US5432438A - Combined current and voltage transformer for a metal-enclosed gas-insulated high-voltage switching station - Google Patents

Combined current and voltage transformer for a metal-enclosed gas-insulated high-voltage switching station Download PDF

Info

Publication number
US5432438A
US5432438A US07/904,863 US90486392A US5432438A US 5432438 A US5432438 A US 5432438A US 90486392 A US90486392 A US 90486392A US 5432438 A US5432438 A US 5432438A
Authority
US
United States
Prior art keywords
voltage
current
sensor
voltage transformer
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07/904,863
Other languages
English (en)
Inventor
Rudolf Baumgartner
Ken Y. Haffner
Andrzej Kaczowski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Schweiz Holding AG
ABB Schweiz AG
ABB Asea Brown Boveri Ltd
Original Assignee
ABB Asea Brown Boveri Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6435111&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US5432438(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ABB Asea Brown Boveri Ltd filed Critical ABB Asea Brown Boveri Ltd
Assigned to ASEA BROWN BOVERI LTD. reassignment ASEA BROWN BOVERI LTD. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: BAUMGARTNER, RUDOLF, HAFFNER, KEN Y., KACZOWSKI, ANDRZEJ
Application granted granted Critical
Publication of US5432438A publication Critical patent/US5432438A/en
Assigned to ABB SCHWEIZ AG reassignment ABB SCHWEIZ AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ABB IMMOBILIEN AG
Assigned to ABB SCHWEIZ AG reassignment ABB SCHWEIZ AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ABB IMMOBILIEN AG
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/20Instruments transformers
    • H01F38/22Instruments transformers for single phase ac
    • H01F38/34Combined voltage and current transformers
    • H01F38/36Constructions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/142Arrangements for simultaneous measurements of several parameters employing techniques covered by groups G01R15/14 - G01R15/26
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • G01R15/181Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using coils without a magnetic core, e.g. Rogowski coils

