US5064811A - De-mannosyl teicoplanin derivatives - Google Patents

De-mannosyl teicoplanin derivatives Download PDF

Info

Publication number
US5064811A
US5064811A US07/655,252 US65525291A US5064811A US 5064811 A US5064811 A US 5064811A US 65525291 A US65525291 A US 65525291A US 5064811 A US5064811 A US 5064811A
Authority
US
United States
Prior art keywords
beta
deoxy
amino
glucopyranosyl
teicoplanin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US07/655,252
Other languages
English (en)
Inventor
Angelo Borghi
Giancarlo Lancini
Piero Antonini
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gruppo Lepetit SpA
Original Assignee
Gruppo Lepetit SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gruppo Lepetit SpA filed Critical Gruppo Lepetit SpA
Priority to US07/729,512 priority Critical patent/US5135857A/en
Application granted granted Critical
Publication of US5064811A publication Critical patent/US5064811A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K9/00Peptides having up to 20 amino acids, containing saccharide radicals and having a fully defined sequence; Derivatives thereof
    • C07K9/006Peptides having up to 20 amino acids, containing saccharide radicals and having a fully defined sequence; Derivatives thereof the peptide sequence being part of a ring structure
    • C07K9/008Peptides having up to 20 amino acids, containing saccharide radicals and having a fully defined sequence; Derivatives thereof the peptide sequence being part of a ring structure directly attached to a hetero atom of the saccharide radical, e.g. actaplanin, avoparcin, ristomycin, vancomycin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/20Carbocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/365Nocardia
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/465Streptomyces
    • C12R2001/51Streptomyces candidus

