US5648056A - Fullerene composite - Google Patents
Fullerene composite Download PDFInfo
- Publication number
- US5648056A US5648056A US08/428,313 US42831395A US5648056A US 5648056 A US5648056 A US 5648056A US 42831395 A US42831395 A US 42831395A US 5648056 A US5648056 A US 5648056A
- Authority
- US
- United States
- Prior art keywords
- fullerene
- composite
- carbon nanotubes
- carbon
- ultrafine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/152—Fullerenes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/152—Fullerenes
- C01B32/154—Preparation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/152—Fullerenes
- C01B32/156—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/71—Ceramic products containing macroscopic reinforcing agents
- C04B35/78—Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
- C04B35/80—Fibres, filaments, whiskers, platelets, or the like
- C04B35/83—Carbon fibres in a carbon matrix
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S423/00—Chemistry of inorganic compounds
- Y10S423/40—Fullerene composition
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/734—Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/734—Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
- Y10S977/735—Carbon buckyball
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/734—Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
- Y10S977/742—Carbon nanotubes, CNTs
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/773—Nanoparticle, i.e. structure having three dimensions of 100 nm or less
- Y10S977/775—Nanosized powder or flake, e.g. nanosized catalyst
- Y10S977/776—Ceramic powder or flake
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/778—Nanostructure within specified host or matrix material, e.g. nanocomposite films
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/84—Manufacture, treatment, or detection of nanostructure
- Y10S977/888—Shaping or removal of materials, e.g. etching
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2918—Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]
Definitions
- This invention relates to a fullerene composite having a fullerene represented by C 60 as a matrix thereof.
- the fullerene represented by the C 60 molecule has a highly symmetrical structure where the carbon atoms are arranged like a soccer ball shape with equivalent covalent bond.
- the C 60 molecules are packed into fcc structure interacting through van der Waals forces, which exhibits such mechanical properties as plastic deformation and work hardening.
- the fullerene molecule is distinct from conventional carbon allotropies, graphite and diamond, for its metallic characteristics as plastic deformation and work hardening as noted above.
- the fullerene molecule is distinct from conventional carbon allottopics, graphite and diamond, for its metallic characteristics as plastic deformation and work hardening. Further, the fullerene manifests such specific property as superconductivity. Thus, it is expected to find utility in such applications as are capable of making the most of these properties.
- An object of this invention is to provide a fullercue composite which has an improved mechanical strength in addition to the inherent properties of the fullerene such as plastic deformation and work hardening, and which has been consequently endowed with wide variety of applicability as functional materials.
- the fullershe composite of this invention is characterized by comprising a matrix formed substantially of ultrafine fullerene particles of 5 to 50 nm in diameters and a reinforcing member formed substantially of a mixture of carbon nanotubes, carbon nanocapsules, and inevitable indeterminate carbonaceous impurities incorporated with the matrix in a proportion in the range of from 15 to 45 wt % based on the amount of the matrix.
- the matrix formed substantially of ultrafine plastically deformable fullerene particles has compounded therein the reinforcing member formed substantially of a mixture of carbon nanotubes, carbon nanocapsules, and inevitable indeterminate carbonaceous impurities.
- the carbon nanotubes are unusually stable thermally and chemically and, because of the cylindrical carbon structure and the absence of dislocation and defect, are excellent in mechanical strength.
- the carbon nanocapsules bring about the dislocation pinning effect by dispersion.
- the matrix which is formed substantially of ultrafine fullerene particles is enabled to acquire markedly improved tensile strength, elongation, and resistance to deformation.
- the carbon nanotubes themselves are capable of plastic deformation, they enable the composite as a reinforcing material to acquire notably improved tensile strength as compared with carbon fibers in popular use. If the reinforcing member is formed solely of carbon nanotubes, for example, the composite to be produced will offer only low resistance to deformation and will be deformed with low stress value.
- FIG. 1 is a diagram showing with a model the microstructure of a fullerene composite of this invention.
- FIG. 2 is a diagram showing the relation between the amount of the reinforcing member in the fullerene composite of this invention and the tensile strength of the composite.
- FIG. 1 is a diagram showing with a model the microstructure of a fullerene composite of this invention.
- a fullerene composite 1 shown in this diagram has fine fullerene particles 2 as a matrix thereof.
- the ultrafine fullerene particles 2 which form the matrix of this fullerene composite 1 of 5 to 50 nm in diameter.
- the fullerene composite 1 is vested with the ability to yield to plastic deformation. As a result, they contribute to improve the tensile strength of the fullerene composite 1. If the diameter of the ultrafine fullerene particles 2 is less than 5 nm, the produced fullerene composite 1 will not acquire sufficient strength. Conversely, if the diameter exceeds 50 nm, the ultrafine fullerene particles 2 will not be fully effective in imparting the ability of plastic deformation to the fullerene composite 1.
- C 60 , C 70 , C 76 , C 78 , C 82 , and C 84 have been known.
- the C 60 is ideally adapted. This invention does not exclude the use of any of the other fullerene mentioned above. Depending on the purpose for which the composite is used, this invention allows use of a mixture of the C 60 with other fullerene.
- compression molded pieces and hot-pressed pieces may be cited.
- the matrix which is formed of the ultrafine fullerene particles 2 as mentioned above has compounded therein a reinforcing member containing carbon nanotubes 3 and carbon nanocapsules 4. These carbon nanotubes 3 and carbon nanocapsules 4 are distributed substantially uniformly throughout the entirety of ultrafine fullerene particles 2.
- a mixture which comprises the carbon nanotubes 3 and carbon nanocapsules 4 mentioned above and inevitable indeterminate carbonaceous impurities are included.
- the proportions of the carbon nanotubes, carbon nanocapsules, and inevitable indeterminate carbonaceous impurities contained in the reinforcing member are desired to be set so that the weight ratio of the carbon nanotubes may be in the range of from 30 to 90%. If the weight ratio of the carbon nanotubes is less than 30% or not less than 90%, the possibility will arise that the reinforcing member is not fully effective in improving the mechanical strength of the produced fullerene composite.
- the carbon nanotubes 3 are giant fullerenes with a hollow cylindrical structure (helical arrangement) which are formed in the cathode piled mass formed through the production of fullerene by arc discharge.
- the cylindrical structure with the absence of dislocation and defect causes extreme stabilities both in thermally and chemically, and exhibits outstanding mechanical strength.
- the carbon nanotubes in themselves possess the ability of plastic deformation, they manifest an excellent effect in enhancing the tensile/compressive strength of the produced fullerene composite as compared with carbon fibers in popular use.
- the carbon nanotubes 3 are desired to have a diameter in the range of from 2 to 60 nm and a length in the range of from 0.5 to 5 ⁇ m.