Definitions

  • the invention proceeds from a combined current and voltage transformer for a metal-enclosed, gas-insulated high-voltage switching station, having a current sensor and a voltage sensor and a signal processing unit connected following the current and voltage sensor, in which the current sensor contains a coil wound in the shape of a torus and the voltage sensor contains a hollow cylindrical test electrode, and in which after installation in the metal enclosure the coil and test electrode concentrically surround a conductor of the switching station.
  • the invention refers to a prior art such as follows, for example, from DE-Al-2,325,441.
  • a measuring transducer represented in FIG. 1 of this patent publication and intended for installation in a metal-enclosed, gas-insulated switching station contains a metal tube, fastened in an electrically insulated fashion to a mounting lug, as well as current transformer coils having mounted secondary windings.
  • the metal tube and the current transformer coils supported by it and having the mounted secondary windings are arranged coaxially with a conductor of the switching station in the interior of the metal enclosure.
  • the metal tube forms with the conductor the upper voltage capacitor of a capacitive divider at whose output a signal is present which corresponds to the voltage applied at the conductor.
  • the current transformer cores have large dimensions and contain, moreover, predominantly specifically heavy, ferromagnetic material. Consequently, the combined current and voltage transformer according to the prior art not only demands a lot of space, but because of its high weight requires a particularly sturdy and stable construction. In order to achieve good measurement accuracy, the capacitive divider requires, moreover, a lower voltage capacitor that is thermally stable.
  • the object of this invention is to provide a combined current and voltage transformer for metal-enclosed, gas-insulated high-voltage switching stations, which is cost effective in production, has small dimensions, and yet is typified by a high measurement accuracy.
  • the combined current and voltage transformer according to the invention is typified in that by comparison with the diameter of the metal enclosure it has a current and voltage sensor of negligibly small dimensions, which can be installed in the interior of the enclosure virtually at any desired location without substantially impairing the insulation spacing.
  • the combined current and voltage transformer according to the invention is typified, moreover, by high measurement accuracy. The reason for this is that a lower voltage capacitor is used whose requirements with regard to stability in the long term and under heat are, in common with its requirements in respect of low inductance and losses, small, and that the output signals of the current and voltage sensors can be particularly favorably evaluated in similarly constructed integrating devices or in an integration device driven in multiplex mode.
  • FIG. 1 shows a top view of a centrally taken section through a part of a metal-enclosed, gas-insulated high-voltage switching station having current and voltage sensors of combined current and voltage transformers according to the invention
  • FIG. 2 shows a top view of a part, marked by encirclement, of a current and voltage sensor according to FIG. 1,
  • FIG. 3 shows a block diagram-of a signal processing device connected downstream of a current and voltage sensor in accordance with FIGS. 1 and 2,
  • FIG. 4 shows a schematic diagram, represented in part as an equivalent circuit diagram, of the part, designed as a voltage sensor, of the current and voltage sensor according to FIG. 2 and of a part of the signal processing device in accordance with FIG. 3, and
  • FIG. 5 shows a graphical representation of the transfer function of the measuring signal of the voltage sensor in accordance with FIG. 4.
  • FIG. 1 represents a part, containing a circuit-breaker having switching points 1, 2 and a drive 3, of a metal-enclosed, gas-insulated high-voltage switching station.
  • the tubular metal enclosure which is at ground potential and designated by the reference numeral 4
  • an insulating gas such as, in particular, SF 6
  • a conductor 5 is arranged in the interior of the metal enclosure 4 extending along the tubular axis thereof.
  • This conductor is supported on insulators (not represented), which are flanged in between enclosure segments 6, 7 or 7, 8 or 8, 9 and preferably effect a compartmentalization of the insulating gas.
  • Current and voltage sensors 10, 11 of combined current and voltage transformers are provided in the interior of the metal enclosure 4. These sensors surround the conductor 5 concentrically and have the same axis as the parts of the metal enclosure 4 which hold them, that is to say as a part of the enclosure segment 7 or as the enclosure segment 8. If the metal enclosure 4 contains more than one conductor, the current and voltage sensors then surround the assigned conductor concentrically but then do not have the same axis as the metal enclosure.
  • the current and voltage sensors 10, 11 integrated in support bodies have only a small dimension transverse to the tube axis. Consequently, the sensors such as, for example, the current and voltage sensor 10, can be inserted in the metal enclosure 4 virtually at any desired location without substantially impairing the insulation spacing, and fixed by suitable measures such as, for example, by clamping or screwing.
  • suitable measures such as, for example, by clamping or screwing.
  • the support body between two flanges of the metal enclosure 4 and fix it gas-tight by means of screws. In this case --as can be seen from FIG. 1--the fixed support body can be integrated in an enclosure segment. If necessary, however, an insulator which supports the conductor 5 and is fastened between two flanges can be used to hold the sensors.
  • the structure and arrangement of the current and voltage sensor 10 can be seen in FIG. 2.
  • the part, represented enlarged in this figure, of the current and voltage sensor 10 essentially includes an annular support body 13 clamped in the metal enclosure--for example by screws 12 led radially outwards against the enclosure part 7--an annular coil 14 wound in the shape of a torus, a hollow cylindrical test electrode 15, and shielded signal lines 16, 17 and 18 led out in a gas-tight fashion from the metal enclosure 4 to the signal processing device (not represented).
  • the support body 13 contains a chamber 19, which annularly surrounds the conductor 5 and in which the coil 14 is arranged.
  • the chamber 19 is bounded at its two end faces by two shielding electrodes 20, 21 which surround the conductor 5 in the form of a bulge.
  • the shielding electrode 21 has sealable bores 22, 23 for accommodating the screws 12, as well as an annular attachment 24, which rests on the inner surface of the enclosure part 7 and is fitted into the shielding electrode 20 to form the support body 13.
  • the attachment 24 bounds the annular chamber 19 on its circumferential surface facing the metal enclosure, whereas the chamber 19 is bounded on its circumferential surface facing the conductor 5 by a planar, annular shielding electrode 25.
  • the shielding electrode 25 is held in an electrically conductive fashion on the shielding electrode 21, and its opposite end face is held in an electrically insulating fashion on the shielding electrode 20.
  • the shielding electrodes 20, 21 and 25 forming a shield 26 preferably consist of the same material as the metal enclosure, for example of aluminum, and are at the same electrical potential as the metal enclosure 4.
  • the shield 26 protects the chamber 19 against the influence of electrical interference fields. Consequently, virtually error-free signals are transmitted by the coil 14 during measurement in the station under operational conditions.