Definitions

  • the object of this invention are antibiotic de-mannosyl teicoplanin derivatives of the formula ##STR1## wherein R is N-(Z-4-decenoyl)-beta-D-2-deoxy-2-amlno-glucopyranosyl, N-(8-methyl-nonanoyl)-beta-D-2-deoxy-2-amino-glucopyranosyl, N-decanoyl-beta-D-2-deoxy-2-amino-glucopyranosyl, N-(8-methyl-decanoyl)-beta-D-2-deoxy-2-amino-glucopyranosyl, N-(9-methyl-decanoyl)-beta-D-2-deoxy-2-amino-glucopyranosyl;
  • R 1 is N-acetyl-beta-D-2-deoxy-2-amino-glucopyranosyl
  • R 2 is hydrogen, their addition salts with acids and bases and any mixture thereof, in any proportion
  • a further object of this invention is a process for the obtention of said antibiotic derivatives from the corresponding mannosylated teicoplanin precursors.
  • Teicoplanin is an antibiotic produced by cultivating the strain Actinoplanes teichomyceticus nov. sp. ATCC 31121 in a culture medium containing assimilable sources of carbon, nitrogen and inorganic salts.
  • the main product resulting from the above mentioned strain was a mixture of three main factors (A 1 , A 2 and A 3 ) originally referred to as teichomycin (U.S. Pat. No. 4,239,751).
  • TA2-1, TA2-2, TA2-3, TA2-4 and TA2-5 The five major components of teicoplanin complex (conventionally named: TA2-1, TA2-2, TA2-3, TA2-4 and TA2-5) may be represented by the above general formula (I) above wherein:
  • R respectively is:
  • TA2-3 N-decanoyl-beta-D-2-deoxy-2-amino-gluco-pyranosyl
  • R 1 is N-acetyl-beta-D-2-deoxy-2-amino-glucopyranosyl
  • R 2 is alpha-D-mannopyranosyl
  • De-mannosyl teicoplanin derivatives i.e teicoplanin derivatives where R and R 1 have the same meanings as in the teicoplanin complex represented above and R 2 is hydrogen have not been described so far and, apparently, they cannot be obtained by acidic treatment.
  • Basic treatment of teicoplanin leads to epimerization at the chiral center of the third aminoacid (starting from the N-terminus) with remarkable decrease of the activity (see J. C. J. Barna et.al.: The Journal of Antibiotics 37, No. 10, page 1204-1208, 1984).
  • de-mannosylated teicoplanin derivatives can be obtained in good yield by microbiological transformation of a substrate selected from teicoplanin complex, any mixture of the single components and a single component thereof with cultures of Nocardia orientalis NRRL 2450 or Streptomyces candidus NRRL 3218, their natural mutants or variants exhibiting the same property of splitting the glycosidic bond with the D-mannose moiety in the teicoplanin molecule, the washed mycelium or a cell-free preparation thereof.
  • the first above mentioned strain is also referred to in the recent literature as Streptomyces orientalis NRRL 2450 (see: S.K. Chung et.al., The Journal of Antibiotics 39, No. 5, page 652-659, 1986).
  • the resulting product is a mixture of five de-mannosyl derivatives of the formula I above, in any proportion. Also these mixtures fall within the scope of this invention. Said mixtures can be used as such for the uses described herein or can be optionally separated into the five individual components by means of known techniques such as, for instance, reverse-phase partition, ion exchange chromatography or preparative HPLC (see for reference U.S. Pat. No. 4,542,018).
  • de-mannosyl teicoplanin derivatives of this invention are antibiotically active compounds.
  • each de-mannosyl teicoplanin compound of this invention will be hereinafter indicated with a conventional name referring to the teicoplanin complex major component from which it derives, preceded by the acronym DM.
  • DM-TA2-1 indicates the de-mannosyl derivative of component 1 (TA2-1);
  • DM-TA2-2 indicates the de-mannosyl derivative of component 2 (TA2-2);
  • DM-TA2-3 indicates the de-mannosyl derivative of component 3 (TA2-3);
  • DM-TA2-4 indicates the de-mannosyl derivative of component 4 (TA2-4);
  • DM-TA2-5 indicates the de-mannosyl derivative of component 5 (TA2-5).
  • the antibacterial activity of the compounds of the invention can be demonstrated in vitro by means of standard dilution tests on different microorganism cultures.
  • Culture media and growth conditions for MIC (minimal inhibitory concentration) determinations were as follows: Isosensitest broth (Oxoid), 24 h, for staphylococci, Strep. faecalis and Gram-negative bacteria (Escherichia coli) ; Todd-Hewitt broth (Difco), 24 h for other streptococcal species; GC base broth (Difco) +1% Isovitalex (BBL), 48 h, CO 2 -enriched atmosphere for Neisseria gonorrhoeae; Brain Heart broth (Difco) +1% Supplement C (Difco), 48 h for Haemophilus influenzae; Inocula were of about 10 4 -10 5 colony-formin units/ml for broth dilution MICs.
  • the minimal inhibitory concentrations (MIC, microgram/ml) of the above de-mannosyl teicoplanin derivatives for some microorganisms are reported below in Table I.
  • the de-mannosyl teicoplanin derivatives possess acid and basic functions and can form salts with organic and inorganic counter ions according to conventional procedures.
  • Representative and suitable acid addition salts of the compounds of the invention include those salts formed by standard reaction with both organic and inorganic acids such as, for example, hydrochloric, hydrobromic, sulfuric, phosphoric, acetic, trifluoroacetic, trichloroacetic, succinic, citric, ascorbic, lactic, maleic, fumaric, palmitic, cholic, pamoic, mucic, glutamic, camphoric, glutaric, glycolic, phthalic, tartaric, lauric, stearic, salicylic, methanesulfonic, benzenesulfonic, sorbic, picric, benzoic, cinnamic and the like acids.
  • organic and inorganic acids such as, for example, hydrochloric, hydrobromic, sulfuric, phosphoric, acetic, trifluoroacetic, trichloroacetic, succinic, citric, ascorbic, lactic, maleic, fumaric, palmitic
  • bases are: alkali metal or alkaline-earth metal hydroxide such as sodium, potassium, calcium, magnesium, barium hydroxide; ammonia and aliphatic, alicyclic or aromatic organic amines such as methylamine, dimethylamine, trimethylamine, and picoline.
  • alkali metal or alkaline-earth metal hydroxide such as sodium, potassium, calcium, magnesium, barium hydroxide
  • ammonia and aliphatic, alicyclic or aromatic organic amines such as methylamine, dimethylamine, trimethylamine, and picoline.
