US4908172A - Production of ceramic moldings - Google Patents
Production of ceramic moldings Download PDFInfo
- Publication number
- US4908172A US4908172A US07/220,176 US22017688A US4908172A US 4908172 A US4908172 A US 4908172A US 22017688 A US22017688 A US 22017688A US 4908172 A US4908172 A US 4908172A
- Authority
- US
- United States
- Prior art keywords
- solvent
- mold
- molding
- mixture
- molecular weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 24
- 238000000465 moulding Methods 0.000 title claims abstract description 23
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000000843 powder Substances 0.000 claims abstract description 26
- 239000002904 solvent Substances 0.000 claims abstract description 21
- 238000000034 method Methods 0.000 claims abstract description 18
- 239000000203 mixture Substances 0.000 claims abstract description 11
- 239000000654 additive Substances 0.000 claims abstract description 10
- 230000000996 additive effect Effects 0.000 claims abstract description 8
- 239000000243 solution Substances 0.000 claims abstract description 7
- 238000009835 boiling Methods 0.000 claims abstract description 6
- 229920006158 high molecular weight polymer Polymers 0.000 claims abstract description 6
- 238000002347 injection Methods 0.000 claims abstract description 6
- 239000007924 injection Substances 0.000 claims abstract description 6
- 229920000642 polymer Polymers 0.000 claims description 16
- 229920003169 water-soluble polymer Polymers 0.000 claims description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 238000005245 sintering Methods 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 4
- 239000011148 porous material Substances 0.000 claims description 4
- 229920002367 Polyisobutene Polymers 0.000 claims description 3
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 claims description 3
- 239000012778 molding material Substances 0.000 abstract description 4
- 239000000463 material Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 238000000197 pyrolysis Methods 0.000 description 5
- 238000001746 injection moulding Methods 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 239000011368 organic material Substances 0.000 description 3
- 229920002401 polyacrylamide Polymers 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- GFGBNJCRJFJRLK-UHFFFAOYSA-N 2-(diethylamino)ethyl prop-2-enoate;sulfuric acid Chemical compound OS([O-])(=O)=O.CC[NH+](CC)CCOC(=O)C=C GFGBNJCRJFJRLK-UHFFFAOYSA-N 0.000 description 2
- DPBJAVGHACCNRL-UHFFFAOYSA-N 2-(dimethylamino)ethyl prop-2-enoate Chemical compound CN(C)CCOC(=O)C=C DPBJAVGHACCNRL-UHFFFAOYSA-N 0.000 description 2
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- -1 alkali metal cations Chemical class 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- WPKYZIPODULRBM-UHFFFAOYSA-N azane;prop-2-enoic acid Chemical compound N.OC(=O)C=C WPKYZIPODULRBM-UHFFFAOYSA-N 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 230000015271 coagulation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052575 non-oxide ceramic Inorganic materials 0.000 description 2
- 239000011225 non-oxide ceramic Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000004584 polyacrylic acid Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229910019830 Cr2 O3 Inorganic materials 0.000 description 1
- 229920001732 Lignosulfonate Polymers 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 235000010944 ethyl methyl cellulose Nutrition 0.000 description 1
- 239000001761 ethyl methyl cellulose Substances 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000010285 flame spraying Methods 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 239000012454 non-polar solvent Substances 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 239000006259 organic additive Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229910052574 oxide ceramic Inorganic materials 0.000 description 1
- 239000011224 oxide ceramic Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 229920005646 polycarboxylate Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/638—Removal thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/634—Polymers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/634—Polymers
- C04B35/63404—Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C04B35/63408—Polyalkenes
Definitions
- the present invention relates to a process for the production of ceramic moldings, in which a ceramic powder is mixed with a molding additive, the mixture is injected into a mold which determines the final shape and dimensions of the molding, the molding additive is removed and the molding material is sintered.
- the present invention starts from a known process described in EP-A-O No. 125 912, which has been used to date for the production of ceramic moldings by injection molding.