  • the coil 14 is wound in the manner of a Rogowski coil onto an annular core 27 made from non-ferromagnetic, predominantly isotropic material.
  • the coil 27 has an essentially rectangular cross section and is only of very small dimension by comparison with its radius and with its axial extent in the radial direction. It has a typical thickness of only 5 mm in conjunction with a radius of, for example, 140 mm and an axial longitudinal extent of, for example, 100 mm.
  • the chamber 19 accommodating the coil 14 is filled by an annular insulating body 28, by means of which the coil 14 on the support body 13 and, at the same time, the shielding electrode 25 and the test electrode 15 are fixed.
  • the signal processing device represented in FIG. 3 as a block diagram has two inputs 29, 30.
  • the output signals of the part of the current and voltage sensor 10 acting as current sensor are fed to the input 29 via the signal lines 16, 17.
  • the output signals of the part of the current and voltage sensor 10 acting as voltage sensor are fed to the input 30 via signal lines 31 and 32.
  • the coil 14 which is constructed in the manner of a Rogowski coil, supplies signals which are proportional to the temporal variation of the current flowing in the conductor 5 and which because of the suitably arranged shield 26 are virtually free from the influences of undesired stray fields and from transient processes occurring in the station. These signals act via an overvoltage protection 33 and a bandpass filter 34, which when the station is operating with AC voltages of 50 Hz typically has a bandpass between 0.05 Hz and 5 kHz, on the input of an analog-to-digital converter 35 which in terms of its dynamic operating range is matched to the bandpass filter 34.
  • the signals digitized in the analog-to-digital converter 35 are subsequently integrated in an integration device 36, which is preferably constructed as a digital IIR filter, to form a signal corresponding to the current to be determined.
  • This signal can then optionally be converted for an analog display 38 via a downstream digital-to-analog converter 37, and/or be handed on for further processing to other functional units 39 of the station.
  • Signals proportional to the temporal variation in the high voltage applied at the conductor 5 are fed to the input 30. These signals act via a protection and filter element 40 and signal lines 41, 42 on an analog-to-digital converter 43 constructed to correspond to the analog-to-digital converter 35.
  • the signals digitized in the analog-to-digital converter 43 are subsequently integrated in an integration device 44, which is preferably constructed as a digital IIR filter, to form a signal corresponding to the voltage to be determined.
  • This signal can then be optionally converted for the analog display 38 via a downstream digital-to-analog converter 45, and/or be handed on for further processing to the other functional units 39 of the station.
  • the signals output by the analog-to-digital converter 43 can also be processed in the integration device 36. All that is required for this purpose is for this integration device to be used in multiplex mode to feed the output signals of the analog-to-digital converters 35 and 43 in a temporally interleaved fashion to the input of the integration device 36.
  • FIG. 4 shows how the signals corresponding to the temporal variation in the high voltage applied at the conductor 5 can be generated.
  • the test electrode 15 forms with the conductor 5 a coupling capacitor for the electric field emanating from the conductor 5 and corresponding to the applied high voltage, and with the shield 26 and the metal enclosure 4 an auxiliary capacitor which improves the processing and accuracy of the coupled-in measuring signal.
  • the coupling capacitor and auxiliary capacitor have capacitance values C 1 and C 2 and correspond to the high-voltage capacitor 46 and the low-voltage capacitor 47 of a capacitive voltage divider, into the high-voltage capacitor 46 of which a voltage U 1 corresponding to the station voltage is coupled, and into the low-voltage capacitor 47 of which a voltage U 2 converted in accordance with the divider ratio is coupled.
  • Typical values for C 1 and C 2 are, for example, a few pF and a few nF.
  • a low-voltage capacitor 47 is required which has particularly low inductance and losses and is stable in the long term and under heat. Such a capacitor is extremely expensive.
  • Signals proportional to the temporal variation in the high voltage applied at the conductor 5 can, as is clear from FIG. 4, be obtained in a particularly simple way when the part of the current and voltage sensor 10 acting as voltage sensor has an ohmic resistor 48, one end of which is connected in an electrically conductive fashion to the test electrode 15 and the other end of which is connected in an electrically conductive fashion to the metal enclosure 4 and the shield 26.
  • the voltage signals dropping across the resistor 48 and fed via the signal lines 31, 32 of the signal processing device represented in FIG. 3 correspond to a good approximation to the temporal variation in the high voltage applied at the conductor 5.
  • the low-voltage capacitor with the capacitance value C 2 has to fulfill the following function when the voltage sensor is constructed with the ohmic resistor 48:
  • the abovementioned effect of the voltage sensor is achieved when the high-voltage capacitor 46 formed by the conductor 5 and the test electrode 15, the low-voltage capacitor 47 formed by the test electrode 15 and the metal enclosure 4 as well as the shield 26 of the current sensor, and the ohmic resistor 48 are dimensioned such that above a prescribed threshold frequency f g the amplitudes of the signals output by the voltage sensor are below a prescribed amplitude limiting value.
  • a prescribed threshold frequency f g the amplitudes of the signals output by the voltage sensor are below a prescribed amplitude limiting value.
  • R 1 signifies the value of the ohmic resistor 48 in ohms
  • C 1 and C 2 signify the values of the high-voltage and low-voltage capacitors 46, 47 in farads.
  • the threshold frequency f g is designed such that a useful band NB required for a distortion-free transfer function of the voltage sensor is available about the line frequency of the station voltage of for example 50 Hz marked by the designation f n .
  • the voltage signals occurring at the output of the voltage sensor and fed to the input 30 of the signal monitoring device are still further limited in the protection and filter element 40.
  • the protection and filter element 40 contains a filter element, constructed as a low-pass filter, and an overvoltage protection.
  • the low-pass filter is constructed as an RC element having an ohmic resistor 49 and a capacitor 50.
  • the capacitance of the signal lines, which cannot be avoided, is designated by the designation 52.
  • a protection and filter element 40 constructed in a such a fashion can be used if required to limit voltage peaks occurring at the input 30, or undesirably high frequencies via the resistors 49 and 51 or the RC element, which has the resistor 49 and the capacitor and acts as a low-pass filter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Transformer Cooling (AREA)
  • Transformers For Measuring Instruments (AREA)
US07/904,863 1991-06-29 1992-06-26 Combined current and voltage transformer for a metal-enclosed gas-insulated high-voltage switching station Expired - Lifetime US5432438A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4121654.7 1991-06-29
DE4121654A DE4121654A1 (de) 1991-06-29 1991-06-29 Kombinierter strom- und spannungswandler fuer eine metallgekapselte gasisolierte hochspannungsanlage