  • de-mannosyl teicoplanin derivatives can be transformed into the corresponding acid or base addition-salt by dissolving the non-salt form in an aqueous solvent and adding a slight molar excess of the selected acid or base. The resulting solution or suspension is then lyophilized to recover the desired salt.
  • the final salt is insoluble in a solvent where the non-salt form is soluble it is recovered by filtration from the organic solution of the non-salt form after addition of the stoichiometric amount or a slight molar excess of the selected acid or base
  • insoluble salts examples include calcium, magnesium and barium salts.
  • the non-salt form can be prepared from a corresponding acid or base salt dissolved in an aqueous solvent which is then neutralized to free the non-salt form.
  • silanised silica gel non-functionalized polystyrene, acrylic and controlled pore polydextrane resins (such as Sephadex LH 20) or activated carbon may be conveniently used.
  • the desired product is eluted by means of a linear gradient or a step-gradient of a mixture of water and a polar or apolar organic solvent, such as acetonitrile/water from 50:50 to about 100% acetonitrile.
  • the salt formation either with pharmaceutically acceptable acids (or bases) or non-pharmaceutically acceptable acids (or bases) may be used as a convenient purification technique.
  • the salt form of a de-mannosyl teicoplanin antibiotic can be transformed into the corresponding non-salt form or into a pharmaceutically acceptable salt form.
  • de-mannosyl teicoplanin derivatives of this invention are prepared by submitting a substrate selected from teicoplanin complex, any mixture of the single components and a single component thereof which can be represented by the general formula I above wherein: R respectively is:
  • R 1 is N-acetyl-beta-D-2-deoxy-2-amino-glucopyranosyl
  • R 2 is alpha-D-mannopyranosyl
  • microbiological transformation with a microorganism selected from strain Nocardia orientalis NRRL 2450, Streptomyces candidus NRRL 3218, the natural variants and mutants thereof exhibiting the same property of splitting the glycosidic bond with the D-mannose moiety in the teicoplanin molecule, the washed mycelium and a cell-free preparation thereof.
  • a microorganism selected from strain Nocardia orientalis NRRL 2450, Streptomyces candidus NRRL 3218, the natural variants and mutants thereof exhibiting the same property of splitting the glycosidic bond with the D-mannose moiety in the teicoplanin molecule, the washed mycelium and a cell-free preparation thereof.
  • the selected starting material either in pure form or in the form of any crude preparation thereof, including harvested fermentation broth from Actinoplanes teichomyceticus nov. sp. ATCC 31121, is contacted with a growing culture of one of the above strains under fermentation conditions.
  • strains are cultivated under usual submerged aerobic conditions in a medium containing assimilable sources of carbon, nitrogen and inorganic salts.
  • the starting material mentioned above can be added to a culture of Nocardia orientalis NRRL 2450 or Streptomyces candidus NRRL 3218, at a time varying from 18 hours from the inoculation time to the time at which the culture has reached its maximum growth, however, addition after 24-72 hours from inoculation is, at least in some instances, preferred.
  • the reaction time i.e. the time of exposure of the starting material to the microbial culture before recovering the final product, may vary between 48 and 140 hours, depending on the specific conditions employed.
  • the reaction can be monitored as known in the art, for instance by following the decrease of the starting material and/or the increase of the final product by HPLC, the skilled man is capable of readily determine when the reaction is to be considered as complete and the recovery procedure can be started.
  • the compounds of the present invention can be prepared according to the method of the invention by using a mycelium of the above identified de-mannosylating microorganism culture, washed in an isotonic saline solution, conveniently NaCl, in order not to disrupt said aqueous solution of mycelium
  • the washed mycelium procedure can be used in order to increase the amounts of teicoplanin compounds to be reacted while maintaining optimal yields It is also possible to carry out a cell-free preparation obtained by disrupting the cells, e.g. by sonication.
  • the recovery of the antibiotic substances from the reaction medium is then conducted according to known per se techniques which include extraction with solvents, precipitation by adding non-solvents or by changing the pH of the solution, partition chromatography, reverse-phase partition chromatography, ion-exchange chromatography, affinity chromatography and the like.
  • a preferred procedure includes an affinity chromatography on immobilized D-Alanyl-D-Alanine followed by separation at different pH.
  • Immobilized D-Alanyl-D-Alanine matrices suitable for the present recovery process are disclosed in European Patent Application Publication No. 122969.
  • the preferred matrix in this recovery process is D-Alanyl-D-Alanine coupled with a controlled pore cross-linked polydextrane.
  • the reaction medium can be subjected to the affinity chromatography directly after filtration or after a preliminary purification procedure.
  • This latter procedure includes making the whole medium basic, preferably between pH 8.5 and 11 and then filtering in the presence of a filter aid, if convenient.
  • the clear filtrate is then adjusted to a pH value between 7 and 8 and then subjected to an affinity chromatography on immobilized D-Alanyl-D-Alanine, either in column or batchwise.
  • aqueous base may be ammonia, a volatile amine, an alkali or alkali metal hydroxide or a basic buffered solution optionally in the presence of a polar organic solvent such as a polar water-miscible solvent.
  • polar water-miscible solvents are: water-soluble alcohols, (such as methanol, ethanol, iso-propanol, n-butanol), acetone, acetonitrile, lower alkyl alkanoates (such as ethyl acetate), tetrahydrofuran, dioxane and dimethylformamide and mixtures thereof; the preferred polar water-miscible solvent being acetonitrile.
  • the de-mannosyl teicoplanin antibiotic substance is eluted with the above eluting mixture.