- a ceramic powder is mixed with a thermoplastic, wax or a lubricant, such as stearic acid or oleic acid, and the mixture is granulated.
- the granules are converted into a green compact by means of an injection molding machine.
- the granules to be plasticized act like a lubricting gel paste in the injection molding machine and, particularly in the melting zone where the material is not yet sufficiently plasticized, remove metal chips from the machine parts, which chips cannot be removed from the green compact.
- the metal particles lead to inhomogeneities in the sintered molding and adversely affect its mechanical properties.
- the high shear rate in the injection nozzle and in the mold cores results in a high degree of orientation of the polymers required as fluxes, which may lead to mechanical stresses in the molding and hence to the formation of microcracks.
- Microcracks often remain after subsequent removal of the organic additives by baking and after sintering and also substantially reduce the reliability and strength of the sintered moldings.
- Another disadvantage is that the organic molding additives used have to be removed completely from the green compact by pyrolysis before the actual sintering process. Pyrolysis, also known as baking, must be carried out sufficiently slowly to prevent the pressure of the escaping gases from causing additional cracking and pore formation, i.e. the gases must be able to diffuse through the green compact without substantial pressure build-up. This requires pyrolysis times which are, for example, as long as several days in the case of wall thicknesses of only 2-4 mm and hence greatly reduce the cost-efficiency of the process.
- the molding additive used is a solution of a high molecular weight polymer in a solvent, about 50-80% by volume of the agglomerated ceramic powder being mixed with about 50-20% by volume of the solution and the mixture being injected at a temperature below the boiling point of the solvent and under from 100 to 1,500 bar into a porous, gas-permeable mold which is at a temperature above the boiling point of the solvent, and when the injection pressure is maintained until gas no longer escapes from the molding material or from the mold.
- a ceramic powder is mixed with a molding additive, in particular a high molecular weight polymer, dissolved in a solvent.
- the volume ratio of ceramic powder to solution is from about 1:1 to 1:4.
- Suitable solvents for the high molecular weight polymers are water, alcohols, such as ethanol, n-propanol or isopropanol, and nonpolar solvents, such as aliphatic hydrocarbons.
- Oxide ceramic powders for example magnesium oxide, alumina, mullite, zirconium oxide or spinel, are most advantageously deagglomerated in water, so that water is advantageously used as a solvent for processing them. Accordingly, water-soluble polymers are used to increase the viscosity.
- high molecular weight water-soluble polymers When dissolved in water, high molecular weight water-soluble polymers form highly viscous solutions having viscosities of from 100 to 10,000 dPa.s at concentrations as low as from 0.05 to 1% by weight. Hence, these aqueous solutions possess, at room temperature, viscosities which correspond to the viscosities at 150°-300° C. of the polymers usually used as fluxes. Because of the high viscosity, the suspension of the ceramic powder is stabilized, and separation does not occur even under high shear gradients. The hydrostatic forces which occurred during injection are transmitted to the individual powder particles.
- suitable water-soluble polymers are polyvinylpyrrolidone, polyacrylic acid and its salts, polymethacrylic acid and its salts, polyvinyl alcohol, polyacrylamide and copolymers of monomers of the stated polymers.
- Other comonomers are dimethylaminoethyl acrylate methochloride and diethylaminoethyl acrylate sulfate.
- the weight average molecular weight of the water-soluble polymers is from 1 to 10 million g/mole.
- Such polymers and copolymers are commercially available and are used as thickeners, as fluxes for reducing the resistance to flow and as precipitation assistants.
- Nonionic polyacrylamides which contain small amounts of polyacrylic acid are preferably used as nonanionic polymers having molecular weights of from 3 to 10 million g/mole.
- Anionic water-soluble polymers are copolymers of acrylamide with 20-70% by weight of ammonium acrylate, having molecular weights of from 5 to 10 million g/mole. Since alkali metal cations have an adverse effect on particle boundary growth during sintering of the ceramic powder, ammonium ions are preferred as counter-ions.