- the carbon nanocapsules 4 are giant fullerenes with a spherical basket structure which are formed in the piled mass of a cathode during the production of fullerene by arc discharge.
- the carbon nanocapsules 4 of this quality bring about the dislocation pinning effect by dispersion.
- the carbon nanocapsules are desired to have a diameter in the range of from 50 to 200 nm.
- the reinforcing member which contains such carbon nanotubes 3 and carbon nanocapsules 4 as described above is desired to be compounded in such an amount with the ultrafine fullerene particles 2 of matrix that the amount of the mixture thereof plus the inevitable indeterminate carbonaceous impurities may be in the range of from 15 to 45 wt %.
- Remarkable importance for the fullerene composite 1 of this invention is the amount of the reinforcing member be in the proper range mentioned above. If the amount of the reinforcing member to be incorporated is less than 15 wt %, the effect of compounding will not be obtained sufficiently.
- the amount of the reinforcing member to be incorporated is desired to be in the range of from 20 to 40 wt %.
- the fullerene composite 1 of this invention has as the reinforcing member thereof the mixture formed mainly of the carbon nanotubes 3 and carbon nanocapsules 4 and has this mixture dispersed in the matrix which is formed of the ultrafine fullerene particles 2 as described above, it combines the dislocation pinning effect by dispersion manifested by the carbon nanocapsules 4 with the effect of improving the mechanical strength due to the particular shape and the plastic deformation manifested by the carbon nanotubes 3. These effects contribute to enhance notably the mechanical strength of compression molded articles made of the ultrafine fullerene particles 2.
- the fullerene composite 1 using the ultrafine fullerene particles 2 as the matrix is enabled to acquire improved elongation and resistance to deformation in addition to the improvement of the tensile/compressive strength. If the reinforcing member is formed solely of carbon nanotubes 3, for example, the produced fullerene composite 1 will acquire only low resistance to deformation and will be readily deformed.
- the fullerene composite 1 of this invention which is constructed as described above can be manufactured as follows, for example.
- ultrafine fullerene particles as C 60 particles and a mixture which contains carbon nanotubes, carbon nanocapsules, and inevitable indeterminate carbonaceous impurities in prescribed proportions.
- a fullerene is formed by the arc discharge method using carbon rods or carbon grains as an electrode or the laser ablation method resorting to irradiation of the surface of graphite with an ultraviolet laser. Since the fullerene is formed as mixed in soot, it is extracted from the soot by a collecting device with filters and solvents such as benzene. The fullerene, when necessary, may be refined to a desired extent by means of liquid chromatography, for example. From the fullerene thus formed, the ultrafine fullerene particles can be produced by the gas evaporation method, for example. To be more specific, the ultrafine fullerene particles are obtained by evaporating the fullerene particles in a reduced-pressure atmosphere of He, for example, and causing the vapor to adhere to a cold finger cooled by liquid nitrogen.
- the carbon nanotubes and carbon nanocapsules are contained in the substance which is deposited on the cathode side during the process of arc discharge. They are obtained by pulverizing the deposited substance and separating them from the pulverized powder by the use of an organic solvent such as ethanol. By this refining method, a mixture formed mainly of carbon nanotubes and carbon nanocapsules is obtained. At times, this mixture contains such impurities as graphitic substance and amorphous carbon. The presence of up to about 60% of indeterminate carbonaceous impurities in the mixture poses no particular problem for this invention. When the carbon nanotubes and carbon nanocapsules which have been refined as described above are thrown into water containing a dispersant and then subjected to centrifugation, they can be refined to a greater extent.
- the extremely fine fullerene particles produced by the method described above and the reinforcing member formed of the mixture mainly containing carbon nanotubes and carbon nanocapsules in prescribed proportions are mutually dispersed thoroughly. Then, the composite material consequently formed is compression molded at room temperature to obtain the fullerene composite as aimed at.
- the hot-pressing may be adopted, for example.
- the improvement of orientation of the reinforcing member, particularly the carbon nanotubes contained therein, during the step of molding mentioned above proves advantageous for this invention.
- the strength of the reinforcing member to resist the force exerted in the direction perpendicular to the direction of orientation of the carbon nanotubes can be increased markedly by raising the degree of orientation of carbon nanotubes in one fixed direction.
- the orientation of the carbon nanotubes can be implemented by adopting such an array method of orientation as comprises packing the composite material in a metallic tube and stretching the metallic tube, for example.
- a carbon rod (99.999%) was arc discharged in an atmosphere of He and the soot consequently obtained was subjected to liquid chromatography to produce a refined C 60 powder.
- the C 60 powder was evaporated in an atmosphere of He of 1.33 ⁇ 10 3 Pa and the vapor was deposited on a rotor cooled with liquid nitrogen. Consequently, ultrafine C 60 powder having a particle diameter of 10 to 30 nm was obtained.
- the deposit formed on the cathode side during the arc discharge of the carbon rod mentioned above was pulverized.
- the product was refined with ethanol to obtain a mixture consisting of carbon nanotubes, carbon nanocapsules, and inevitable indeterminate carbonaceous impurities. This mixture was found to contain about 60% by weight of carbon nanotubes.
- the carbon nanotubes were hollow tubes having an average diameter of 10 nm and an average length of 3 ⁇ m and the carbon nanocapsules were ellipsoids having an average major diameter of 50 nm.
- the mixture of carbon nanotubes, carbon nanocapsules, and inevitable indeterminate carbonaceous impurities was added as a reinforcing material in an amount of 30% by weight to the ultrafine C 60 powder and dispersed therein by ultrasonic wave.
- the composite material consequently obtained was compression molded in the shape of discs 3 mm in diameter under a molding pressure of 123 MPa at room temperature in the open air.
- the discs were subjected to a cutting work to obtain the fullerene composite in the form of compression molded pieces (2.5 ⁇ 2 ⁇ 1 mm).
- a compression molded fullerene composite was manufactured by following the procedure of Example 1 while changing the amount of the mixture of carbon nanotubes, carbon nanocapsules, and inevitable indeterminate carbonaceous impurities to be added to the ultrafine C 60 powder prepared in Example 1 to 5% by weight.
- this compression molded fullerence composite was tested for tensile strength in the same manner as in Example 1, it showed a low tensile strength of 0.6 MPa, a magnitude equal to that which is obtained by a compression molded mass using ultrafine C 60 powder alone.
- Compression molded fullerene composites were manufactured by following the procedure of Example 1 while changing the mixing ratio of the ultrafine C 60 powder with the mixture of carbon nanotubes, carbon nanocapsules, and inevitable indeterminate carbonaceous impurities (the carbon nanotubes' content in the mixture shown in Table 1) as shown in Table 1.
- the compression molded fullerene composites were tested for tensile strength in the same manner as in Example 1. The results are also shown in Table 1.