  • the eluate is analyzed by HPLC and the fractions containing the desired material are pooled together.
  • This eluate is adjusted to pH 7.0-7.5 with an organic or mineral acid.
  • the eluate is then submitted to concentration and desalting procedures.
  • a convenient desalting procedure includes applying the antibiotic containing aqueous solution to a silanised silica gel column, washing with distilled water and eluting with a mixture of a polar water-miscible solvent as defined above and water.
  • the aqueous solution of the de-mannosylated teicoplanin derivative(s) is submitted to simultaneous concentration/desaltion procedures by ultrafiltration through a ultrafiltration membrane with a nominal molecular weight limit (NMWL) of 1000 dalton or less.
  • NMWL nominal molecular weight limit
  • the de-mannosyl teicoplanin derivative(s) product obtained from lyophilization is dissolved in an ammonium formate/acetonitrile mixture and adjusted at pH 7.5 with sodium hydroxide and the obtained solution is passed through a silanised silica gel column and then the column is eluted with a linear gradient of acetonitrile in ammonium formate solution.
  • the eluate is monitored by HPLC and the fractions containing the desired material(s) are pooled together and evaporated under reduced pressure yielding the solid material desired.
  • This procedure is also useful for the separation of the single de-mannosyl derivatives of teicoplanin complex when this latter or a mixture of its single components is used as the starting material instead of the individual components.
  • the first purification step may be avoided when the starting material utilized for the microbiological transformation is sufficiently pure and essentially consists of an individual components of teicoplanin complex.
  • the second purification step involves a semi-preparative HPLC on a silanised chemically modified preparative HPLC column by using two mixtures of acetonitrile/ammonium formate in different ratios as mobile phases and maintaining a linear gradient of acetonitrile in ammonium formate.
  • the eluted fractions are monitored by HPLC analysis and those containing the desired product are pooled together, the organic solvent is evaporated under reduced pressure and then the aqueous solution is submitted to simultaneous concentration/desaltion by ultrafiltration as described above. The solution resulting from ultrafiltration is then lyophilized yielding the desired pure product.
  • de-mannosyl teicoplanin derivatives of this invention are active against gram-positive bacteria which are responsible for many widely diffused infections.
  • the compounds of this invention show a remarkable activity against Staphylococcus epidermidis and Staphylococcus haemolyticus.
  • the de-mannosyl teicoplanin derivatives as well as the non-toxic pharmaceutically acceptable salts thereof or mixture thereof can be administered by different routes such as topically or parenterally.
  • the parenteral administration is, in general, the preferred route of administration.
  • compositions for injection may take such forms as suspensions, solutions, or emulsions in oily or aqueous vehicles, and may contain adjuvants such as suspending, stabilizing and/or dispersing agents.
  • the active ingredient may be in powder form for reconstitution at the time of delivery when a suitable vehicle, such as sterile water, is added thereto.
  • a suitable vehicle such as sterile water
  • these compounds can be formulated into various dosage forms.
  • enteric-coated dosage forms for oral administration which may be prepared as known in the art (see for instance "Remington's Pharmaceutical Sciences", fifteenth edition, Mack Publishing Company, Easton, Pennsylvania, USA, page 1614).
  • the amount of active principle to be administered depends on various factors such as the size and condition of the subject to be treated, the route and frequency of administration, and the causative agent involved.
  • the antibiotic substances of the present invention and the physiologically acceptable salts thereof are generally effective at a daily dosage of between about 0.5 and 50 mg of active ingredient per kilogram of patient body weight, optionally divided into 1 to 4 administrations per day.
  • compositions are those prepared in dosage units containing from about 50 to about 2,000 mg per unit.
  • Sustained-action formulations can be prepared based on different mechanisms and methods, as known in the art.
  • a preferred method for preparing a sustained-action formulation containing the de-mannosyl antibiotic substances involves the use of a water insoluble form of the antibiotic suspended in an aqueous or oily medium.
  • the de-mannosyl antibiotics of this invention can be used as animal growth promoters, i.e. to increase the feed efficiency of meat or milk producing animals.
  • a compound of the invention is administered orally in a suitable feed.
  • concentration employed is that which is required to provide for the active agent in a growth promotant effective amount when normal amounts of feed are consumed.
  • the addition of the active compound of the invention to animal feed is preferably accomplished by preparing an appropriate feed premix containing the active compound in an effective amount and incorporating the premix into the complete ration.
  • an intermediate concentrate or feed supplement containing the active ingredient can be blended into the feed.
  • a lyophilized tube containing Nocardia orientalis NRRL 2450 is open and aseptically transferred into a slant of oatmeal agar. After a 7 day incubation at 28° C, the culture is suspended in distilled water and inoculated into 2 Erlenmeyer flasks each containing 100 ml of vegetative medium S/bis having the following composition:
  • the inoculated medium is incubated 48 hours at 28° C. on a rotary shaker at 200 rpm.
  • the resulting culture, subdivided in several portions of 5 ml each, is frozen and stored for further use.
  • a portion of 2.5 ml of the frozen stock culture is used to inoculate a 500 ml Erlenmeyer flask containing ml of vegetative medium S/bis.
  • the culture was incubated at 28° C. for 48 h on a shaker at 200 rpm and cm throw.
  • substrate TA2-2 i.e. teicoplanin complex component 2