- Cationic water-soluble polymers are polyacrylamides which contain from 30 to 80% by weight of dimethylaminoethyl acrylate methochloride or diethylaminoethyl acrylate sulfate and have molecular weights of from 3 to 5 million g/mole.
- Water-soluble high molecular weight natural polymers and their derivatives such as alginates, methyl/ethyl- or carboxymethylcellulose, starch or ligninsulfonates, can also be used.
- Water-soluble polymers which can particularly preferably used are those which are slightly crosslinked with 50 to 1,000 ppm of polyfunctional crosslinking agents, such as diacrylyl or dimethylacyl compounds. Such polymers consist mainly of ammonium acrylate and acrylamide. They are usually used as printing ink thickeners for textile printing. Compared with the completely uncrosslinked water-soluble polymers, they have the advantage that higher viscosities can be obtained at low concentrations, for example about 10,000 dPa.s at a shear gradient of 0 and at room temperature with a 0.2% strength aqueous solution. In addition, they have very little tendency to flocculate the ceramic powders.
- the concentrations to be used depend on the desired viscosity and on the molecular weight; however, they should not exceed 0.2% by weight, based on the ceramic material.
- the type of surface charge on the ceramic powder must be determined. It is essential to avoid a situation where the charges on the polymer have the opposite sign to the surface charge on the ceramic powder. In this case, undesired coagulation of the powder would occur. It is for this reason that the use of the slightly crosslinked water-soluble polymers with their low tendency to coagulation is particularly preferred.
- the organic material volatilizes during heating in the sintering process.
- the material required for production of the ceramic moldings by injection molding is prepared by deagglomerating the ceramic powder by milling in fully demineralised water, with or without the addition of small amounts of a surfactant.
- the final amount of water, i.e. from 20 to 50% by volume, is used from the outset.
- the suspension is transferred to a kneader and the water-soluble polymer is added. Kneading is carried out until the polymer has completely dissolved and the viscosity is constant, which is recognizable from the power consumption of the kneader.
- non-oxide ceramic powders of silicon nitride, silicon carbide, sialones and other non-oxide materials dispersing in water is in principle also suitable.
- non-oxide powders can be more readily deagglomerated in nonaqueous solvents.
- the long residence time in water in the case of hydrolyzable materials, such as silicon nitride may lead to the formation of undesirable oxide layers at the powder surface or increase the existing oxygen content in an uncontrollable manner.
- a nonaqueous solvent/polymer system is suitable for such ceramic powders.
- the abovementioned water-soluble polymers are also soluble in alcohols, provided that no more than 5 mol % of the polymers are present as salts (ammonium polycarboxylates or polyammonium salts).
- the high molecular weight polymers to be employed should be matched in their solubility with the said solvents.
- high molecular weight polystyrene is soluble in aromatic hydrocarbons, such as toluene or xylene.
- the aliphatic hydrocarbons such as hexane, heptane or, in general, petroleum ethers and gasoline fractions, are particularly preferred dispersants for non-oxide ceramic powders.
- polyisobutylene having a molecular weight of 5 million g/mole or more is particularly suitable.
- polyisobutylene does not form a carbon residue during pyrolysis, so that the stoichiometric ratios in the subsequent sintering process are not adversely affected.
- the mold wall preferably consists of an open-pore sintered metal whose surface roughness is reduced to 0.5-2 ⁇ m by flame spraying or plasma spraying with a very finely divided metal powder, metal oxide powder, such as Cr 2 O 3 or ceramic powder, such as boron nitride. In addition to low surface roughness, this results in good mold release properties, especially in the case of boron nitride.
- the sintered metal layer is kept very thin, i.e. about 1-10 mm. Adjacent to this is compact mold material which, for removal of the vapors, is provided with holes which lead to the sintered metal layer. The stream or the organic vapor is removed centrally from the mold, which is gas-tight to the outside, into a condensation apparatus.