- the difference in tensile strength between the compression molded fullerene composite according to Example 4 and the compression molded fullerene composite according to Example 5 is thought to originate in the difference in percentage composition of the components of the reinforcing member.
- FIG. 2 shows the relation between the amount of reinforcing member in the compression molded fullerene composite and the tensile strength of the composite.
- the results of tensile strength shown in FIG. 2 are those obtained by using mixtures containing carbon nanotubes in a fixed ratio of 50% by weight. It is clearly noted from this diagram that when the mixture of carbon nanotubes, carbon nanocapsules, and inevitable indeterminate carbonaceous impurities are compounded in an amount in the range of from 15 to 45% by weight with the ultrafine fullerene particles, the produced fullerene composite acquires highly satisfactory strength and the functional materials using the fullerene particles acquire markedly improved practical utility.
- the ultrafine C 60 powder and the mixture of carbon nanotubes, carbon nanocapsules, and inevitable indeterminate carbonaceous impurities prepared in Example 1 were compounded at the same ratio as in Example 1.
- the composite material obtained consequently was sealed in an Ag tube 8 mm of outer diameter, 6 mm of inner diameter, and 150 mm in length.
- This Ag tube was swaged, rolled, and drawn until an outer diameter of 0.5 mm. Then, the drawn line was stripped off the Ag tube to obtain a molded fullerene composite having carbon nanotubes oriented in the direction of line drawing.
- this molded fullerene composite was tested for tensile strength in the same manner as in Example 1, it showed satisfactory high tensile strength of 15 MPa.
- the fullerene composite of this invention enjoys practical strength and resistance to deformation in addition to such metallic properties as plastic deformation and work hardening and such specific properties as superconductivity are inherent in the fullerene such as C 60 .
- the fullerene composite of this invention is utilized in functional materials by making the most of the various properties of the fullerene, therefore, it contributes to impart markedly enhanced handling property to the materials.
- the present invention widens the range of applications in which the fullerene is advantageously used.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Structural Engineering (AREA)
- Carbon And Carbon Compounds (AREA)
- Ceramic Products (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09238194A JP3298735B2 (ja) | 1994-04-28 | 1994-04-28 | フラーレン複合体 |
JP6-092381 | 1994-04-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
US5648056A true US5648056A (en) | 1997-07-15 |
Family
ID=14052851
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/428,313 Expired - Lifetime US5648056A (en) | 1994-04-28 | 1995-04-25 | Fullerene composite |
Country Status (4)
Country | Link |
---|---|
US (1) | US5648056A (ja) |
EP (1) | EP0679610B1 (ja) |
JP (1) | JP3298735B2 (ja) |
DE (1) | DE69501750T2 (ja) |
Cited By (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5753088A (en) * | 1997-02-18 | 1998-05-19 | General Motors Corporation | Method for making carbon nanotubes |
WO1999065821A1 (en) * | 1998-06-19 | 1999-12-23 | The Research Foundation Of State University Of New York | Free-standing and aligned carbon nanotubes and synthesis thereof |
WO2000051936A2 (en) * | 1999-03-01 | 2000-09-08 | The University Of North Carolina - Chapel Hill | Nanotube-based high energy material and method |
US6177231B1 (en) * | 1996-06-07 | 2001-01-23 | Nippon Telegraph And Telephone Corporation | Resist material and fabrication method thereof |
US6299812B1 (en) | 1999-08-16 | 2001-10-09 | The Board Of Regents Of The University Of Oklahoma | Method for forming a fibers/composite material having an anisotropic structure |
US6333016B1 (en) | 1999-06-02 | 2001-12-25 | The Board Of Regents Of The University Of Oklahoma | Method of producing carbon nanotubes |
US6413487B1 (en) | 2000-06-02 | 2002-07-02 | The Board Of Regents Of The University Of Oklahoma | Method and apparatus for producing carbon nanotubes |
US20020108382A1 (en) * | 1998-07-03 | 2002-08-15 | Toyota Jidosha Kabushiki Kaisha | Gas storage method and system, and gas occluding material |
US6451175B1 (en) | 2000-08-15 | 2002-09-17 | Wisconsin Alumni Research Foundation | Method and apparatus for carbon nanotube production |
US20030044341A1 (en) * | 2001-08-30 | 2003-03-06 | Alford J. Michael | Process for the removal of impurities from combustion fullerenes |
US20030159917A1 (en) * | 2002-02-27 | 2003-08-28 | Industrial Technology Research Institute | Preparation of hollow carbon nanocapsules |
US20030203038A1 (en) * | 2002-01-24 | 2003-10-30 | Southwest Research Institute | Targeted delivery of bioactive factors to the systemic skeleton |
US6740403B2 (en) | 2001-04-02 | 2004-05-25 | Toyo Tanso Co., Ltd. | Graphitic polyhederal crystals in the form of nanotubes, whiskers and nanorods, methods for their production and uses thereof |
US20040131532A1 (en) * | 1999-06-02 | 2004-07-08 | Resasco Daniel E. | Method and catalyst for producing single walled carbon nanotubes |
KR100466159B1 (ko) * | 2001-11-21 | 2005-01-14 | 재단법인서울대학교산학협력재단 | 탄소 나노튜브의 밴드 갭 변형방법과 이를 이용한 나노양자소자 및 그의 제조방법 |
US20050042162A1 (en) * | 2000-06-02 | 2005-02-24 | Resasco Daniel E. | Process and apparatus for producing single-walled carbon nanotubes |
US20050053668A1 (en) * | 2003-08-21 | 2005-03-10 | Southwest Research Institute | Skeletally targeted nanoparticles |
US20050074569A1 (en) * | 2002-03-04 | 2005-04-07 | Alex Lobovsky | Composite material comprising oriented carbon nanotubes in a carbon matrix and process for preparing same |
US20050100500A1 (en) * | 2003-11-07 | 2005-05-12 | Toyota Jidosha Kabushiki Kaisha | High-density recording media |