  • teicoplanin complex component 2 20 mg of substrate TA2-2 (i.e. teicoplanin complex component 2) are added to each flask and the fermentation is continued aerobically for 72 hours from the addition time.
  • HPLC analysis of the fermentation broth shows a 40 percent conversion of TA2-2 to DM-TA2-2.
  • the whole reaction medium from all thirty flasks is brought to pH 10.5 by addition of 1 N NaOH and then filtered in the presence of a filter aid.
  • the pH of the filtered broth is adjusted to 7.5 by adding 1 N HCl and 150 ml of Sepharose-epsilon-aminocapropyl-D-Alanyl-D-Alanine affinity resin (EPA Publ. No. 122969) are added thereto.
  • the mixture is stirred overnight at 4° C.
  • the resin was then separated from the exhausted broth and poured into a chromatographic column.
  • the column was washed with five resin volumes of Tris-HCl buffer (0.05 M, pH 7.5) and then with the same volume of Tris base solution (0.05 M).
  • the resin is eluted with a solution of 1% ammonium hydroxide by collecting several fractions of 100 ml each. Fractions were neutralized with formic acid and analyzed by HPLC.
  • the HPLC analysis is carried out under the following conditions:
  • Injection e.g. 20 microliter of a solution of the substance being examined at about 1 mg/ml in H 2 O or H 2 O:CH 3 CN, 1:1.
  • TA2-2 shows a retention time (Rt) of 24.71 min while DM-TA2-2 shows a RT of 26.30 minutes.
  • the fractions containing DM-TA2-2 are combined (about 200 ml) and then concentrated by ultrafiltration by using a 90 mm Hi-Flux U-F Cell Millipore apparatus supporting a PCAC Pellicon ultrafiltration membrane with a nominal molecular weight limit (NMWL) of 1000 dalton.
  • the volume of the solution is reduced to about 20 ml and the residual is lyophilized giving 268 mg of crude DM-TA2-2.
  • the crude product is further purified by semi-preparative HPLC under the following conditions:
  • Apparatus Waters liquid chromatograph, equipped with two pumps model 6000A, an adsorbance UV detector model 440 set at 254 nm and a solvent programmer model 660.
  • R N-(8-methyl-nonanoyl)-beta-D-2-deoxy-2-amino-glucopyranosyl;
  • R 1 N-acetyl-beta-D-2-deoxy-2-amino-glucopyranosyl
  • the lH-NMR spectrum of the pure DM-TA2-2 is recorded by using a Bruker model AM-250 instrument with an array processor, a magnet at 250 MHz, and a computerized console Aspect 3000.
  • the spectra are obtained for protons in DMSO-d 6 solutions at 25° C. with TMS as reference.
  • the Fast Atom Bombardment Mass Spectrum (FAB) of the pure DM-TA2-2 is recorded with a VG apparatus model 70-70 EQ equipped with FAB source.
  • the positive ion spectra are obtained from the samples dispersed in a few microliters of alpha-thioglycerol, bombarded with a 7 KeV beam of Ar atoms. This experiment indicates a molecular of weight of 1715 which is consistent with the structure assigned.
  • R N-decanoyl-beta-D-2-deoxy-2-amino-glucopyranosyl
  • R 1 N-acetyl-beta-D-2-deoxy-2-amino-glucopyranosyl
  • R N-(8-methyl-decanoyl)-beta-D-2-deoxy-2-amino-glucopyranosyl;
  • R 1 N-acetyl-beta-D-2-deoxy-2-amino-glucopyranosyl
  • the FAB mass spectrum is recorded by using a Kratos instrument model MS-9 equipped with MS 50TC console and FAB source.
  • the positive ion spectra are obtained from the samples dispersed in a few microliters of alpha-thioglycerol:diglycerol 1:1 bombarded with a 9 KeV beam of Xe atoms.
  • the experiment indicates a molecular weight of 1891 consistent with the structure assigned.
  • R N-(9-methyl-decanoyl)-beta-D-2-deoxy-2-amino-glucopyranosyl;
  • R 1 N-acetyl-beta-D-2-deoxy-2-amino-glucopyranosyl
  • R N-(Z-4-decenoyl)-beta-D-2-deoxy-2-amino-glucopyranosyl;
  • R 1 N-acetyl-beta-D-2-deoxy-2-amino-glucopyranosyl
  • a lyophilized tube containing Nocardia orientalis NRRL 2450 is open and aseptically transferred into a slant of oatmeal agar. After a 7 day incubation at 28° C., the culture is suspended in distilled water and irnoculated into 2 Erlenmeyer flasks each containing 100 ml of vegetative medium S/bis having the following composition:
  • the inoculated medium is incubated 48 hours at 28° C. on a rotary shaker at 200 rpm.
  • the resulting culture subdivided in several portions of 5 ml each, is frozen and stored for further use.
  • a portion of 2.5 ml of the frozen stock culture is used to inoculate a 500 ml Erlenmeyer flask containing ml of vegetative medium S/bis.
  • the culture was incubated at 28° C. for 48 h on a shaker at 200 rpm and cm throw.
  • the mycelium is recovered by centrifugation and washed twice in a saline isotonic solution (aqueous NaCl 1:1000 by weight) then resuspended in 3 1 of physiological solution (the same volume of the productive medium) and 200 mg of substrate TA2-2 (i.e. teicoplanin complex component 2) are added to each flask and the fermentation is continued aerobically for 96 hours from the addition time.
  • HPLC analysis of the fermentation broth shows a 35 percent conversion of TA2-2 to DM-TA2-2.
  • the whole reaction medium from all thirty flasks is brought to pH 10.5 by addition of 1 N NaOH and then filtered in the presence of a filter aid.
  • the pH of the filtered broth is adjusted to 7.5 by adding 1 N HCl and 500 ml of Sepharose-epsilon-aminocapropyl-D-Alanyl-D-Alanine affinity resin (EPA Publ. No. 122969) are added thereto.
  • TA2-2 shows a retention time (Rt) of 24.71 min while DM-TA2-2 shows a RT of 26.30 minutes.
  • the fractions containing DM-TA2-2 are combined and then concentrated by ultrafiltration by using a 90 mm Hi-Flux U-F Cell Millipore apparatus supporting a PCAC Pellicon ultrafiltration membrane with a nominal molecular weight limit (NMWL) of 1000 dalton.
  • NMWL nominal molecular weight limit
  • the crude product is further purified according to the conditions of the Preparation 1 giving 880 mg of pure DM-TA2-2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • General Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Luminescent Compositions (AREA)
  • Fodder In General (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Saccharide Compounds (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
US07/655,252 1987-07-03 1991-02-13 De-mannosyl teicoplanin derivatives Expired - Fee Related US5064811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/729,512 US5135857A (en) 1987-07-03 1991-07-12 Process for the preparation of de-mannosyl teicoplanin derivatives