Publications (1)

Publication Number Publication Date
US5432438A true US5432438A (en) 1995-07-11

Family

ID=6435111

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/904,863 Expired - Lifetime US5432438A (en) 1991-06-29 1992-06-26 Combined current and voltage transformer for a metal-enclosed gas-insulated high-voltage switching station

Country Status (4)

Country Link
US (1) US5432438A (ja)
EP (1) EP0522303B2 (ja)
JP (1) JP3355580B2 (ja)
DE (2) DE4121654A1 (ja)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996010189A1 (en) * 1994-09-29 1996-04-04 Pacific Gas And Electric Company Fault sensor device with radio transceiver
EP0851442A2 (en) * 1996-12-31 1998-07-01 ABB Transmit Oy Lead-in insulator
EP0869369A2 (de) * 1997-04-04 1998-10-07 Asea Brown Boveri AG Kapazitiver Spannungswandler für eine metallgekapselte, gasisolierte Hochspannungsanlage
ES2128953A1 (es) * 1996-09-24 1999-05-16 Red Electrica De Espana S A Transformador electronico de medida.
US5939876A (en) * 1996-08-23 1999-08-17 Asea Brown Boveri Ag Measuring device for a metal-enclosed, gas-insulated high-voltage installation
WO1999057578A2 (en) * 1998-05-07 1999-11-11 Airpax Corporation, L.L.C. Ac current sensor having high accuracy and large bandwidth
US20030164714A1 (en) * 2000-05-03 2003-09-04 Foroozan Ghassemi Capacitor coupled voltage transformers
US20050209704A1 (en) * 2002-03-14 2005-09-22 Maspero Fabrizio A Porous biocompatible implant material and method for its fabrication
US20050280423A1 (en) * 2004-06-21 2005-12-22 Barbour Erskine R Method and apparatus for measuring voltage in a power switching device
WO2006134178A1 (es) * 2005-06-13 2006-12-21 Ormazabal Protection & Automation, S.L. Dispositivo de control/protección para redes de distribución eléctrica
CN101221199B (zh) * 2008-01-23 2010-06-16 杨振敏 自生电源等电位高压电能测量装置
US20100283487A1 (en) * 2009-05-08 2010-11-11 Mark Allan Juds System and method for sensing voltage in medium-to-high voltage applications
US20110147346A1 (en) * 2007-12-21 2011-06-23 Abb Research Ltd Gas-insulated switchgear device with optical current sensor
CN101718824B (zh) * 2009-12-07 2012-07-18 中国电力科学研究院 一种用于特高压交直流气体绝缘金属封闭输电线路试验装置
CN101707130B (zh) * 2009-11-10 2012-12-05 深圳市科陆电子科技股份有限公司 组合式电子互感器
WO2013158754A1 (en) * 2012-04-17 2013-10-24 Georgia Tech Research Corporation Voltage sensor systems and methods
WO2014087469A1 (ja) * 2012-12-03 2014-06-12 三菱電機株式会社 電圧検出装置
CN104062481A (zh) * 2013-03-19 2014-09-24 北京北方微电子基地设备工艺研究中心有限责任公司 电流传感器、匹配器、以及等离子体装置
US20150112621A1 (en) * 2012-06-01 2015-04-23 Mitsubishi Electric Corporation Voltage detection device for transforming apparatus
CN104062481B (zh) * 2013-03-19 2016-11-30 北京北方微电子基地设备工艺研究中心有限责任公司 电流传感器、匹配器、以及等离子体装置
WO2017006360A1 (en) * 2015-07-05 2017-01-12 Green Seas Ventures, Ltd Plug-in connector
EP2568298A3 (en) * 2011-09-09 2017-07-19 General Electric Company Sensor devices and methods for use in sensing current through a conductor
CN107576836A (zh) * 2017-10-18 2018-01-12 叶有福 综合传感器
EP3276363A1 (en) * 2016-07-29 2018-01-31 General Electric Technology GmbH Sensing device and associated transmission line
CN108562833A (zh) * 2018-02-01 2018-09-21 清华大学 一种550kV GIS陡波冲击试验平台
CN110426547A (zh) * 2019-06-24 2019-11-08 中国电力科学研究院有限公司 一种宽频带gis电子式电压互感器装置及测量方法
US11125782B2 (en) 2018-12-07 2021-09-21 Abb Schweiz Ag Line post sensor

