US6162886A - Copolymers which contain hydroxyl groups and a method of producing them - Google Patents

Copolymers which contain hydroxyl groups and a method of producing them Download PDF

Info

Publication number
US6162886A
US6162886A US09/015,852 US1585298A US6162886A US 6162886 A US6162886 A US 6162886A US 1585298 A US1585298 A US 1585298A US 6162886 A US6162886 A US 6162886A
Authority
US
United States
Prior art keywords
weight
acid
component
coating medium
medium according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US09/015,852
Other languages
English (en)
Inventor
Gerhard Bremer
Hermann Kerber
Manfred Krumme
Olaf Ley
Werner Stephan
Jorg Wabbels
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Axalta Coating Systems Germany GmbH and Co KG
Original Assignee
Herberts GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Herberts GmbH filed Critical Herberts GmbH
Assigned to HERBERTS GESELLSCHAFT MIT BESCHRANKTER HAFTUNG reassignment HERBERTS GESELLSCHAFT MIT BESCHRANKTER HAFTUNG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WABBELS, JORG, KERBER, HERMANN, LEY, OLAF, KRUMME, MANFRED, BREMER, GERHARD, STEPHAN, WERNER
Application granted granted Critical
Publication of US6162886A publication Critical patent/US6162886A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/62Polymers of compounds having carbon-to-carbon double bonds
    • C08G18/6216Polymers of alpha-beta ethylenically unsaturated carboxylic acids or of derivatives thereof
    • C08G18/625Polymers of alpha-beta ethylenically unsaturated carboxylic acids; hydrolyzed polymers of esters of these acids
    • C08G18/6258Polymers of alpha-beta ethylenically unsaturated carboxylic acids; hydrolyzed polymers of esters of these acids the acid groups being esterified with polyhydroxy compounds or epoxy compounds during or after polymerization
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • C08F220/325Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals containing glycidyl radical, e.g. glycidyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/20Esters of polyhydric alcohols or phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate