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB878715735A GB8715735D0 (en) 1987-07-03 1987-07-03 De-mannosyl teicoplanin derivatives
GB8715735 1987-07-03

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US21195588A Continuation 1987-07-03 1988-06-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US07/729,512 Division US5135857A (en) 1987-07-03 1991-07-12 Process for the preparation of de-mannosyl teicoplanin derivatives

Publications (1)

Publication Number Publication Date
US5064811A true US5064811A (en) 1991-11-12

Family

ID=10620077

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/655,252 Expired - Fee Related US5064811A (en) 1987-07-03 1991-02-13 De-mannosyl teicoplanin derivatives

Country Status (13)

Country Link
US (1) US5064811A (hu)
EP (1) EP0301247B1 (hu)
JP (1) JPH0819155B2 (hu)
KR (1) KR890002214A (hu)
AT (1) ATE90731T1 (hu)
CA (1) CA1334655C (hu)
DE (1) DE3881775T2 (hu)
DK (1) DK357488A (hu)
ES (1) ES2055719T3 (hu)
GB (1) GB8715735D0 (hu)
HU (1) HU200488B (hu)
IL (1) IL86895A (hu)
ZA (1) ZA884577B (hu)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5135857A (en) * 1987-07-03 1992-08-04 Gruppo Lepetit S.P.A. Process for the preparation of de-mannosyl teicoplanin derivatives
US5500410A (en) * 1989-03-29 1996-03-19 Gruppo Lepetit S.P.A. Substituted alkylamide derivatives of teicoplanin
US5606036A (en) * 1991-03-27 1997-02-25 Gruppo Lepetit Spa Antibiotic A 40926 ester derivatives
US5842289A (en) * 1995-11-13 1998-12-01 Manufacturing And Technology Conversion International, Inc. Apparatus for drying and heating using a pulse combustor
US5869449A (en) * 1990-12-05 1999-02-09 Gruppo Lepetit S.P.A. 38-decarboxy-38-hydroxymethyl derivatives of teiocoplanin antibiotics and a process for preparing them
US5939523A (en) * 1995-07-05 1999-08-17 Gruppo Lepetit Spa Purification of dalbaheptide antibiotics by isoelectric focusing
US6218505B1 (en) 1996-04-23 2001-04-17 Biosearch Italia S.P.A. Chemical process for preparing amide derivatives of antibiotic A 40926
US20040142883A1 (en) * 2002-11-18 2004-07-22 Marco Cavaleri Methods of administering dalbavancin for treatment of bacterial infections
US20050004050A1 (en) * 2002-11-18 2005-01-06 Vicuron Pharmaceuticals, Inc. Dalbavancin compositions for treatment of bacterial infections
US20060074014A1 (en) * 2002-11-18 2006-04-06 Vicuron Pharmaceuticals Inc. Dalbavancin compositions for treatment of bacterial infections