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4429959A1 (de) * 1994-08-24 1996-02-29 Abb Management Ag Stromwandler für eine metallgekapselte gasisolierte Hochspannungsanlage
DE4435442A1 (de) * 1994-10-04 1996-04-11 Abb Management Ag Sensor zum Auskoppeln von Teilentladungsimpulsen aus einer hochspannungsführenden elektrischen Anlage
DE4435864C2 (de) * 1994-10-07 1996-07-25 Pfisterer Elektrotech Karl Garnitur in Form einer Durchführung oder einer Steckbuchse für Kabelstecker
DE59712933D1 (de) * 1996-08-23 2008-05-15 Abb Schweiz Ag Messvorrichtung für eine metallgekapselte, gasisolierte Hochspannungsanlage
DE19923211C2 (de) * 1998-07-23 2001-05-10 Karlsruhe Forschzent Kapazitiver Spannungsteiler zur Messung von Hochspannungsimpulsen mit Millisekunden-Impulsdauer
JP2001141755A (ja) * 1999-11-16 2001-05-25 Mitsubishi Electric Corp 電流測定装置
JP3774604B2 (ja) 1999-12-27 2006-05-17 三菱電機株式会社 ガス絶縁開閉装置
DE10154309A1 (de) * 2001-11-05 2003-05-15 Abb Research Ltd Vorrichtung zur elektro-optischen Messung einer Hochspannung
JP5069978B2 (ja) * 2007-08-31 2012-11-07 株式会社ダイヘン 電流・電圧検出用プリント基板および電流・電圧検出器
JP4995683B2 (ja) * 2007-09-28 2012-08-08 株式会社ダイヘン 電流・電圧検出用プリント基板および電流・電圧検出器
CZ23097U1 (cs) * 2011-08-23 2011-12-19 Abb Technology Ag Kombinovaný mericí a detekcní systém
DE102012204179A1 (de) * 2012-03-16 2013-09-19 Siemens Aktiengesellschaft Messwandleranordnung
CN103018527B (zh) * 2012-12-07 2015-12-09 上海市电力公司 变压器调压开关分接头的驱动电机电流信号采集装置
CN103018529B (zh) * 2012-12-11 2015-06-03 扬州新概念电气有限公司 一种组合式电流电压传感器
KR101663816B1 (ko) * 2016-06-03 2016-10-10 (주)테크윈시스템 광대역 변류기