US20060025515A1 (en) * | 2004-07-27 | 2006-02-02 | Mainstream Engineering Corp. | Nanotube composites and methods for producing |
US7001556B1 (en) | 2001-08-16 | 2006-02-21 | The Board Of Regents University Of Oklahoma | Nanotube/matrix composites and methods of production and use |
US20060039848A1 (en) * | 2004-01-09 | 2006-02-23 | Olga Matarredona | Carbon nanotube pastes and methods of use |
US20060057055A1 (en) * | 2003-12-15 | 2006-03-16 | Resasco Daniel E | Rhenium catalysts and methods for production of single-walled carbon nanotubes |
US20060063005A1 (en) * | 2004-09-20 | 2006-03-23 | Gardner Slade H | Anisotropic carbon alloy having aligned carbon nanotubes |
US20060216517A1 (en) * | 2005-03-22 | 2006-09-28 | Bussan Nanotech Research Institute, Inc. | Composite material |
US7153903B1 (en) | 2002-06-19 | 2006-12-26 | The Board Of Regents Of The University Of Oklahoma | Carbon nanotube-filled composites prepared by in-situ polymerization |
US20070048209A1 (en) * | 1997-03-07 | 2007-03-01 | William Marsh Rice University | Continuous fiber of fullerene nanotubes |
US20070232738A1 (en) * | 2006-03-31 | 2007-10-04 | Bratkovski Alexandre M | Metamaterials and methods of making the same |
US7323136B1 (en) * | 2000-02-01 | 2008-01-29 | William Marsh Rice University | Containerless mixing of metals and polymers with fullerenes and nanofibers to produce reinforced advanced materials |
US20080063585A1 (en) * | 1997-03-07 | 2008-03-13 | William Marsh Rice University, A Texas University | Fullerene nanotube compositions |
WO2008094079A1 (en) * | 2007-01-30 | 2008-08-07 | Stiga Sports Ab | Table-tennis blade |
US20090068461A1 (en) * | 2003-10-16 | 2009-03-12 | The University Of Akron | Carbon nanotubes on carbon nanofiber substrate |
US20100015002A1 (en) * | 2006-04-03 | 2010-01-21 | Barrera Enrique V | Processing of Single-Walled Carbon Nanotube Metal-Matrix Composites Manufactured by an Induction Heating Method |
US20100160553A1 (en) * | 2002-06-19 | 2010-06-24 | Mcdaniel Neal D | Methods of making polymer composites containing single-walled carbon nanotubes |
US20100178568A1 (en) * | 2009-01-13 | 2010-07-15 | Nokia Corporation | Process for producing carbon nanostructure on a flexible substrate, and energy storage devices comprising flexible carbon nanostructure electrodes |
US20100178531A1 (en) * | 2009-01-13 | 2010-07-15 | Nokia Corporation | High efficiency energy conversion and storage systems using carbon nanostructured materials |
US20100216023A1 (en) * | 2009-01-13 | 2010-08-26 | Di Wei | Process for producing carbon nanostructure on a flexible substrate, and energy storage devices comprising flexible carbon nanostructure electrodes |
US20100240529A1 (en) * | 1999-06-02 | 2010-09-23 | Leandro Balzano | Single-walled carbon nanotube-ceramic composites and methods of use |
US7842387B2 (en) | 2005-06-28 | 2010-11-30 | The Board Of Regents Of The University Of Oklahoma | Methods for growing and harvesting carbon nanotubes |
US8679444B2 (en) | 2009-04-17 | 2014-03-25 | Seerstone Llc | Method for producing solid carbon by reducing carbon oxides |
RU2523477C1 (ru) * | 2012-12-07 | 2014-07-20 | Закрытое акционерное общество "Петровский научный центр "ФУГАС"" | Способ получения сверхтвердого композиционного материала |
US20140275286A1 (en) * | 2013-03-15 | 2014-09-18 | Molecular Rebar Design, Llc | Rheological molecular rebar |
US9090472B2 (en) | 2012-04-16 | 2015-07-28 | Seerstone Llc | Methods for producing solid carbon by reducing carbon dioxide |
US9165701B2 (en) | 2013-01-18 | 2015-10-20 | Samsung Electronics Co., Ltd. | Resistance heating element and heating member and fusing device employing the same |
US9221685B2 (en) | 2012-04-16 | 2015-12-29 | Seerstone Llc | Methods of capturing and sequestering carbon |
US20160001471A1 (en) * | 2014-03-25 | 2016-01-07 | University Of Houston System | Synthesis of effective carbon nanoreinforcements for structural applications |
US9475699B2 (en) | 2012-04-16 | 2016-10-25 | Seerstone Llc. | Methods for treating an offgas containing carbon oxides |
US9586823B2 (en) | 2013-03-15 | 2017-03-07 | Seerstone Llc | Systems for producing solid carbon by reducing carbon oxides |
US9598286B2 (en) | 2012-07-13 | 2017-03-21 | Seerstone Llc | Methods and systems for forming ammonia and solid carbon products |
US9604848B2 (en) | 2012-07-12 | 2017-03-28 | Seerstone Llc | Solid carbon products comprising carbon nanotubes and methods of forming same |
US9650251B2 (en) | 2012-11-29 | 2017-05-16 | Seerstone Llc | Reactors and methods for producing solid carbon materials |
US9731970B2 (en) | 2012-04-16 | 2017-08-15 | Seerstone Llc | Methods and systems for thermal energy recovery from production of solid carbon materials by reducing carbon oxides |
US9779845B2 (en) | 2012-07-18 | 2017-10-03 | Seerstone Llc | Primary voltaic sources including nanofiber Schottky barrier arrays and methods of forming same |
US9783416B2 (en) | 2013-03-15 | 2017-10-10 | Seerstone Llc | Methods of producing hydrogen and solid carbon |
US9783421B2 (en) | 2013-03-15 | 2017-10-10 | Seerstone Llc | Carbon oxide reduction with intermetallic and carbide catalysts |
US9796591B2 (en) | 2012-04-16 | 2017-10-24 | Seerstone Llc | Methods for reducing carbon oxides with non ferrous catalysts and forming solid carbon products |
US9896341B2 (en) | 2012-04-23 | 2018-02-20 | Seerstone Llc | Methods of forming carbon nanotubes having a bimodal size distribution |
RU2653127C2 (ru) * | 2016-11-01 | 2018-05-07 | Федеральное государственное бюджетное научное учреждение "Технологический институт сверхтвердых и новых углеродных материалов" (ФГБНУ ТИСНУМ) | Композитный материал на основе углерода и способ его получения |
US10086349B2 (en) | 2013-03-15 | 2018-10-02 | Seerstone Llc | Reactors, systems, and methods for forming solid products |
US10115844B2 (en) | 2013-03-15 | 2018-10-30 | Seerstone Llc | Electrodes comprising nanostructured carbon |