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE68925951T2 (de) * 1988-12-27 1996-07-25 Lepetit Spa Chemisches Verfahren zur Herstellung des Antibiotikums L 17392 (Deglukoteicoplanin) und dessen Salze
US5185320A (en) * 1989-04-03 1993-02-09 Gruppo Lepetit S.P.A. O56 -alkyl derivatives of aglycone and pseudo aglycones of teicoplanin
ATE158306T1 (de) 1990-03-28 1997-10-15 Lepetit Spa Verfahren zur herstellung von mannosylteicoplaninderivaten und mannosylteicoplaninaglykon
EP2772523B1 (en) 2011-10-25 2018-11-28 Kabushiki Kaisha Pilot Corporation Reversibly thermochromic composition
CN106459637B (zh) 2014-04-24 2019-10-01 株式会社百乐 可逆热变色性印章用墨液组合物及印章
CN107175968A (zh) * 2017-07-12 2017-09-19 重庆工业职业技术学院 一种大学生思想政治教育智能教学系统
CN111263795B (zh) 2017-10-23 2022-05-03 株式会社百乐 可逆热变色性水性墨组合物及使用了该组合物的书写工具
JP7378412B2 (ja) 2018-09-25 2023-11-13 パイロットインキ株式会社 可逆熱変色性複合繊維

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4239751A (en) * 1975-03-05 1980-12-16 Gruppo Lepetit S.P.A. Antibiotic substances
EP0119574A2 (en) * 1983-03-22 1984-09-26 GRUPPO LEPETIT S.p.A. Antibiotic L 17046 and process for preparing it
EP0146053A2 (en) * 1983-12-16 1985-06-26 GRUPPO LEPETIT S.p.A. Chemical process for preparing antibiotic L 17392 (Deglucoteicoplanin) and its salts
US4542018A (en) * 1982-06-08 1985-09-17 Gruppo Lepetit S.P.A. Teichomycin A2 pure single factors 1, 2, 3, 4 and 5 and method for their production
EP0218416A2 (en) * 1985-09-30 1987-04-15 Smithkline Beecham Corporation Kibdelosporangium aridum SK&F-AAD-609

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5830037A (ja) * 1981-08-18 1983-02-22 Toshiba Corp 陰極線管の製造装置
GB8512795D0 (en) * 1985-05-21 1985-06-26 Lepetit Spa Increasing ratio of components of teicoplanin a2 complex

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4239751A (en) * 1975-03-05 1980-12-16 Gruppo Lepetit S.P.A. Antibiotic substances
US4542018A (en) * 1982-06-08 1985-09-17 Gruppo Lepetit S.P.A. Teichomycin A2 pure single factors 1, 2, 3, 4 and 5 and method for their production
EP0119574A2 (en) * 1983-03-22 1984-09-26 GRUPPO LEPETIT S.p.A. Antibiotic L 17046 and process for preparing it
EP0119575A2 (en) * 1983-03-22 1984-09-26 GRUPPO LEPETIT S.p.A. Pure preparation of antibiotic L 17054 and process for preparing it
EP0146053A2 (en) * 1983-12-16 1985-06-26 GRUPPO LEPETIT S.p.A. Chemical process for preparing antibiotic L 17392 (Deglucoteicoplanin) and its salts
EP0218416A2 (en) * 1985-09-30 1987-04-15 Smithkline Beecham Corporation Kibdelosporangium aridum SK&F-AAD-609

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
The Journal of Antibiotics, vol. 39, pp. 652 659, Chung et al., 1986. *
The Journal of Antibiotics, vol. 39, pp. 652-659, Chung et al., 1986.