Definitions

  • This invention relates to copolymers which contain hydroxyl groups and which are suitable as binder vehicles for solvent-based coating media. They are employed, in particular, for the production of transparent and/or pigmented covering lacquer coats for the coating of vehicles and vehicle parts.
  • Copolymers which contain hydroxyl groups and which can be crosslinked with polyisocyanates or melamine resins are known as lacquer binder vehicles for the coating of vehicles.
  • lacquer binder vehicles for the coating of vehicles.
  • the properties of coating media formulated from these binder vehicles can be modified by diverse variations of the copolymer composition, as regards the type of monomer and the amount of monomer, and can be matched to requirement profiles which differ depending on the purpose of application.
  • DE-A-37 31 652 describes coating media based on polyacrylate resins which comprise hydroxyl, carboxyl and tertiary amino groups, wherein the copolymers are produced from hydroxy-functional olefnically unsaturated monomers, olefnically unsaturated carboxylic acids and other polymerisable monomers, and the reaction product is further reacted with compounds which contain isocyanate groups and tertiary amino groups.
  • the hydroxy-functional olefnically unsaturated monomers may consist in part of alkyl esters of unsaturated carboxylic acids which are modified with caprolactone and/or of reaction products of unsaturated carboxylic acids such as acrylic acid with glycidyl esters of alpha,alpha-dialkylalkane-monocarboxylic acids.
  • DE-A-28 51 616 describes copolymer solutions which are obtained by the reaction of unsaturated monocarboxylic acids with monoglycidyl compounds, e.g. of acrylic acid with glycidyl esters of alpha,alpha-dialkylalkane-monocarboxylic acids, in an organic solvent in the presence of monomeric vinyl compounds, and are subsequently polymerised with the vinyl compounds.
  • monoglycidyl compounds e.g. of acrylic acid with glycidyl esters of alpha,alpha-dialkylalkane-monocarboxylic acids
  • a disadvantage of the copolymer resins described above is that isocyanate-crosslinking coating media which are formulated from them exhibit unsatisfactory drying properties and an inadequate hardness under the conditions pertaining to the coating of automobiles for repair purposes.
  • EP-A-349 818 describes copolymers which contain hydroxyl groups and which are produced by the solution polymerisation of 5-25% by weight of vinyl esters of monocarboxylic acids, 10-50% by weight of aromatic vinyl hydrocarbons and 10-40% by weight of hydroxy-functional unsaturated monomers, wherein the monomers are added in a special manner.
  • the copolymers which are thus produced have a high content of residual monomers, comprising vinyl esters of monocarboxylic acids, which results in polymer solutions which are rendered strongly turbid.
  • clear lacquers produced from these copolymers have unsatisfactory drying properties at room temperature.
  • the object of the present invention is therefore to provide hydroxy-functional copolymers based on vinyl esters of monocarboxylic acids which have a very low residual monomer content of vinyl esters of saturated monocarboxylic acids and which result in polymer solutions which are free from turbidity.
  • Coating media formulated with these hydroxy-functional copolymers should produce films of high brilliance, and should exhibit short drying times and a very good hardness, particularly under the conditions of coating vehicles for repair purposes.
  • copolymers which have an OH number of 110-170 mg KOH/g, an acid number of 5-35 mg KOH/g and a number average molecular weight Mn of 1500-8000, which are obtainable by the polymerisation of
  • component C) contains
  • (meth)acryl here and hereinafter denotes acrylic and/or methacrylic.
  • the present invention further relates to solvent-based coating media, containing
  • Production of the copolymers according to the invention from components A), B), C) and optionally D) can be effected by polymerisation by customary methods, e.g. by bulk, solution or pearl polymerisation. These various polymerisation methods are well known to one skilled in the art.
  • the solution polymerisation method is preferred for the production of the copolymers according to the invention.
  • the solvent is initially placed in the reaction vessel and heated to its boiling temperature, and the monomer/initiator mixture is continuously added over a defined period.
  • Polymerisation is preferably conducted at temperatures between 100° C. and 180° C., most preferably at 130° C. to 160° C.
  • the polymerisation reaction may be initiated using known polymerisation initiators.
  • initiators which are preferably used for the polymerisation include: dialkyl peroxides such as di-tert.-butyl peroxide or dicumyl peroxide; diacyl peroxides such as dibenzoyl peroxide or di-lauroyl peroxide; peresters such as tert.-butyl perbenzoate or tert.-butyl perpivalate; hydroperoxides such as cumene hydroperoxide; and azo compounds such as azo-bis-cyclohexane-carbonitrile or azo-bis-isobutyronitrile.
  • dialkyl peroxides such as di-tert.-butyl peroxide or dicumyl peroxide
  • diacyl peroxides such as dibenzoyl peroxide or di-lauroyl peroxide
  • peresters such as tert.-butyl perbenzoate or tert.-butyl perpivalate
  • hydroperoxides such as
  • suitable organic solvents which can advantageously be used during the solution polymerisation step and which can also be used subsequently in the coating, media according to the invention include: glycol ethers such as ethylene glycol dimethyl ether or propylene glycol dimethyl ether; glycol ether esters such as ethyl glycol acetate, butyl glycol acetate, 3-methoxy-n-butyl acetate, isobutyl acetate or amyl acetate; ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone or isophorone; aromatic hydrocarbons (e.g. those with a boiling range of 136-180° C.); and aliphatic hydrocarbons.
  • glycol ethers such as ethylene glycol dimethyl ether or propylene glycol dimethyl ether
  • glycol ether esters such as ethyl glycol acetate, butyl glycol acetate, 3-methoxy-
  • Chain transfer agents such as mercaptans, esters of thioglycolic acid, cumene or dimeric alpha-methylstyrene for example, can be used to regulate the molecular weight.
  • the copolymers which are obtained from monomer components A), B), C) and optionally D) have an OH number of 110-170, preferably of 120-160 mg KOH/g, an acid number of 5-35, preferably of 10-30 mg KOH/g, a number average molecular weight Mn of 1500-8000, preferably of 2000-6000, and a glass transition temperature T g of 30-70° C., preferably of 40-60° C.