US10815124B2 (en) | 2012-07-12 | 2020-10-27 | Seerstone Llc | Solid carbon products comprising carbon nanotubes and methods of forming same |
US11752459B2 (en) | 2016-07-28 | 2023-09-12 | Seerstone Llc | Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2787203B1 (fr) * | 1998-12-15 | 2001-12-07 | France Etat | Procede et dispositif photoactive de limitation large bande d'un flux lumineux |
JP4513135B2 (ja) * | 1999-04-01 | 2010-07-28 | 三菱マテリアル株式会社 | 繊維状中空グラファイトを含む砥石 |
EP1054036A1 (en) * | 1999-05-18 | 2000-11-22 | Fina Research S.A. | Reinforced polymers |
SE0003944L (sv) * | 2000-03-30 | 2001-10-01 | Abb Ab | Ledande material |
KR100814838B1 (ko) * | 2001-11-08 | 2008-03-20 | 삼성에스디아이 주식회사 | 전계 방출 소자의 카본 나노튜브 에미터 형성용 조성물 및그 제조 방법 |
KR100790847B1 (ko) * | 2001-11-23 | 2008-01-02 | 삼성에스디아이 주식회사 | 탄소나노튜브를 포함하는 접착용 복합체 및 이를 이용한전자방출소자 및 그 제조방법 |
AU2002345142A1 (en) * | 2002-05-30 | 2003-12-19 | Babolat Vs | Racket frame and racket comprising such a frame |
JP4557562B2 (ja) * | 2004-02-09 | 2010-10-06 | 大阪瓦斯株式会社 | アモルファスカーボンナノカプセル及びその製造方法 |
US8323789B2 (en) | 2006-08-31 | 2012-12-04 | Cambridge Enterprise Limited | Nanomaterial polymer compositions and uses thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992004279A1 (en) * | 1990-08-30 | 1992-03-19 | Research Corporation Technologies, Inc. | New form of carbon |
-
1994
- 1994-04-28 JP JP09238194A patent/JP3298735B2/ja not_active Expired - Fee Related
-
1995
- 1995-04-25 US US08/428,313 patent/US5648056A/en not_active Expired - Lifetime
- 1995-04-27 DE DE69501750T patent/DE69501750T2/de not_active Expired - Lifetime
- 1995-04-27 EP EP95302883A patent/EP0679610B1/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992004279A1 (en) * | 1990-08-30 | 1992-03-19 | Research Corporation Technologies, Inc. | New form of carbon |
Non-Patent Citations (8)
Title |
---|
Ando, Y. "Carbon Nanotubes at As-Grown Top Surface of Columnar Carbon Deposit," Japan Journal of Applied Physics, vol. 32 (1993), pp. L1342-L1345. |
Ando, Y. "Preparation of Carbon Nanotubes by Arc-Discharge Evaporation", Japan Journal of Applied Phys; vol. 32 (1993), pp. L107-L109. |
Ando, Y. Carbon Nanotubes at As Grown Top Surface of Columnar Carbon Deposit, Japan Journal of Applied Physics, vol. 32 (1993), pp. L1342 L1345. * |
Ando, Y. Preparation of Carbon Nanotubes by Arc Discharge Evaporation , Japan Journal of Applied Phys; vol. 32 (1993), pp. L107 L109. * |
Saito, Y., et al. "Growth and Structure of Graphitic Tubules . . . " Chem. Phys. Lett., vol. 204, #3-4, pp. 277-282 (1993). |
Saito, Y., et al. Growth and Structure of Graphitic Tubules . . . Chem. Phys. Lett., vol. 204, 3 4, pp. 277 282 (1993). * |
T.W. Ebbesen et al., "Large-scale synthesis of carbon nanotubes," Nature, vol. 358, Jul. 16, 1992, pp. 220-222. |
T.W. Ebbesen et al., Large scale synthesis of carbon nanotubes, Nature, vol. 358, Jul. 16, 1992, pp. 220 222. * |
Cited By (118)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6177231B1 (en) * | 1996-06-07 | 2001-01-23 | Nippon Telegraph And Telephone Corporation | Resist material and fabrication method thereof |
US6395447B1 (en) | 1996-06-07 | 2002-05-28 | Nippon Telegraph And Telephone Corporation | Resist material and fabrication method thereof |
US5753088A (en) * | 1997-02-18 | 1998-05-19 | General Motors Corporation | Method for making carbon nanotubes |
US20080311025A1 (en) * | 1997-03-07 | 2008-12-18 | William Marsh Rice University | Method for forming a patterned array of fullerene nanotubes |
US7655302B2 (en) | 1997-03-07 | 2010-02-02 | William Marsh Rice University | Continuous fiber of fullerene nanotubes |
US20080063585A1 (en) * | 1997-03-07 | 2008-03-13 | William Marsh Rice University, A Texas University | Fullerene nanotube compositions |
US7632569B2 (en) | 1997-03-07 | 2009-12-15 | William Marsh Rice University | Array of fullerene nanotubes |
US7419624B1 (en) * | 1997-03-07 | 2008-09-02 | William Marsh Rice University | Methods for producing composites of fullerene nanotubes and compositions thereof |
US20090169463A1 (en) * | 1997-03-07 | 2009-07-02 | William Marsh Rice University | Array of fullerene nanotubes |
US20070048209A1 (en) * | 1997-03-07 | 2007-03-01 | William Marsh Rice University | Continuous fiber of fullerene nanotubes |
US20080224100A1 (en) * | 1997-03-07 | 2008-09-18 | William Marsh Rice University | Methods for producing composites of fullerene nanotubes and compositions thereof |
US7510695B2 (en) | 1997-03-07 | 2009-03-31 | William Marsh Rice University | Method for forming a patterned array of fullerene nanotubes |
US7939136B2 (en) | 1997-03-07 | 2011-05-10 | William Marsh Rice University | Method for forming composites of sub-arrays of fullerene nanotubes |
US20110086781A1 (en) * | 1997-03-07 | 2011-04-14 | William Marsh Rice University | Method for forming composites of sub-arrays of fullerene nanotubes |
US6863942B2 (en) | 1998-06-19 | 2005-03-08 | The Research Foundation Of State University Of New York | Free-standing and aligned carbon nanotubes and synthesis thereof |
WO1999065821A1 (en) * | 1998-06-19 | 1999-12-23 | The Research Foundation Of State University Of New York | Free-standing and aligned carbon nanotubes and synthesis thereof |
US7060653B2 (en) * | 1998-07-03 | 2006-06-13 | Toyota Jidosha Kabushiki Kaisha | Method of producing gas occluding material |
US20020108382A1 (en) * | 1998-07-03 | 2002-08-15 | Toyota Jidosha Kabushiki Kaisha | Gas storage method and system, and gas occluding material |
WO2000051936A2 (en) * | 1999-03-01 | 2000-09-08 | The University Of North Carolina - Chapel Hill | Nanotube-based high energy material and method |
WO2000051936A3 (en) * | 1999-03-01 | 2001-01-04 | Univ North Carolina Chapel Hill | Nanotube-based high energy material and method |
US6280697B1 (en) * | 1999-03-01 | 2001-08-28 | The University Of North Carolina-Chapel Hill | Nanotube-based high energy material and method |