- the mold is, for example, electrically heatable by means of heating elements.
- the novel process permits the preparation of stable suspensions of nonagglomerated ceramic powders. Because evaporation of the solvent takes place under an opposing pressure which is far greater than its vapor pressure, neither pores nor cracks can form in the mold.
- the temperature of the mold wall is in general from 150° to 450° C., preferably from 200° to 400° C.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Producing Shaped Articles From Materials (AREA)
- Compositions Of Oxide Ceramics (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19873725138 DE3725138A1 (de) | 1987-07-29 | 1987-07-29 | Verfahren zur herstellung keramischer formteile |
DE3725138 | 1987-07-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
US4908172A true US4908172A (en) | 1990-03-13 |
Family
ID=6332635
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/220,176 Expired - Fee Related US4908172A (en) | 1987-07-29 | 1988-07-18 | Production of ceramic moldings |
Country Status (4)
Country | Link |
---|---|
US (1) | US4908172A (de) |
EP (1) | EP0301408A1 (de) |
JP (1) | JPS6442205A (de) |
DE (1) | DE3725138A1 (de) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5209885A (en) * | 1991-06-28 | 1993-05-11 | W. R. Grace & Co.-Conn. | Aqueous extrusion of silicon nitride |
US5248457A (en) * | 1992-01-21 | 1993-09-28 | Megamet Industries | Method for producing intricately shaped particulate bearing precursor components with controlled porosity and density |
US5356578A (en) * | 1988-08-08 | 1994-10-18 | Kawasaki Steel Corporation | Mold for slip casting and method of slip casting |
US5417756A (en) * | 1992-11-25 | 1995-05-23 | Hoechst Aktiengesellschaft | Process and molding compound for producing inorganic sintered products by injection molding |
GB2291830A (en) * | 1994-08-02 | 1996-02-07 | Dytech Corp Ltd | Moulding ceramic articles |
US5900201A (en) * | 1997-09-16 | 1999-05-04 | Eastman Kodak Company | Binder coagulation casting |
US5989492A (en) * | 1994-12-19 | 1999-11-23 | Aga Aktiebolag | Process including heating and cooling for production of an injection-moulded body |
US6203638B1 (en) * | 1992-06-02 | 2001-03-20 | Certech, Inc. | Method of making injection molded ceramic cup |
US20070144544A1 (en) * | 2005-09-30 | 2007-06-28 | Cai David J | Oral composition and method for stress reduction associated with smoking cessation |
US20080232996A1 (en) * | 2007-03-22 | 2008-09-25 | Commissariat A L'energie Atomique | Method for Fabricating Parts by PIM or MICROPIM |
US20100162771A1 (en) * | 2008-12-31 | 2010-07-01 | Zircoa, Inc | Method of forming ceramic strings and fibers |
CN113458398A (zh) * | 2021-06-09 | 2021-10-01 | 北京科技大学 | 一种注射浆料实现金属注射成形的方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2649093B1 (fr) * | 1989-06-30 | 1991-09-13 | Comp Generale Electricite | Procede de mise en forme d'une ceramique supraconductrice |
JP4688334B2 (ja) * | 2001-04-09 | 2011-05-25 | ニチロ工業株式会社 | 梱包用バンドリール |
DE102010007780A1 (de) * | 2010-02-12 | 2011-08-18 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 80686 | Spritzgießverfahren für Kondensationsharze und Vorrichtung für das Verfahren |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4113480A (en) * | 1976-12-09 | 1978-09-12 | Cabot Corporation | Method of injection molding powder metal parts |