  • the copolymers have a maximum residual monomer content of vinyl esters of unsaturated monocarboxylic acids (component A) of 1% by weight, preferably less than 0.9% by weight (determined by the MCS method--multi-column switching gas chromatographic system), with respect to the total amount of component A used in each case.
  • Vinyl esters of saturated monocarboxylic acids preferably vinyl esters of saturated monocarboxylic acids which contain 5-15 C atoms in their molecule and which are branched in the alpha position, are used, separately or in admixture, as monomer component A).
  • Vinyl esters of saturated alpha-alkylalkane-monocarboxylic acids and/or of saturated alpha,alpha-dialkylalkane-monocarboxylic acids which contain 5-13 C atoms in their molecule are preferred in this respect.
  • the glycidyl esters of alpha,alpha-dialkylalkane-monocarboxylic acids which contain 9-11 C atoms in their molecule are particularly preferred.
  • the alkyl radicals here may also have a different number of C atoms.
  • the vinyl esters are obtained, for example, by the reaction of the aforementioned saturated monocarboxylic acids with acetylene. They are commercially available, e.g. as Veova 9, Veova 10.
  • Component A) is used in an amount of 5-20% by weight, preferably 8-14% by weight, with respect to t h e total copolymer.
  • Aromatic vinyl hydrocarbons preferably those which contain 8-9 C atoms per molecule, are used as monomer component B).
  • suitable compounds include styrene, alpha-methylstyrene, chlorostyrenes, vinyl toluenes, 2,5-dimethylstyrene and p-methoxystyrene. Styrene is preferably used.
  • Component B) is used in an amount of 10-30% by weight, preferably of 12-20% by weight, with respect to the total copolymer.
  • Monomer component C) comprises hydroxy-functional, unsaturated monomers.
  • Component C) is used in an amount of 41-55% by weight, preferably of 43-50% by weight, with respect to the total copolymer.
  • Hydroxy-functional component C) contains components C1) to C3).
  • Hydroxyalkyl esters of alpha,beta-unsaturated monocarboxylic acids with primary or secondary hydroxyl groups are used as component C1). These may be hydroxyalkyl esters of acrylic acid, methacrylic acid, crotonic acid and/or isocrotonic acid. Hydroxyalkyl esters of (meth)acrylic acid are preferred.
  • the hydroxyalkyl radicals may contain 1-10 C atoms, for example, preferably 2-6 C atoms.
  • Suitable hydroxyalkyl esters of alpha,beta-unsaturated monocarboxylic acids with primary hydroxyl groups include hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, hydroxybutyl (meth)acrylate, hydroxyethyl (meth)acrylate and hydroxyhexyl (meth)acrylate.
  • suitable hydroxyalkyl esters comprising secondary hydroxyl groups include 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate and 3-hydroxybutyl (meth)acrylate.
  • Component C1) is used in an amount of 40-70% by weight, preferably 50-60% by weight, with respect to the total amount of component C).
  • lactones are used as component C2).
  • suitable lactones are those which contain 3-15 C atoms in their ring, wherein their rings may also comprise different substituents.
  • the preferred lactones are gamma-butyrolactone, delta-valerolactone, epsilon-caprolactone, beta-hydroxy-beta-methyl-delta-valerolactone, lambda-laurolactone or mixtures thereof. Epsilon-caprolactone is particularly preferred.
  • Modification of the hydroxyl groups of part of the hydroxyalkyl esters of alpha,beta-unsaturated monocarboxylic acids (component C1) described above is effected by means of the lactones used, by an esterification reaction which proceeds with ring opening of the lactone. During this reaction, new terminal hydroxyl groups are produced, in the form of hydroxyalkyl ester groups which correspond to the respective lactone.
  • the reaction products are preferably one mole of a hydroxyalkyl ester of an alpha,beta-unsaturated monocarboxylic acid and 1-5 moles, preferably 2 moles on average, of a lactone. Modification of the hydroxyl groups of the hydroxyalkyl ester by the lactone can be effected before, during or following the copolymerisation reaction.
  • Component C2) is used in an amount of 1-10% by weight, preferably 1-6% by weight, with respect to the total amount of component C).
  • reaction products of alpha,beta-unsaturated monocarboxylic acids with glycidyl esters of saturated alpha-alkylalkane-monocarboxylic acids or of saturated alpha,alpha-dialkylalkane-monocarboxylic acids are used as component C3).
  • These are preferably the reaction products of (meth)acrylic acid with glycidyl esters of saturated alpha,alpha-diakylalkane-monocarboxylic acids which contain 7-13 C atoms in their molecule, most preferably those which contain 9-11 C atoms in their molecule.
  • the glycidyl esters are produced in the known manner, for example by the reaction of the corresponding carboxylic acids with epichlorohydrin. They are commercially available, e.g. as Cardura E10.
  • Reaction product C3) can be produced before the copolymerisation reaction or in the presence of the other unsaturated, polymerisable monomers.
  • Component C3) is used in an amount of 30-55% by weight, preferably 35-50% by weight, with respect to the total amount of component C).
  • Monomer component D) can be used for the production of the copolymers according to the invention.
  • Other unsaturated, polymerisable monomers, which are different from A), B) and C), can be used as component D). These may be unsaturated monomers which comprise other functional groups, e.g. amino groups, ether groups and carboxyl groups, and/or unsaturated monomers without other functional groups.
  • unsaturated monomers comprising carboxyl groups include alpha-beta-unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, crotonic acid and isocrotonic acid. Acrylic and methacrylic acids are preferred.
  • esters with cyclic alcohols include cyclohexyl acrylate, trimethylcyclohexyl acrylate, 4-tert.-butylcyclohexyl acrylate, isobutyl acrylate and the corresponding methacrylates.
  • Esters which are different from A) can also be used, such as vinyl acetate or vinyl propionate for example.
  • Ethylenically polyunsaturated monomers can also be used. These are monomers which contain at least 2 double bonds which can be polymerised by a radical mechanism.
  • Examples thereof include divinylbenzene, 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, neopentyl glycol dimethacrylate and glycerol dimethacrylate.
  • Component D) is preferably used in an amount of 20-35% by weight with respect to the total copolymer.
