555751A (en) 2010-11-26
AU2005325153B2 (en) 2011-08-04
WO2006078355A1 (en) 2006-07-27
JP5688046B2 (ja) 2015-03-25
NO20073466L (no) 2007-09-07
CA2591329C (en) 2013-09-24
JP2012176265A (ja) 2012-09-13
CN101111282A (zh) 2008-01-23

Similar Documents

Publication Publication Date Title
US7044441B2 (en) Valved male luer connector having sequential valve timing
EP1603631B1 (en) Valved male luer
US7100891B2 (en) Valved male luer with vacuum feature
AU2002331044A1 (en) Valved male luer
US5520665A (en) Connecting apparatus for medical conduits

Legal Events

Date Code Title Description
AS Assignment

Owner name: CARDINAL HEALTH 303, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DOYLE, MARK C.;REEL/FRAME:016089/0299

Effective date: 20041209

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: CAREFUSION 303, INC.,CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:CARDINAL HEALTH 303, INC.;REEL/FRAME:023800/0598

Effective date: 20090801

Owner name: CAREFUSION 303, INC., CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:CARDINAL HEALTH 303, INC.;REEL/FRAME:023800/0598

Effective date: 20090801

FPAY Fee payment

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553)

Year of fee payment: 12