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3621392A (en) * 1970-01-22 1971-11-16 Thermal Ind Of Florida Inc Connectionless electrical meter for measuring voltage or power factor
US3731190A (en) * 1971-06-11 1973-05-01 Siemens Ag Switching circuit for measuring the electrical power in two energy flow directions (delivered and returned)
DE2325441A1 (de) * 1973-05-17 1974-11-21 Siemens Ag Messwandler zum einbau in eine metallkapsel einer schaltanlage
CH583909A5 (ja) * 1975-04-11 1977-01-14 Landis & Gyr Ag
DE2656817A1 (de) * 1976-12-15 1978-06-22 Siemens Ag Strommessgeber fuer die potentialtrennende erfassung des strom-istwertes in einem leiter
SU633085A1 (ru) * 1976-01-21 1978-11-15 Новочеркасский Ордена Трудового Красного Знамени Политехнический Институт Имени Серго Орджоникидзе Устройство дл компенсации погрешности одноступенчатого трансформатора тока
DE2930672A1 (de) * 1979-07-28 1981-02-12 Bbc Brown Boveri & Cie Einrichtung zur messung hoher wechselspannungen in hochspannungsschaltanlagen
SU842999A1 (ru) * 1978-11-21 1981-06-30 Белорусский Филиал Государственногонаучно-Исследовательского Энергети-Ческого Института Им. Г.M.Кржижановского Устройство дл коррекции погрешностиОдНОСТупЕНчАТОгО ТРАНСфОРМАТОРА TOKA
SU980638A3 (ru) * 1978-03-23 1982-12-07 Ббц Аг Браун,Бовери Унд Ко (Фирма) Устройство дл измерени переменного напр жени в чейке высоковольтного распредустройства
SU1078479A1 (ru) * 1982-05-06 1984-03-07 Уфимский авиационный институт им.Орджоникидзе Трансформатор тока и напр жени
DE3544508A1 (de) * 1985-12-17 1987-06-19 Ulrich Dipl Ing Adolph Kombinationswandler zur gleichzeitigen messung von strom und spannung an rohrummantelten leitern
US4758962A (en) * 1983-04-13 1988-07-19 Fernandes Roosevelt A Electrical power line and substation monitoring apparatus and systems
DE3712190A1 (de) * 1987-04-10 1988-10-27 Bbc Brown Boveri & Cie Elektrischer wandler

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1311720A (en) 1970-12-18 1973-03-28 English Electric Co Ltd High voltage monitoring systems
DE2412654A1 (de) * 1974-03-14 1975-09-25 Siemens Ag Spannungsuebertragungseinrichtung fuer hochspannung
DE2833036C2 (de) * 1978-07-25 1980-09-11 Siemens Ag, 1000 Berlin Und 8000 Muenchen Spannungsmeßeinrichtung für gas- oder flüssigkeitsisolierte Hochspannungsschaltanlagen
SU890638A1 (ru) * 1980-04-29 1991-11-23 Производственное Объединение "Мариупольтяжмаш" Кристаллизатор дл выплавки полых слитков

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3621392A (en) * 1970-01-22 1971-11-16 Thermal Ind Of Florida Inc Connectionless electrical meter for measuring voltage or power factor
US3731190A (en) * 1971-06-11 1973-05-01 Siemens Ag Switching circuit for measuring the electrical power in two energy flow directions (delivered and returned)
DE2325441A1 (de) * 1973-05-17 1974-11-21 Siemens Ag Messwandler zum einbau in eine metallkapsel einer schaltanlage
CH583909A5 (ja) * 1975-04-11 1977-01-14 Landis & Gyr Ag
SU633085A1 (ru) * 1976-01-21 1978-11-15 Новочеркасский Ордена Трудового Красного Знамени Политехнический Институт Имени Серго Орджоникидзе Устройство дл компенсации погрешности одноступенчатого трансформатора тока
DE2656817A1 (de) * 1976-12-15 1978-06-22 Siemens Ag Strommessgeber fuer die potentialtrennende erfassung des strom-istwertes in einem leiter
SU980638A3 (ru) * 1978-03-23 1982-12-07 Ббц Аг Браун,Бовери Унд Ко (Фирма) Устройство дл измерени переменного напр жени в чейке высоковольтного распредустройства
SU842999A1 (ru) * 1978-11-21 1981-06-30 Белорусский Филиал Государственногонаучно-Исследовательского Энергети-Ческого Института Им. Г.M.Кржижановского Устройство дл коррекции погрешностиОдНОСТупЕНчАТОгО ТРАНСфОРМАТОРА TOKA
DE2930672A1 (de) * 1979-07-28 1981-02-12 Bbc Brown Boveri & Cie Einrichtung zur messung hoher wechselspannungen in hochspannungsschaltanlagen
SU1078479A1 (ru) * 1982-05-06 1984-03-07 Уфимский авиационный институт им.Орджоникидзе Трансформатор тока и напр жени
US4758962A (en) * 1983-04-13 1988-07-19 Fernandes Roosevelt A Electrical power line and substation monitoring apparatus and systems
DE3544508A1 (de) * 1985-12-17 1987-06-19 Ulrich Dipl Ing Adolph Kombinationswandler zur gleichzeitigen messung von strom und spannung an rohrummantelten leitern
DE3712190A1 (de) * 1987-04-10 1988-10-27 Bbc Brown Boveri & Cie Elektrischer wandler

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Keitel, J.; u.s.: Strommessung mittels Rogowski Spule. In: Elektrie 33, 1979, H.5, S.251 253. *
Keitel, J.; u.s.: Strommessung mittels Rogowski-Spule. In: Elektrie 33, 1979, H.5, S.251-253.