  • Solvent-based coating media can be produced from the hydroxy-functional copolymers according to the invention. These coating media contain one or more crosslinking agents. Polyisocyanates, blocked polyisocyanates and/or amino plastic resins can be used as crosslinking component b).
  • suitable polyisocyanates include any organic polyisocyanates which comprise aliphatically, cycloaliphatically, araliphatically and/or aromatically bonded free isocyanate groups. These polyisocyanates are liquid at room temperature, or can be liquefied by the addition of organic solvents. In general, the polyisocyanates have a viscosity at 23° C. of 1 to 6000 mPas, preferably greater than 5 and less than 3000 mPas.
  • Polyisocyanates of this type are generally known and are, for example, described in DE-A-38 29 587 or DE-A 42 26 243.
  • polyisocyanates are preferably polyisocyanates or polyisocyanate mixtures which exclusively contain aliphatically and/or cycloaliphatically bonded isocyanate groups and which have an average NCO functionality of 1.5 to 5, preferably 2 to 4.
  • polyisocyanates which are particularly suitable are the so-called "lacquer polyisocyanates” based on hexamethylene diisocyanate, 1-isocyanato-3,3,5-trimethyl-5-isocyanatomethyl-cyclohexane (IPDI) and/or bis(isocyanatocyclohexyl)-methane, and the derivatives of these diisocyanates which comprise biuret, allophanate, urethane and/or isocyanurate groups and which are known in the art, which following their production have been freed from excess diisocyanate starting material, preferably by distillation, apart from a residual content of less than 0.5% by weight.
  • lacquer polyisocyanates based on hexamethylene diisocyanate, 1-isocyanato-3,3,5-trimethyl-5-isocyanatomethyl-cyclohexane (IPDI) and/or bis(isocyanatocyclohexyl)-methane
  • the substituents R 1 and R 2 are either linear or branched, and are either the same or different.
  • the skeletal structure A may consist of a single bond, of an aromatic or alicyclic ring, or of an aliphatic linear or branched C chain comprising 1 to 12 C atoms. Examples thereof include 1,1,6,6-tetramethyl-hexamethylene dilsocyanate, 1,5-dibutyl-pentamethyl diisocyanate, or p- or m-tetramethylxylylene diisocyanate.
  • the dilsocyanates can also be reacted in the customary manner to form compounds of higher functionality, for example by trimerisation or by reaction with water or polyols, such as trimethylolpropane or glycerol.
  • the polyisocyanates can also be used in the form of isocyanate-modified resins.
  • the polyisocyanates can also be used in blocked or partially blocked form.
  • blocked or partially blocked isocyanates include any di- and/or polyisocyanates in which the isocyanate groups or part of the isocyanate groups have been reacted with compounds which contain active hydrogen.
  • Corresponding prepolymers which contain isocyanate groups can also be used as di- and/or polyisocyanates. Examples thereof include aliphatic, cycloaliphatic or aromatic polyisocyanates, which are optionally sterically hindered also, such as those which have already been described above. Trivalent aromatic and/or aliphatic, blocked or partially blocked isocyanates, with a number average molecular weight of 500-1500 for example, are preferred.
  • Low molecular weight compounds which contain acidic hydrogen are known for the blocking of NCO groups.
  • Examples thereof include aliphatic or cycloaliphatic alcohols, dialkylamino alcohols, oximes, lactams, imides, hydroxyalkyl esters, and esters of malonic acid or of acetoacetic acid.
  • Amino plastic resins are also suitable as crosslinking agents.
  • Amino plastic resins are described, for example, in Ullmann's Encyclopedia of Industrial Chemistry, 5th Edition, Vol. A2, in the "Aminoresins” chapter on pages 115-141 (1985), and in Houben-Weyl: “Methoden der Organischen Chemie", Volume 14/2, pages 319-399 (1962). These resins are produced according to the prior art and are offered for sale as commercial products by many companies.
  • Examples of amino plastic resins such as these include amine-formaldehyde condensation resins which are produced by the reaction of aldehydes with melamine, guanamine, benzoguanamine or dicyandiamide. The alcohol groups of the aldehyde condensation products are then partially or completely etherified with alcohols.
  • the coating media according to the invention contain organic solvents.
  • the solvents may originate from the production of the binder vehicles or may be added separately. Examples thereof include the solvents which have already been cited above for the production of solution polymers.
  • the coating media according to the invention may contain pigments and/or extenders. All customary lacquer pigments of an organic or inorganic nature are suitable as pigments. Examples of inorganic or organic colouring pigments and extenders include titanium dioxide, micronised titanium dioxide, iron oxide pigments, zinc phosphate (an anti-corrosion pigment), azo pigments, phthalocyanine pigments, quinacridone or pyrrolopyrrole pigments, carbon black, silica, barium sulphate, french chalk, aluminium silicate and magnesium silicate.
  • the coating media may contain customary lacquer additives.
  • additives are the customary additives which can be used in the lacquer sector.
  • additives such as these include light stabilisers, e.g. those based on benztriazoles and HALS compounds, spreading agents based on (meth)acrylic homopolymers or silicone oils, rheology-influencing agents such as microdispersed hydrated silica or polymeric urea compounds, thickeners such as crosslinked polycarboxylic acids or polyurethanes, anti-foaming agents, wetting agents, curing accelerators for the crosslinking reaction of the OH-functional binder vehicles, for example dibutyltin laurate or zinc naphthenate, and compounds such as triethylamine which contain tertiary amino groups for the crosslinking reaction with polyisocyanates.
  • light stabilisers e.g. those based on benztriazoles and HALS compounds
  • spreading agents based on (meth)acrylic homopoly
  • the individual constituents are mixed with one another and are homogenised or comminuted in the usual manner.
  • a procedure can be employed, for example, in which part of the copolymer which contains hydroxyl groups is first mixed with the pigments and/or extenders and with customary lacquer additives and solvents and is ground in grinding units. Thereafter, the ground material is completed by adding the remaining copolymer solution.
  • Single-component or two-component coating media can be formulated using the binder vehicles according to the invention, depending on the type of crosslinking agent.