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5135857A (en) * 1987-07-03 1992-08-04 Gruppo Lepetit S.P.A. Process for the preparation of de-mannosyl teicoplanin derivatives
US5500410A (en) * 1989-03-29 1996-03-19 Gruppo Lepetit S.P.A. Substituted alkylamide derivatives of teicoplanin
US5869449A (en) * 1990-12-05 1999-02-09 Gruppo Lepetit S.P.A. 38-decarboxy-38-hydroxymethyl derivatives of teiocoplanin antibiotics and a process for preparing them
US5606036A (en) * 1991-03-27 1997-02-25 Gruppo Lepetit Spa Antibiotic A 40926 ester derivatives
US5939523A (en) * 1995-07-05 1999-08-17 Gruppo Lepetit Spa Purification of dalbaheptide antibiotics by isoelectric focusing
US5842289A (en) * 1995-11-13 1998-12-01 Manufacturing And Technology Conversion International, Inc. Apparatus for drying and heating using a pulse combustor
US6218505B1 (en) 1996-04-23 2001-04-17 Biosearch Italia S.P.A. Chemical process for preparing amide derivatives of antibiotic A 40926
US20050004011A1 (en) * 2002-11-18 2005-01-06 Marco Cavaleri Compositions and methods for treating bacterial infections with protein-dalbavancin complexes
US6900175B2 (en) 2002-11-18 2005-05-31 Vicuron Pharmaceuticals Inc. Methods of administering dalbavancin for treatment of bacterial infections
US20040220122A1 (en) * 2002-11-18 2004-11-04 Vicuron Pharmaceuticals, Inc. Methods of administering dalbavancin for treatment of bacterial infections
US20040224908A1 (en) * 2002-11-18 2004-11-11 Vicuron Pharmaceuticals, Inc. Stable compositions of dalbavancin
US20050004050A1 (en) * 2002-11-18 2005-01-06 Vicuron Pharmaceuticals, Inc. Dalbavancin compositions for treatment of bacterial infections
US20040142883A1 (en) * 2002-11-18 2004-07-22 Marco Cavaleri Methods of administering dalbavancin for treatment of bacterial infections
US20050004051A1 (en) * 2002-11-18 2005-01-06 Vicuron Pharmaceuticals, Inc. Methods for treatment of bacterial infections in impaired renal patients
US20050032721A1 (en) * 2002-11-18 2005-02-10 Marco Cavaleri Methods of administering dalbavancin for treatment of skin and soft tissue infections
US20050090433A1 (en) * 2002-11-18 2005-04-28 Vicuron Pharmaceuticals, Inc Dalbavancin compositions for treatment of bacterial infections
US20040198715A1 (en) * 2002-11-18 2004-10-07 Vicuron Pharmaceuticals, Inc. Methods of administering dalbavancin for treatment of skin and soft tissue infections
US20050130909A1 (en) * 2002-11-18 2005-06-16 Luigi Colombo Dalbavancin compositions for treatment of bacterial infections
US20060074014A1 (en) * 2002-11-18 2006-04-06 Vicuron Pharmaceuticals Inc. Dalbavancin compositions for treatment of bacterial infections
US7115564B2 (en) 2002-11-18 2006-10-03 Vicuron Pharmaceuticals, Inc. Stable pharmaceutical compositions of dalbavancin and methods of administration
US7119061B2 (en) 2002-11-18 2006-10-10 Vicuron Pharmaceuticals, Inc. Dalbavancin compositions for treatment of bacterial infections
US20090298749A1 (en) * 2002-11-18 2009-12-03 Vicuron Pharmaceuticals Inc. Dalbavancin compositions for treatment of bacterial infections
US20090305953A1 (en) * 2002-11-18 2009-12-10 Vicuron Pharmaceuticals, Inc. Dalbavancin compositions for treatment of bacterial infections
US8143212B2 (en) 2002-11-18 2012-03-27 Vicuron Pharmaceuticals Inc. Dalbavancin compositions for treatment of bacterial infections

Also Published As

Publication number Publication date
JPS6429398A (en) 1989-01-31
HU200488B (en) 1990-06-28
DK357488A (da) 1989-01-04
IL86895A0 (en) 1988-11-30
CA1334655C (en) 1995-03-07
ES2055719T3 (es) 1994-09-01
ATE90731T1 (de) 1993-07-15
EP0301247A2 (en) 1989-02-01
JPH0819155B2 (ja) 1996-02-28
DE3881775D1 (de) 1993-07-22
DE3881775T2 (de) 1994-01-05
HUT49379A (en) 1989-09-28
EP0301247B1 (en) 1993-06-16
ZA884577B (en) 1989-04-26
DK357488D0 (da) 1988-06-29
GB8715735D0 (en) 1987-08-12
EP0301247A3 (en) 1990-07-11
KR890002214A (ko) 1989-04-10
IL86895A (en) 1993-04-04

Similar Documents

Publication Publication Date Title
US5064811A (en) De-mannosyl teicoplanin derivatives
US4547488A (en) Antibiotic M43D, pharmaceutical compositions and method of use
US5567676A (en) Glycopeptide antibiotics
US4935238A (en) Antibiotic A 40926 complex and its pure factors PA, PB, A, B and B0
US4782042A (en) Antibiotic A 40926 mannosyl aglycon
US5085990A (en) Teicoplanin-like derivatives
US4548925A (en) Antibiotic M43A, pharmaceutical composition and method of use
EP0448940B1 (en) Process for the preparation of mannosyl teicoplanin derivatives and mannosyl teicoplanin aglycone
US4548924A (en) Antibiotics M43B and M43C, pharmaceutical composition and method of use
US5135857A (en) Process for the preparation of de-mannosyl teicoplanin derivatives
EP0159180A2 (en) Improvements in and relating to antibiotics M43A, M43B, M43C and M43D
US4558008A (en) Process for production of A-51568B antibiotic
US4246400A (en) Tallysomycin compounds
US4558009A (en) Process for producing antibiotic A-51568 by fermentation and microorganism
US4717714A (en) A-51568B antibiotic
US5451570A (en) Antibiotic, balhimycin, a process for its production and its use as pharmaceutical
US4908351A (en) Antibiotic a 42867 derivative
EP0318680A2 (en) Novel antibiotic compounds named A/16686 Factors A'1, A'2 and A'3
JPH07114704B2 (ja) 抗生物質a42867およびその付加塩
US4314028A (en) Fermentation process for producing tallysomycin compounds

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20031112