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5565783A (en) * 1994-09-29 1996-10-15 Pacific Gas And Electric Company Fault sensor device with radio transceiver
WO1996010189A1 (en) * 1994-09-29 1996-04-04 Pacific Gas And Electric Company Fault sensor device with radio transceiver
US5939876A (en) * 1996-08-23 1999-08-17 Asea Brown Boveri Ag Measuring device for a metal-enclosed, gas-insulated high-voltage installation
ES2128953A1 (es) * 1996-09-24 1999-05-16 Red Electrica De Espana S A Transformador electronico de medida.
EP0851442A2 (en) * 1996-12-31 1998-07-01 ABB Transmit Oy Lead-in insulator
EP0851442A3 (en) * 1996-12-31 1998-07-29 ABB Transmit Oy Lead-in insulator
US5991177A (en) * 1997-04-04 1999-11-23 Asea Brown Boveri Ag Capacitive voltage transformer for a metal-enclosed, gas-filled high-voltage system
EP0869369A2 (de) * 1997-04-04 1998-10-07 Asea Brown Boveri AG Kapazitiver Spannungswandler für eine metallgekapselte, gasisolierte Hochspannungsanlage
EP0869369A3 (de) * 1997-04-04 1999-06-02 Asea Brown Boveri AG Kapazitiver Spannungswandler für eine metallgekapselte, gasisolierte Hochspannungsanlage
WO1999057578A2 (en) * 1998-05-07 1999-11-11 Airpax Corporation, L.L.C. Ac current sensor having high accuracy and large bandwidth
WO1999057578A3 (en) * 1998-05-07 2000-04-06 Airpax Corp L L C Ac current sensor having high accuracy and large bandwidth
US6094044A (en) * 1998-05-07 2000-07-25 Airpax Corporation, Llc AC current sensor having high accuracy and large bandwidth
US20030164714A1 (en) * 2000-05-03 2003-09-04 Foroozan Ghassemi Capacitor coupled voltage transformers
US6919717B2 (en) * 2000-05-03 2005-07-19 Foroozan Ghassemi Capacitor coupled voltage transformer and its input voltage parameter determination
US20050209704A1 (en) * 2002-03-14 2005-09-22 Maspero Fabrizio A Porous biocompatible implant material and method for its fabrication
US20050280423A1 (en) * 2004-06-21 2005-12-22 Barbour Erskine R Method and apparatus for measuring voltage in a power switching device
US7550960B2 (en) * 2004-06-21 2009-06-23 Abb Technology Ag Method and apparatus for measuring voltage in a power switching device
WO2006134178A1 (es) * 2005-06-13 2006-12-21 Ormazabal Protection & Automation, S.L. Dispositivo de control/protección para redes de distribución eléctrica
US20110147346A1 (en) * 2007-12-21 2011-06-23 Abb Research Ltd Gas-insulated switchgear device with optical current sensor
US8242402B2 (en) 2007-12-21 2012-08-14 Abb Research Ltd Gas-insulated switchgear device with optical current sensor
CN101221199B (zh) * 2008-01-23 2010-06-16 杨振敏 自生电源等电位高压电能测量装置
US8163574B2 (en) 2009-05-08 2012-04-24 Eaton Corporaton System and method for sensing voltage in medium-to-high voltage applications
US20100283487A1 (en) * 2009-05-08 2010-11-11 Mark Allan Juds System and method for sensing voltage in medium-to-high voltage applications
CN101707130B (zh) * 2009-11-10 2012-12-05 深圳市科陆电子科技股份有限公司 组合式电子互感器
CN101718824B (zh) * 2009-12-07 2012-07-18 中国电力科学研究院 一种用于特高压交直流气体绝缘金属封闭输电线路试验装置
EP2568298A3 (en) * 2011-09-09 2017-07-19 General Electric Company Sensor devices and methods for use in sensing current through a conductor
US9568512B2 (en) 2012-04-17 2017-02-14 Georgia Tech Research Corporation Voltage sensor systems and methods
WO2013158754A1 (en) * 2012-04-17 2013-10-24 Georgia Tech Research Corporation Voltage sensor systems and methods
US10338102B2 (en) * 2012-06-01 2019-07-02 Mitsubishi Electric Corporation Voltage detection device for transforming apparatus
US20150112621A1 (en) * 2012-06-01 2015-04-23 Mitsubishi Electric Corporation Voltage detection device for transforming apparatus
US9459291B2 (en) 2012-12-03 2016-10-04 Mitsubishi Electric Corporation Voltage detection device
WO2014087469A1 (ja) * 2012-12-03 2014-06-12 三菱電機株式会社 電圧検出装置
CN104062481B (zh) * 2013-03-19 2016-11-30 北京北方微电子基地设备工艺研究中心有限责任公司 电流传感器、匹配器、以及等离子体装置
CN104062481A (zh) * 2013-03-19 2014-09-24 北京北方微电子基地设备工艺研究中心有限责任公司 电流传感器、匹配器、以及等离子体装置
WO2017006360A1 (en) * 2015-07-05 2017-01-12 Green Seas Ventures, Ltd Plug-in connector
EP3276363A1 (en) * 2016-07-29 2018-01-31 General Electric Technology GmbH Sensing device and associated transmission line
WO2018020043A1 (en) * 2016-07-29 2018-02-01 General Electric Technology Gmbh Sensing device and associated transmission line
CN107576836A (zh) * 2017-10-18 2018-01-12 叶有福 综合传感器
CN108562833A (zh) * 2018-02-01 2018-09-21 清华大学 一种550kV GIS陡波冲击试验平台
US11125782B2 (en) 2018-12-07 2021-09-21 Abb Schweiz Ag Line post sensor
CN110426547A (zh) * 2019-06-24 2019-11-08 中国电力科学研究院有限公司 一种宽频带gis电子式电压互感器装置及测量方法
CN110426547B (zh) * 2019-06-24 2022-09-27 中国电力科学研究院有限公司 一种宽频带gis电子式电压互感器装置及测量方法