  • the coating media are two-component systems, i.e. the binder vehicle component which contains hydroxyl groups is first mixed with the polyisocyanate component, optionally together with pigments, extenders and customary lacquer additives, shortly before application. The coating medium can then be adjusted to the spraying viscosity if necessary, using organic solvents.
  • the coating media which are produced in this manner are particularly suitable for the production of pigmented or transparent covering coats of an air-drying multi-layer coating or of one which is force-dried, e.g. up to 80° C. However, they can also be hardened at higher temperatures, e.g. of 80-140° C. They are suitable for the coating of vehicles and for industrial coating operations, and are particularly suitable for the coating of vehicles and vehicle parts for repair purposes.
  • the coating media are applied by known methods, e.g. by spraying, dipping, rolling or by doctor blade.
  • the coating media can be applied to conventional or aqueous base lacquers, by the wet-into-wet method for example, whereupon both coats are hardened jointly, e.g. for 10-60 minutes at 40-80° C.
  • the coating media can be applied to customary one-component or two-component primer surfacer coats, for example.
  • the coating media according to the invention can also be applied as a primer surfacer coat to customary primers, e.g. two-component epoxide primers, and can be dried at room temperature.
  • the present invention also relates to a method of producing multi-layer coatings and to the use of the binder vehicles according to the invention in coating media for the production of multi-layer coatings, wherein in particular the pigmented covering lacquer coats and transparent clear lacquer coats of multi-layer coating are replaced by the binder vehicles or coating media according to the invention.
  • Coating media which are formulated from the binder vehicles according to the invention exhibit a high reactivity and short drying times. Brilliant, haze-free coatings with very good hardness are obtained.
  • 60 g of a mixture of xylene isomers, 100 g of an aromatic hydrocarbon with a boiling range of 155-178° C., 80 g n-butyl acetate, 72 g glycidyl neodecanoate with a glycidyl equivalent weight of 249, and 62 g vinyl neodecanoate were placed in a 2 liter three-necked flask fitted with a stirrer, thermometer, condenser and two dropping funnels, and the batch was heated to 149° C. with stirring.
  • a mixture of monomers comprising 31 g acrylic acid, 80 g styrene, 135 g 2-hydroxyethyl methacrylate, 149 g methyl methacrylate and 11 g epsilon-caprolactone was added drop-wise over 5 hours, simultaneously with an initiator solution comprising 10 g of an aromatic hydrocarbon with a boiling range of 155-178° C., 5 g di-tert.-butyl peroxide and 5 g dicumyl peroxide. After the addition was complete, the temperature fell to 144° C. The dropping funnels were subsequently rinsed out with 30 g of an aromatic hydrocarbon with a boiling range of 155-178° C. Thereafter, the batch was polymerised for 4 hours. The conversion was then about 99%.
  • a (meth)acrylic copolymer solution was obtained which had a solids content of 55.4% (solids content as determined at 150° C. for 1 hour), an acid number of 17.8 mg KOH/g, an OH number of 135 mg KOH/g, a viscosity of 1800 mPa.s/25° C., and a residual monomer content of vinyl neodecanoate of 0.65% (with respect to the total amount of vinyl monomer used).
  • 60 g of a mixture of xylene isomers, 100 g of an aromatic hydrocarbon with a boiling range of 155-178° C., 80 g n-butyl acetate, 72 g glycidyl neodecanoate with a glycidyl equivalent weight of 249, and 62 g vinyl neodecanoate were placed in a 2 litre three-necked flask fitted with a stirrer, thermometer, condenser and two dropping funnels, and the batch was heated to 150° C. with stirring.
  • a mixture of monomers comprising 31 g acrylic acid, 100 g styrene, 118 g 2-hydroxyethyl methacrylate, 14 g 2-hydroxypropyl methacrylate, 140 g methyl methacrylate and 3 g epsilon-caprolactone was added drop-wise over 5 hours, simultaneously with an initiator solution comprising 10 g of an aromatic hydrocarbon with a boiling range of 155-178° C., 5 g di-tert.-butyl peroxide and 5 g dicumyl peroxide. After the addition was complete, the temperature fell to 145° C. The dropping funnels were subsequently rinsed out with 30 g of an aromatic hydrocarbon with a boiling range of 155-178° C.
  • a (meth)acrylic copolymer solution was obtained which had a solids content of 54.6% (solids content as determined at 150° C. for 1 hour), an acid number of 16.5 mg KOH/g, an OH number of 132 mg KOH/g, a viscosity of 1580 mPa.s/25° C., and a residual monomer content of vinyl neodecanoate of 0.8% (with respect to the total amount of vinyl monomer used).
  • 140 g of a mixture of xylene isomers, 100 g of an aromatic hydrocarbon with a boiling range of 155-178° C., 72 g glycidyl neodecanoate with a glycidyl equivalent weight of 249, and 62 g vinyl neodecanoate were placed in a 2 litre three-necked flask fitted with a stirrer, thermometer, condenser and two dropping funnels, and the batch was heated to 150° C. with stirring.
  • a mixture of monomers comprising 31 g acrylic acid, 100 g styrene, 118 g 2-hydroxyethyl methacrylate, 14 g 2-hydroxypropyl methacrylate, 136 g methyl methacrylate and 3 g epsilon-caprolactone was added drop-wise over 5 hours, simultaneously with an initiator solution comprising 10 g of an aromatic hydrocarbon with a boiling range of 155-178° C., 7 g di-tert-butyl peroxide and 7 g dicumyl peroxide. After the addition was complete, the temperature fell to 146° C. The dropping funnels were subsequently rinsed out with 30 g of an aromatic hydrocarbon with a boiling range of 155-178° C. Thereafter, the batch was polymerised for 4 hours. The conversion was then about 99%.
  • a hardener solution was prepared from 39.10 g of an aliphatic polyisocyanate based on cyclo-trimerised hexamethylene diisocyanate, 4.10 g ethoxypropyl acetate, 10.94 g n-butyl acetate, 29.20 g of an aromatic hydrocarbon with a boiling range of 155-178° C., 12.50 g of a mixture of xylene isomers, 4.00 g methoxypropyl acetate and 0.16 g of a 10% solution of dibutyltin dilaurate in n-butyl acetate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Paints Or Removers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Saccharide Compounds (AREA)
US09/015,852 1997-02-04 1998-01-29 Copolymers which contain hydroxyl groups and a method of producing them Expired - Fee Related US6162886A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19704020A DE19704020A1 (de) 1997-02-04 1997-02-04 Hydroxylgruppenhaltige Copolymerisate und Verfahren zu ihrer Herstellung
DE19704020 1997-02-04