US20080107588A1 (en) * | 1999-06-02 | 2008-05-08 | Resasco Daniel E | Method of producing single-walled carbon nanotubes |
US20070116630A1 (en) * | 1999-06-02 | 2007-05-24 | Resasco Daniel E | Method of producing single-walled carbon nanotubes |
US7354881B2 (en) | 1999-06-02 | 2008-04-08 | The Board Of Regents Of The University Of Oklahoma | Method and catalyst for producing single walled carbon nanotubes |
US7563428B2 (en) | 1999-06-02 | 2009-07-21 | The Board Of Regents Of The University Of Oklahoma | Method of making carbon nanotubes |
US7816709B2 (en) | 1999-06-02 | 2010-10-19 | The Board Of Regents Of The University Of Oklahoma | Single-walled carbon nanotube-ceramic composites and methods of use |
US20100240529A1 (en) * | 1999-06-02 | 2010-09-23 | Leandro Balzano | Single-walled carbon nanotube-ceramic composites and methods of use |
US7094386B2 (en) | 1999-06-02 | 2006-08-22 | The Board Of Regents Of The University Of Oklahoma | Method of producing single-walled carbon nanotubes |
US6962892B2 (en) | 1999-06-02 | 2005-11-08 | The Board Of Regents Of The University Of Oklahoma | Metallic catalytic particle for producing single-walled carbon nanotubes |
US6333016B1 (en) | 1999-06-02 | 2001-12-25 | The Board Of Regents Of The University Of Oklahoma | Method of producing carbon nanotubes |
US20050025696A1 (en) * | 1999-06-02 | 2005-02-03 | Resasco Daniel E. | Method of producing single-walled carbon nanotubes |
US20040186011A1 (en) * | 1999-06-02 | 2004-09-23 | Resasco Daniel E. | Metallic catalytic particle for producing single-walled carbon nanotubes |
US20040131532A1 (en) * | 1999-06-02 | 2004-07-08 | Resasco Daniel E. | Method and catalyst for producing single walled carbon nanotubes |
US6994907B2 (en) | 1999-06-02 | 2006-02-07 | The Board Of Regents Of The University Of Oklahoma | Carbon nanotube product comprising single-walled carbon nanotubes |
US20040070009A1 (en) * | 1999-06-02 | 2004-04-15 | Resasco Daniel E. | Carbon nanotube product comprising single-walled carbon nanotubes |
US6299812B1 (en) | 1999-08-16 | 2001-10-09 | The Board Of Regents Of The University Of Oklahoma | Method for forming a fibers/composite material having an anisotropic structure |
US20080038140A1 (en) * | 2000-02-01 | 2008-02-14 | Enrique V Barrera | Containerless mixing of metals and polymers with fullerenes and nanofibers to produce reinforced advanced materials |
US7323136B1 (en) * | 2000-02-01 | 2008-01-29 | William Marsh Rice University | Containerless mixing of metals and polymers with fullerenes and nanofibers to produce reinforced advanced materials |
US6413487B1 (en) | 2000-06-02 | 2002-07-02 | The Board Of Regents Of The University Of Oklahoma | Method and apparatus for producing carbon nanotubes |
US20080008644A1 (en) * | 2000-06-02 | 2008-01-10 | Resasco Daniel E | Method and apparatus for producing carbon nanotubes |
US7585482B2 (en) | 2000-06-02 | 2009-09-08 | The Board Of Regents Of The University Of Oklahoma | Method and apparatus for producing carbon nanotubes |
US20050042162A1 (en) * | 2000-06-02 | 2005-02-24 | Resasco Daniel E. | Process and apparatus for producing single-walled carbon nanotubes |
US6955800B2 (en) | 2000-06-02 | 2005-10-18 | The Board Of Regents Of The University Of Oklahoma | Method and apparatus for producing carbon nanotubes |
US7459138B2 (en) | 2000-06-02 | 2008-12-02 | The Board Of Regents Of The University Of Oklahoma | Process and apparatus for producing single-walled carbon nanotubes |
US20020131910A1 (en) * | 2000-06-02 | 2002-09-19 | Resasco Daniel E. | Method and apparatus for producing carbon nanotubes |
US6919064B2 (en) | 2000-06-02 | 2005-07-19 | The Board Of Regents Of The University Of Oklahoma | Process and apparatus for producing single-walled carbon nanotubes |
US20060039849A1 (en) * | 2000-06-02 | 2006-02-23 | Resasco Daniel E | Process and apparatus for producing single-walled carbon nanotubes |
US6451175B1 (en) | 2000-08-15 | 2002-09-17 | Wisconsin Alumni Research Foundation | Method and apparatus for carbon nanotube production |
US6740403B2 (en) | 2001-04-02 | 2004-05-25 | Toyo Tanso Co., Ltd. | Graphitic polyhederal crystals in the form of nanotubes, whiskers and nanorods, methods for their production and uses thereof |
US20040197260A1 (en) * | 2001-07-23 | 2004-10-07 | Resasco Daniel E. | Method for producing single walled carbon nanotubes |
US7357907B2 (en) | 2001-07-23 | 2008-04-15 | The Board Of Regents Of The University Of Oklahoma | Method for producing single walled carbon nanotubes |
US20070104947A1 (en) * | 2001-08-16 | 2007-05-10 | Shambaugh Robert L | Nanotube/matrix composites and methods of production and use |
US7001556B1 (en) | 2001-08-16 | 2006-02-21 | The Board Of Regents University Of Oklahoma | Nanotube/matrix composites and methods of production and use |
US6923915B2 (en) | 2001-08-30 | 2005-08-02 | Tda Research, Inc. | Process for the removal of impurities from combustion fullerenes |
US20030044341A1 (en) * | 2001-08-30 | 2003-03-06 | Alford J. Michael | Process for the removal of impurities from combustion fullerenes |
KR100466159B1 (ko) * | 2001-11-21 | 2005-01-14 | 재단법인서울대학교산학협력재단 | 탄소 나노튜브의 밴드 갭 변형방법과 이를 이용한 나노양자소자 및 그의 제조방법 |
US7381426B2 (en) | 2002-01-24 | 2008-06-03 | Southwest Research Institute | Targeted delivery of bioactive factors to the systemic skeleton |
US20030203038A1 (en) * | 2002-01-24 | 2003-10-30 | Southwest Research Institute | Targeted delivery of bioactive factors to the systemic skeleton |
US20030159917A1 (en) * | 2002-02-27 | 2003-08-28 | Industrial Technology Research Institute | Preparation of hollow carbon nanocapsules |
US7156958B2 (en) * | 2002-02-27 | 2007-01-02 | Iiidustrial Technology Research Institute | Preparation of hollow carbon nanocapsules |
US20050074569A1 (en) * | 2002-03-04 | 2005-04-07 | Alex Lobovsky | Composite material comprising oriented carbon nanotubes in a carbon matrix and process for preparing same |