Also Published As

Publication number Publication date
JPH05251251A (ja) 1993-09-28
DE59208283D1 (de) 1997-05-07
EP0522303B2 (de) 2002-01-09
DE4121654A1 (de) 1993-01-07
JP3355580B2 (ja) 2002-12-09
EP0522303A2 (de) 1993-01-13
EP0522303A3 (en) 1993-04-14
EP0522303B1 (de) 1997-04-02

Similar Documents

Publication Publication Date Title
US5432438A (en) Combined current and voltage transformer for a metal-enclosed gas-insulated high-voltage switching station
US4074193A (en) Combined current and voltage measuring apparatus
US3396339A (en) Capacitive voltage sensing device including coaxially disposed conductive tubes and electrical discharge inhibition means
US4914382A (en) High voltage measuring circuit coupled to the capacitive grounding tap bushing of an HV device
US7027280B2 (en) Gas insulating apparatus and method for locating fault point thereof
EP0510311B1 (de) Strom- und Spannungswandler für eine metallgekapselte, gasiolierte Hochspannungsanlage
US20050135028A1 (en) Gas insulating apparatus and method for locating fault point thereof
US5991177A (en) Capacitive voltage transformer for a metal-enclosed, gas-filled high-voltage system
US6717499B2 (en) Transformer for gas insulated electric apparatus
GB1461490A (en) Monitoring arrangements for hv assemblies
US3919626A (en) Measuring transformer arrangement
US4314303A (en) Overvoltage protection device
WO2020174522A1 (ja) 中間電極構造体、それを用いた変成器及び部分放電検出装置
US3891863A (en) Voltage transformer for a fluid insulated high-voltage multi-conductor switching apparatus
KR200439625Y1 (ko) 배전급 22.9kV GIS용 전자식변성기가 내장된탄성에폭시 3상 스페이서
JP7127730B2 (ja) 電圧変成器
RU2794411C1 (ru) Испытательный трансформатор высокого напряжения комбинированный
JP2000286108A (ja) 碍子形避雷器
KR20240048783A (ko) 센서 일체형 에폭시 부싱
CA1157095A (en) Zero-current detector for high voltage dc transmission line
JPH11153628A (ja) ガス絶縁電気機器用受電電圧検出装置
JPH067139B2 (ja) ガス絶縁電気装置のサ−ジ測定方法
JPS59221671A (ja) ガス絶縁電気機器用光学式電圧変成装置
JPH11150004A (ja) 抵抗分漏れ電流測定方法および抵抗分漏れ電流測定装置
JPH07191062A (ja) 光学式電圧測定装置

Legal Events

Date Code Title Description
AS Assignment

Owner name: ASEA BROWN BOVERI LTD., SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:BAUMGARTNER, RUDOLF;HAFFNER, KEN Y.;KACZOWSKI, ANDRZEJ;REEL/FRAME:006168/0542

Effective date: 19920606

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: ABB SCHWEIZ AG, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ABB IMMOBILIEN AG;REEL/FRAME:016145/0045

Effective date: 20050320

Owner name: ABB SCHWEIZ AG, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ABB IMMOBILIEN AG;REEL/FRAME:016145/0089

Effective date: 20050320

FPAY Fee payment

Year of fee payment: 12