Publications (1)

Publication Number Publication Date
US6162886A true US6162886A (en) 2000-12-19

Family

ID=7819182

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/015,852 Expired - Fee Related US6162886A (en) 1997-02-04 1998-01-29 Copolymers which contain hydroxyl groups and a method of producing them

Country Status (11)

Country Link
US (1) US6162886A (ja)
EP (1) EP0856533B1 (ja)
JP (1) JPH10231332A (ja)
AT (1) ATE246211T1 (ja)
AU (1) AU5288998A (ja)
CA (1) CA2228976A1 (ja)
DE (2) DE19704020A1 (ja)
DK (1) DK0856533T3 (ja)
ES (1) ES2201344T3 (ja)
PT (1) PT856533E (ja)
ZA (1) ZA98918B (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6395827B1 (en) * 1997-04-07 2002-05-28 Avecia Limited Aqueous crosslinkable coating compositions
US20030069371A1 (en) * 1999-12-16 2003-04-10 Martin Weber Polyarylethersulphone and polyamide-based thermoplastic mouldable masses with improved processing characteristics
US20030078337A1 (en) * 2000-04-12 2003-04-24 Wolfgang Bremser Molding materials and method for producing molded parts
US20030143414A1 (en) * 2000-04-14 2003-07-31 Maximilian Bendix Aqueous primary dispersions and coating agents, methods for producing them and their use
US20040075186A1 (en) * 2001-06-01 2004-04-22 Wolfgang Bremser Functional organic powders, methods for production and use thereof
US6727316B1 (en) 1999-06-30 2004-04-27 Basf Coatings Ag Coating material and its use for producing filler coats and stone impact protection primers
US6737468B1 (en) 1999-07-02 2004-05-18 Basf Coatings Ag Base coat and its use for producing color and/or effect-producing base coatings and multi-layer coatings
US20040132902A1 (en) * 2001-06-01 2004-07-08 Wolfgang Bremser Powder coating suspensions (powder slurries) and powder coatings, method for the production and use thereof
EP1454934A1 (en) * 2003-03-03 2004-09-08 E.I. Du Pont De Nemours And Company Two-component coating compositions
US6797761B2 (en) 2000-02-10 2004-09-28 Basf Coatings Ag Aqueous primary dispersions, method for preparation and use thereof
US6815081B1 (en) 1999-06-30 2004-11-09 Basf Coatings Ag Coloring and/or effect-creating multilayer enamel coating, method for the production thereof and its use
US6822044B1 (en) 1999-07-02 2004-11-23 Basf Coatings Ag Varnish and its use for producing varnish coatings and color-and/or effect-producing multi-layer coatings
US6852821B1 (en) 1999-12-11 2005-02-08 Basf Coatings Ag Aqueous primary dispersions and coating matters, a method for producing same and the use thereof
US6884839B1 (en) 1999-12-11 2005-04-26 Basf Coatings Ag Aqueous primary dispersions and coating matters, a method for producing same and the use thereof
US20050131132A1 (en) * 2003-12-10 2005-06-16 Jos Huybrechts Aqueous two-component coating compositions
US20060198951A1 (en) * 2004-12-29 2006-09-07 Weilin Tang Method of applying automotive primer-surfacer using a squeegee
US20090234074A1 (en) * 2008-03-13 2009-09-17 Daisuke Segawa Water dispersible resin, two-component thermosetting resin composition, and method of producing the same
CN103608370A (zh) * 2011-07-19 2014-02-26 湛新比利时股份有限公司 制备可辐射固化组合物的方法
WO2017125341A1 (en) * 2016-01-22 2017-07-27 Basf Coatings Gmbh Branched hydroxy-functional (meth)acrylate copolymers having anti-sag properties

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19927560C2 (de) 1999-06-17 2002-03-14 Clariant Gmbh Brennstoffölzusammensetzung
DE19927561C1 (de) 1999-06-17 2000-12-14 Clariant Gmbh Verwendung hydroxylgruppenhaltiger Copolymere zur Herstellung von Brennstoffölen mit verbesserter Schmierwirkung
WO2002046252A1 (en) * 2000-12-08 2002-06-13 Resolution Research Nederland B.V. Irradiation curable, high solid coating compositions and their preparation
CN103709312B (zh) * 2013-12-16 2016-05-11 上海涂料有限公司技术中心 一种可复涂聚氨酯涂料用羟基丙烯酸树脂的制备方法
TWI701309B (zh) * 2018-12-07 2020-08-11 長興材料工業股份有限公司 可交聯共聚物及其應用

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3694415A (en) * 1970-07-15 1972-09-26 Kiyoshi Honda Coating resinous composition
US4082816A (en) * 1972-09-18 1978-04-04 Cook Paint And Varnish Company Caprolactone polymers from unsaturated monomers
DE2851616A1 (de) * 1978-11-29 1980-06-12 Synthopol Chemie Dr Koch Zwischenproduktloesung eines additionsproduktes einer alpha , beta - ungesaettigten monocarbonsaeure mit einer monoglycidylverbindung, verfahren zu ihrer herstellung sowie ihre verwendung
US4245076A (en) * 1978-05-23 1981-01-13 Consortium Fur Elektrochemische Industrie Gmbh Cross-linkable vinyl copolymers containing hydroxyl groups
US4525499A (en) * 1983-05-26 1985-06-25 Dai Nippon Toryo Co., Ltd. Non-aqueous dispersion type resin composition
DE3731652A1 (de) * 1987-09-19 1989-04-06 Basf Lacke & Farben Ueberzugsmittel auf der basis eines acrylatcopolymerisats mit hydroxyl-, carboxyl- und tertiaeren aminogruppen, verfahren zur herstellung des ueberzugsmittels sowie seine verwendung
EP0349818A1 (de) * 1988-07-07 1990-01-10 BASF Lacke + Farben AG Hydroxylgruppenhaltige Copolymerisate auf der Basis von Vinylester-, Vinylaromat- und Hydroxylalkylester-Monomeren, Verfahren zu ihrer Herstellung sowie ihre Verwendung in Beschichtungsmitteln
DE3829587A1 (de) * 1988-09-01 1990-03-15 Bayer Ag Beschichtungsmittel, ein verfahren zu ihrer herstellung und die verwendung von ausgewaehlten zweikomponenten-polyurethansystemen als bindemittel fuer derartige beschichtungsmittel
US5276104A (en) * 1989-06-08 1994-01-04 BASF Lacke+ Farben Aktiengesellschaft[DE/DE Copolymers containing carboxyl groups and, if appropriate, tertiary amino groups, a process for their preparation and their use in coating materials
EP0580054A2 (de) * 1992-07-23 1994-01-26 Bayer Ag Verfahren zur Herstellung von Polyhydroxylverbindungen und ihre Verwendung in Lacken
DE4226243A1 (de) * 1992-08-08 1994-02-10 Herberts Gmbh Wasserverdünnbares Überzugsmittel auf Polyol- und Polyisocyanatbasis, Verfahren zu dessen Herstellung und seine Verwendung
EP0653468A2 (de) * 1993-11-12 1995-05-17 Herberts Gesellschaft mit beschränkter Haftung Überzugsmittel für transparente Decklackschichten und deren Verwendung bei Verfahren zur Herstellung von Mehrschichtüberzügen
EP0680977A1 (de) * 1994-05-02 1995-11-08 Hoechst Aktiengesellschaft Hydroxy- und Carboxylgruppen enthaltende Copolymerisate, ihre Herstellung und ihre Verwendung in festkörperreichen Beschichtungsmitteln
US5466860A (en) * 1994-02-17 1995-11-14 Herberts Gesellschaft Mit Beschrankter Haftung Process for the preparation of blocked isocyanates