US7829622B2 (en) | 2002-06-19 | 2010-11-09 | The Board Of Regents Of The University Of Oklahoma | Methods of making polymer composites containing single-walled carbon nanotubes |
US20070004857A1 (en) * | 2002-06-19 | 2007-01-04 | Barraza Harry J | Carbon nanotube-filled composites prepared by in-situ polymerization |
US7153903B1 (en) | 2002-06-19 | 2006-12-26 | The Board Of Regents Of The University Of Oklahoma | Carbon nanotube-filled composites prepared by in-situ polymerization |
US20100160553A1 (en) * | 2002-06-19 | 2010-06-24 | Mcdaniel Neal D | Methods of making polymer composites containing single-walled carbon nanotubes |
US20050053668A1 (en) * | 2003-08-21 | 2005-03-10 | Southwest Research Institute | Skeletally targeted nanoparticles |
US20090068461A1 (en) * | 2003-10-16 | 2009-03-12 | The University Of Akron | Carbon nanotubes on carbon nanofiber substrate |
US20050100500A1 (en) * | 2003-11-07 | 2005-05-12 | Toyota Jidosha Kabushiki Kaisha | High-density recording media |
US20060057055A1 (en) * | 2003-12-15 | 2006-03-16 | Resasco Daniel E | Rhenium catalysts and methods for production of single-walled carbon nanotubes |
US7279247B2 (en) | 2004-01-09 | 2007-10-09 | The Board Of Regents Of The University Of Oklahoma | Carbon nanotube pastes and methods of use |
US20080213161A1 (en) * | 2004-01-09 | 2008-09-04 | Olga Matarredona | Carbon nanotube pastes and methods of use |
US20060039848A1 (en) * | 2004-01-09 | 2006-02-23 | Olga Matarredona | Carbon nanotube pastes and methods of use |
US20060025515A1 (en) * | 2004-07-27 | 2006-02-02 | Mainstream Engineering Corp. | Nanotube composites and methods for producing |
US20060063005A1 (en) * | 2004-09-20 | 2006-03-23 | Gardner Slade H | Anisotropic carbon alloy having aligned carbon nanotubes |
US20060216517A1 (en) * | 2005-03-22 | 2006-09-28 | Bussan Nanotech Research Institute, Inc. | Composite material |
US7214430B2 (en) * | 2005-03-22 | 2007-05-08 | Bussan Nanotech Research Institute, Inc. | Composite material |
US7842387B2 (en) | 2005-06-28 | 2010-11-30 | The Board Of Regents Of The University Of Oklahoma | Methods for growing and harvesting carbon nanotubes |
US20070232738A1 (en) * | 2006-03-31 | 2007-10-04 | Bratkovski Alexandre M | Metamaterials and methods of making the same |
US8017239B2 (en) * | 2006-03-31 | 2011-09-13 | Hewlett-Packard Development Company, L.P. | Metamaterials and methods of making the same |
US20100015002A1 (en) * | 2006-04-03 | 2010-01-21 | Barrera Enrique V | Processing of Single-Walled Carbon Nanotube Metal-Matrix Composites Manufactured by an Induction Heating Method |
WO2008094079A1 (en) * | 2007-01-30 | 2008-08-07 | Stiga Sports Ab | Table-tennis blade |
US20100178531A1 (en) * | 2009-01-13 | 2010-07-15 | Nokia Corporation | High efficiency energy conversion and storage systems using carbon nanostructured materials |
US20100216023A1 (en) * | 2009-01-13 | 2010-08-26 | Di Wei | Process for producing carbon nanostructure on a flexible substrate, and energy storage devices comprising flexible carbon nanostructure electrodes |
US20100178568A1 (en) * | 2009-01-13 | 2010-07-15 | Nokia Corporation | Process for producing carbon nanostructure on a flexible substrate, and energy storage devices comprising flexible carbon nanostructure electrodes |
US9406985B2 (en) | 2009-01-13 | 2016-08-02 | Nokia Technologies Oy | High efficiency energy conversion and storage systems using carbon nanostructured materials |
US9556031B2 (en) | 2009-04-17 | 2017-01-31 | Seerstone Llc | Method for producing solid carbon by reducing carbon oxides |
US10500582B2 (en) | 2009-04-17 | 2019-12-10 | Seerstone Llc | Compositions of matter including solid carbon formed by reducing carbon oxides |
US8679444B2 (en) | 2009-04-17 | 2014-03-25 | Seerstone Llc | Method for producing solid carbon by reducing carbon oxides |
US9731970B2 (en) | 2012-04-16 | 2017-08-15 | Seerstone Llc | Methods and systems for thermal energy recovery from production of solid carbon materials by reducing carbon oxides |
US9090472B2 (en) | 2012-04-16 | 2015-07-28 | Seerstone Llc | Methods for producing solid carbon by reducing carbon dioxide |
US9796591B2 (en) | 2012-04-16 | 2017-10-24 | Seerstone Llc | Methods for reducing carbon oxides with non ferrous catalysts and forming solid carbon products |
US9221685B2 (en) | 2012-04-16 | 2015-12-29 | Seerstone Llc | Methods of capturing and sequestering carbon |
US9475699B2 (en) | 2012-04-16 | 2016-10-25 | Seerstone Llc. | Methods for treating an offgas containing carbon oxides |
US10106416B2 (en) | 2012-04-16 | 2018-10-23 | Seerstone Llc | Methods for treating an offgas containing carbon oxides |
US9637382B2 (en) | 2012-04-16 | 2017-05-02 | Seerstone Llc | Methods for producing solid carbon by reducing carbon dioxide |
US9896341B2 (en) | 2012-04-23 | 2018-02-20 | Seerstone Llc | Methods of forming carbon nanotubes having a bimodal size distribution |
US10815124B2 (en) | 2012-07-12 | 2020-10-27 | Seerstone Llc | Solid carbon products comprising carbon nanotubes and methods of forming same |
US9604848B2 (en) | 2012-07-12 | 2017-03-28 | Seerstone Llc | Solid carbon products comprising carbon nanotubes and methods of forming same |
US10358346B2 (en) | 2012-07-13 | 2019-07-23 | Seerstone Llc | Methods and systems for forming ammonia and solid carbon products |
US9598286B2 (en) | 2012-07-13 | 2017-03-21 | Seerstone Llc | Methods and systems for forming ammonia and solid carbon products |
US9779845B2 (en) | 2012-07-18 | 2017-10-03 | Seerstone Llc | Primary voltaic sources including nanofiber Schottky barrier arrays and methods of forming same |
US9650251B2 (en) | 2012-11-29 | 2017-05-16 | Seerstone Llc | Reactors and methods for producing solid carbon materials |
US9993791B2 (en) | 2012-11-29 | 2018-06-12 | Seerstone Llc | Reactors and methods for producing solid carbon materials |
RU2523477C1 (ru) * | 2012-12-07 | 2014-07-20 | Закрытое акционерное общество "Петровский научный центр "ФУГАС"" | Способ получения сверхтвердого композиционного материала |