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3694415A (en) * 1970-07-15 1972-09-26 Kiyoshi Honda Coating resinous composition
US4082816A (en) * 1972-09-18 1978-04-04 Cook Paint And Varnish Company Caprolactone polymers from unsaturated monomers
US4245076A (en) * 1978-05-23 1981-01-13 Consortium Fur Elektrochemische Industrie Gmbh Cross-linkable vinyl copolymers containing hydroxyl groups
DE2851616A1 (de) * 1978-11-29 1980-06-12 Synthopol Chemie Dr Koch Zwischenproduktloesung eines additionsproduktes einer alpha , beta - ungesaettigten monocarbonsaeure mit einer monoglycidylverbindung, verfahren zu ihrer herstellung sowie ihre verwendung
US4525499A (en) * 1983-05-26 1985-06-25 Dai Nippon Toryo Co., Ltd. Non-aqueous dispersion type resin composition
DE3731652A1 (de) * 1987-09-19 1989-04-06 Basf Lacke & Farben Ueberzugsmittel auf der basis eines acrylatcopolymerisats mit hydroxyl-, carboxyl- und tertiaeren aminogruppen, verfahren zur herstellung des ueberzugsmittels sowie seine verwendung
US5322897A (en) * 1988-07-07 1994-06-21 Basf Lacke Copolymers containing hydroxyl groups, based on vinyl ester monomers, vinylaromatic monomers and hydroxylalkyl ester monomers, process for the preparation thereof and use thereof in coating compositions
EP0349818A1 (de) * 1988-07-07 1990-01-10 BASF Lacke + Farben AG Hydroxylgruppenhaltige Copolymerisate auf der Basis von Vinylester-, Vinylaromat- und Hydroxylalkylester-Monomeren, Verfahren zu ihrer Herstellung sowie ihre Verwendung in Beschichtungsmitteln
DE3823005A1 (de) * 1988-07-07 1990-01-11 Basf Lacke & Farben Hydroxylgruppenhaltie copolymerisate auf der basis von vinylester-,vinylaromat- und hydroxylalkylester-monomeren, verfahren zur ihrer herstellung sowie ihre verwendung in beschichtungsmitteln
DE3829587A1 (de) * 1988-09-01 1990-03-15 Bayer Ag Beschichtungsmittel, ein verfahren zu ihrer herstellung und die verwendung von ausgewaehlten zweikomponenten-polyurethansystemen als bindemittel fuer derartige beschichtungsmittel
US5075370A (en) * 1988-09-01 1991-12-24 Bayer Aktiengesellschaft Aqueous coating composition based on specific two-component polyurethanes and to a process for its production
US5276104A (en) * 1989-06-08 1994-01-04 BASF Lacke+ Farben Aktiengesellschaft[DE/DE Copolymers containing carboxyl groups and, if appropriate, tertiary amino groups, a process for their preparation and their use in coating materials
EP0580054A2 (de) * 1992-07-23 1994-01-26 Bayer Ag Verfahren zur Herstellung von Polyhydroxylverbindungen und ihre Verwendung in Lacken
US5422421A (en) * 1992-07-23 1995-06-06 Bayer Aktiengesellschaft Polyhydroxyl compounds, a process for their production and their use in coating compositions
DE4226243A1 (de) * 1992-08-08 1994-02-10 Herberts Gmbh Wasserverdünnbares Überzugsmittel auf Polyol- und Polyisocyanatbasis, Verfahren zu dessen Herstellung und seine Verwendung
EP0653468A2 (de) * 1993-11-12 1995-05-17 Herberts Gesellschaft mit beschränkter Haftung Überzugsmittel für transparente Decklackschichten und deren Verwendung bei Verfahren zur Herstellung von Mehrschichtüberzügen
US5466860A (en) * 1994-02-17 1995-11-14 Herberts Gesellschaft Mit Beschrankter Haftung Process for the preparation of blocked isocyanates
EP0680977A1 (de) * 1994-05-02 1995-11-08 Hoechst Aktiengesellschaft Hydroxy- und Carboxylgruppen enthaltende Copolymerisate, ihre Herstellung und ihre Verwendung in festkörperreichen Beschichtungsmitteln
US5663265A (en) * 1994-05-02 1997-09-02 Hoechst Aktiengesellschaft Copolymers containing hydroxyl and carboxyl groups by reacting glycidyl esters and carboxyl monomers

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Ullman s Encyclopedia of Industrial Chemisty , Fifth Completely Revised Edition, vol. A2, pp. 115 141., 1994. *
Ullman's Encyclopedia of Industrial Chemisty, Fifth Completely Revised Edition, vol. A2, pp. 115-141., 1994.

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6395827B1 (en) * 1997-04-07 2002-05-28 Avecia Limited Aqueous crosslinkable coating compositions
US6727316B1 (en) 1999-06-30 2004-04-27 Basf Coatings Ag Coating material and its use for producing filler coats and stone impact protection primers
US6815081B1 (en) 1999-06-30 2004-11-09 Basf Coatings Ag Coloring and/or effect-creating multilayer enamel coating, method for the production thereof and its use
US6822044B1 (en) 1999-07-02 2004-11-23 Basf Coatings Ag Varnish and its use for producing varnish coatings and color-and/or effect-producing multi-layer coatings
US6737468B1 (en) 1999-07-02 2004-05-18 Basf Coatings Ag Base coat and its use for producing color and/or effect-producing base coatings and multi-layer coatings
US6852821B1 (en) 1999-12-11 2005-02-08 Basf Coatings Ag Aqueous primary dispersions and coating matters, a method for producing same and the use thereof
US6884839B1 (en) 1999-12-11 2005-04-26 Basf Coatings Ag Aqueous primary dispersions and coating matters, a method for producing same and the use thereof
US20030069371A1 (en) * 1999-12-16 2003-04-10 Martin Weber Polyarylethersulphone and polyamide-based thermoplastic mouldable masses with improved processing characteristics
US6797761B2 (en) 2000-02-10 2004-09-28 Basf Coatings Ag Aqueous primary dispersions, method for preparation and use thereof
US20030078337A1 (en) * 2000-04-12 2003-04-24 Wolfgang Bremser Molding materials and method for producing molded parts
US6946512B2 (en) 2000-04-12 2005-09-20 Basf Coatings Ag Molding materials and method for producing molded parts
US7034074B2 (en) 2000-04-14 2006-04-25 Basf Coatings Ag Aqueous primary dispersions and coating agents, methods for producing them and their use
US20030143414A1 (en) * 2000-04-14 2003-07-31 Maximilian Bendix Aqueous primary dispersions and coating agents, methods for producing them and their use
US7935746B2 (en) 2001-06-01 2011-05-03 Basf Coatings Ag Powder coating suspension, process for preparing the same and process for preparing powder coating material
US20040132902A1 (en) * 2001-06-01 2004-07-08 Wolfgang Bremser Powder coating suspensions (powder slurries) and powder coatings, method for the production and use thereof
US20040075186A1 (en) * 2001-06-01 2004-04-22 Wolfgang Bremser Functional organic powders, methods for production and use thereof
EP1454934A1 (en) * 2003-03-03 2004-09-08 E.I. Du Pont De Nemours And Company Two-component coating compositions
US20050131132A1 (en) * 2003-12-10 2005-06-16 Jos Huybrechts Aqueous two-component coating compositions
US7091278B2 (en) 2003-12-10 2006-08-15 E. I. Dupont De Nemours And Company Aqueous two-component coating compositions
US20060198951A1 (en) * 2004-12-29 2006-09-07 Weilin Tang Method of applying automotive primer-surfacer using a squeegee
US20090234074A1 (en) * 2008-03-13 2009-09-17 Daisuke Segawa Water dispersible resin, two-component thermosetting resin composition, and method of producing the same
CN103608370A (zh) * 2011-07-19 2014-02-26 湛新比利时股份有限公司 制备可辐射固化组合物的方法
US20140186541A1 (en) * 2011-07-19 2014-07-03 Graham Clark Process for the preparation of radiation curable compositions
CN103608370B (zh) * 2011-07-19 2016-06-29 汉高股份有限及两合公司 制备可辐射固化组合物的方法
TWI553024B (zh) * 2011-07-19 2016-10-11 亨克爾股份有限及兩合公司 輻射硬化性組成物之製備方法
US9708515B2 (en) * 2011-07-19 2017-07-18 Henkel Ag & Co. Kgaa Process for the preparation of radiation curable compositions
WO2017125341A1 (en) * 2016-01-22 2017-07-27 Basf Coatings Gmbh Branched hydroxy-functional (meth)acrylate copolymers having anti-sag properties

Also Published As

Publication number Publication date
EP0856533B1 (de) 2003-07-30
ATE246211T1 (de) 2003-08-15
CA2228976A1 (en) 1998-08-04
DK0856533T3 (da) 2003-08-18
EP0856533A1 (de) 1998-08-05
PT856533E (pt) 2003-12-31
ZA98918B (en) 1998-08-06
DE59809111D1 (de) 2003-09-04
ES2201344T3 (es) 2004-03-16
DE19704020A1 (de) 1998-08-06
AU5288998A (en) 1998-08-06
JPH10231332A (ja) 1998-09-02

Similar Documents

Publication Publication Date Title
US6162886A (en) Copolymers which contain hydroxyl groups and a method of producing them
US5670600A (en) Aqueous two-component polyurethane coating composition, process for its preparation, and its use in processes for the production of a multicoat finish
US6013326A (en) Coating compositions use thereof and process for the production of multi-layer lacquer coatings
EP1817386B1 (en) Coating compositions and process for the production of multilayer coatings
CA2576863C (en) Aqueous coating compositions based on acrylate copolymers
US20060051594A1 (en) Two stage cure two component coating composition containing hydroxyl butyl acrylate polymers
US5731382A (en) Coating agents and their use in particular in the production of transparent and pigmented top coatings
US5514755A (en) Coating compositions comprising isobornyl methacrylate and 4-hydroxybutyl acrylate
JPH10114849A (ja) グラフト化されたポリアクリレートポリオールを含有する高固形分のポリウレタン結合剤組成物
US5691417A (en) Coating medium, the use thereof, and a process for multilayer coating
EP1454934B1 (en) Two-component coating compositions
EP1211267B1 (en) Coating compositions based on hydroxy-functional (meth)acrylic copolymers
US5614590A (en) Coating agents, process for their preparation and their use for the preparation of transparent top layers on multilayer coatings
US20070142507A1 (en) Solvent-based coating compositions
US5626917A (en) Process for the multi-layer lacquer coating of substrates
EP1263895A1 (en) Aqueous acrylic coating composition
DE2836612A1 (de) Verfahren zur herstellung von ueberzuegen
MXPA00011291A (en) High-solids binder compositions and their use

Legal Events

Date Code Title Description
AS Assignment

Owner name: HERBERTS GESELLSCHAFT MIT BESCHRANKTER HAFTUNG, GE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BREMER, GERHARD;KERBER, HERMANN;KRUMME, MANFRED;AND OTHERS;REEL/FRAME:009259/0250;SIGNING DATES FROM 19980116 TO 19980126

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20081219