US9165701B2 (en) | 2013-01-18 | 2015-10-20 | Samsung Electronics Co., Ltd. | Resistance heating element and heating member and fusing device employing the same |
US9586823B2 (en) | 2013-03-15 | 2017-03-07 | Seerstone Llc | Systems for producing solid carbon by reducing carbon oxides |
US9783421B2 (en) | 2013-03-15 | 2017-10-10 | Seerstone Llc | Carbon oxide reduction with intermetallic and carbide catalysts |
US10086349B2 (en) | 2013-03-15 | 2018-10-02 | Seerstone Llc | Reactors, systems, and methods for forming solid products |
US20140275286A1 (en) * | 2013-03-15 | 2014-09-18 | Molecular Rebar Design, Llc | Rheological molecular rebar |
US9783416B2 (en) | 2013-03-15 | 2017-10-10 | Seerstone Llc | Methods of producing hydrogen and solid carbon |
US10115844B2 (en) | 2013-03-15 | 2018-10-30 | Seerstone Llc | Electrodes comprising nanostructured carbon |
US10322832B2 (en) | 2013-03-15 | 2019-06-18 | Seerstone, Llc | Systems for producing solid carbon by reducing carbon oxides |
US10086539B2 (en) * | 2014-03-25 | 2018-10-02 | University Of Houston System | Synthesis of effective carbon nanoreinforcements for structural applications |
US20160001471A1 (en) * | 2014-03-25 | 2016-01-07 | University Of Houston System | Synthesis of effective carbon nanoreinforcements for structural applications |
US10688695B2 (en) * | 2014-03-25 | 2020-06-23 | University Of Houston System | Synthesis of effective carbon nanoreinforcements for structural applications |
US11752459B2 (en) | 2016-07-28 | 2023-09-12 | Seerstone Llc | Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same |
US11951428B2 (en) | 2016-07-28 | 2024-04-09 | Seerstone, Llc | Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same |
RU2653127C2 (ru) * | 2016-11-01 | 2018-05-07 | Федеральное государственное бюджетное научное учреждение "Технологический институт сверхтвердых и новых углеродных материалов" (ФГБНУ ТИСНУМ) | Композитный материал на основе углерода и способ его получения |
Also Published As
Publication number | Publication date |
---|---|
DE69501750T2 (de) | 1998-07-02 |
DE69501750D1 (de) | 1998-04-16 |
JP3298735B2 (ja) | 2002-07-08 |
EP0679610B1 (en) | 1998-03-11 |
EP0679610A1 (en) | 1995-11-02 |
JPH07291610A (ja) | 1995-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5648056A (en) | Fullerene composite | |
JP4463563B2 (ja) | 良好な機械的特性を有する伝導性ポリオレフィン | |
Yu et al. | Characterization of conductive multiwall carbon nanotube/polystyrene composites prepared by latex technology | |
Terrones et al. | Curved nanostructured materials | |
JP5173418B2 (ja) | ポリマー/カーボンナノチューブ相互貫入網目構造及びその製造プロセス | |
US7977423B2 (en) | Carbon nanotube reinforced polymer and process for preparing the same | |
CA2978471C (en) | Uniform dispersing of graphene nanoparticles in a host | |
JP6585856B2 (ja) | 複合樹脂材料および成形体 | |
US20100038602A1 (en) | Method for preparing carbon fibrils and/or nanotubes from a carbon source integrated with the catalyst | |
EP1877482A1 (en) | Carbon nanotube reinforced thermoplastic polymer composites achieved through benzoyl peroxide initiated interfacial bonding to polymer matrices | |
Ham et al. | Chemical modification of carbon nanotubes and preparation of polystyrene/carbon nanotubes composites | |
Tjong et al. | Effects of crystallization on dispersion of carbon nanofibers and electrical properties of polymer nanocomposites | |
Awasthi et al. | Synthesis and characterization of carbon nanotube–polyethylene oxide composites | |
Mordkovich et al. | Intercalation into carbon nanotubes without breaking the tubular structure | |
Yoo et al. | Thermal transfer improvement in polyvinyl alcohol films by mixing with boron nitride nanotubes synthesized using a radio-frequency inductively coupled thermal plasma | |
JP2004143276A (ja) | カーボンナノチューブを含む導電性および帯電性防止高分子フィルム、繊維ならびにその製造法 | |
Ohkohchi et al. | Formation of carbon nanotubes by evaporation of carbon rod containing scandium oxide | |
CN110894346A (zh) | 一种控释型抗氧化活性聚乳酸包装膜及其制备方法 | |
CN114539692B (zh) | 碳纳米角改性聚四氟乙烯及其制备方法、密封件 | |
Makableh et al. | Investigation of the structure and tensile strength of ultrahigh molecular weight polyethylene and amide functionalized single-walled carbon nanotubes nanocomposites | |
US20190071551A1 (en) | Methods of functionalizing carbon nanotubes and compositions comprising functionalized carbon nanotubes | |
Adhikari et al. | Reinforcement on properties of poly (vinyl alcohol) films by embedding functionalized carbon micro coils | |
Mahmood et al. | Handbook of Carbon Nanotubes-Polymer Nanocomposites | |
Loutfy et al. | Carbon Nanotube—Polycarbonate Composites | |
CN1192976C (zh) | 一维纳米炭材料的成形方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: RESEARCH DEVELOPMENT CORPORATION OF JAPAN, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TANAKA, SHUN-ICHIRO;REEL/FRAME:007663/0731 Effective date: 19950519 Owner name: TANAKA, SHUN-ICHIRO, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TANAKA, SHUN-ICHIRO;REEL/FRAME:007663/0731 Effective date: 19950519 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: KABUSHIKI KAISHA TOSHIBA, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TANAKA, SHUN-ICHIRO;REEL/FRAME:010133/0661 Effective date: 19990721 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FEPP | Fee payment procedure |
Free format text: PAT HLDR NO LONGER CLAIMS SMALL ENT STAT AS INDIV INVENTOR (ORIGINAL EVENT CODE: LSM1); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
REMI | Maintenance fee reminder mailed | ||
AS | Assignment |
Owner name: JAPAN SCIENCE AND TECHNOLOGY AGENCY, JAPAN Free format text: CHANGE OF NAME;ASSIGNOR:RESEARCH DEVELOPMENT CORPORATION OF JAPAN;REEL/FRAME:022390/0004 Effective date: 19961023 Owner name: JAPAN SCIENCE AND TECHNOLOGY AGENCY, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KABUSHIKI KAISHA TOSHIBA;REEL/FRAME:022390/0001 Effective date: 20090224 |