EP0125912A1 (de) * | 1983-05-13 | 1984-11-21 | Ngk Insulators, Ltd. | Verfahren zur Herstellung von keramischen Formteilen |
US4734237A (en) * | 1986-05-15 | 1988-03-29 | Allied Corporation | Process for injection molding ceramic composition employing an agaroid gell-forming material to add green strength to a preform |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1093280B (de) * | 1959-04-15 | 1960-11-17 | Beru Werk Ruprecht Gmbh Co A | Verfahren zur Herstellung von keramischen Koerpern fuer Zuendkerzen und Zuendkerzenanschlussteile |
DE1771643B2 (de) * | 1968-06-20 | 1973-10-31 | Porzellanfabrik C.M. Hutschenreuther Arzberg, Zweigniederlassung Der Hutschenreuther Ag, 8594 Arzberg | Verfahren zur Herstellung keramischer Formlinge und Spritzpreßform zur Durch fuhrung des Verfahrens |
JPS5927743B2 (ja) * | 1979-02-28 | 1984-07-07 | 旭硝子株式会社 | セラミック紛未の成形品の処理方法 |
ATE42534T1 (de) * | 1985-09-26 | 1989-05-15 | Studiecentrum Kernenergi | Verfahren zur herstellung eines gesinterten formkoerpers. |
-
1987
- 1987-07-29 DE DE19873725138 patent/DE3725138A1/de not_active Withdrawn
-
1988
- 1988-07-18 US US07/220,176 patent/US4908172A/en not_active Expired - Fee Related
- 1988-07-21 EP EP88111754A patent/EP0301408A1/de not_active Withdrawn
- 1988-07-27 JP JP63185675A patent/JPS6442205A/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4113480A (en) * | 1976-12-09 | 1978-09-12 | Cabot Corporation | Method of injection molding powder metal parts |
EP0125912A1 (de) * | 1983-05-13 | 1984-11-21 | Ngk Insulators, Ltd. | Verfahren zur Herstellung von keramischen Formteilen |
US4734237A (en) * | 1986-05-15 | 1988-03-29 | Allied Corporation | Process for injection molding ceramic composition employing an agaroid gell-forming material to add green strength to a preform |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5356578A (en) * | 1988-08-08 | 1994-10-18 | Kawasaki Steel Corporation | Mold for slip casting and method of slip casting |
US5209885A (en) * | 1991-06-28 | 1993-05-11 | W. R. Grace & Co.-Conn. | Aqueous extrusion of silicon nitride |
US5248457A (en) * | 1992-01-21 | 1993-09-28 | Megamet Industries | Method for producing intricately shaped particulate bearing precursor components with controlled porosity and density |
US6203638B1 (en) * | 1992-06-02 | 2001-03-20 | Certech, Inc. | Method of making injection molded ceramic cup |
US5417756A (en) * | 1992-11-25 | 1995-05-23 | Hoechst Aktiengesellschaft | Process and molding compound for producing inorganic sintered products by injection molding |
GB2291830A (en) * | 1994-08-02 | 1996-02-07 | Dytech Corp Ltd | Moulding ceramic articles |
GB2291830B (en) * | 1994-08-02 | 1998-10-21 | Dytech Corp Ltd | Manufacture of ceramic articles |
US5922272A (en) * | 1994-08-02 | 1999-07-13 | Dytech Corporation Limited | Manufacture of ceramic articles |
US5989492A (en) * | 1994-12-19 | 1999-11-23 | Aga Aktiebolag | Process including heating and cooling for production of an injection-moulded body |
US5900201A (en) * | 1997-09-16 | 1999-05-04 | Eastman Kodak Company | Binder coagulation casting |
US6065195A (en) * | 1997-09-16 | 2000-05-23 | Eastman Kodak Company | Method of manufacturing inkjet print head base elements by sacrificial molding |
US20070144544A1 (en) * | 2005-09-30 | 2007-06-28 | Cai David J | Oral composition and method for stress reduction associated with smoking cessation |
US20080232996A1 (en) * | 2007-03-22 | 2008-09-25 | Commissariat A L'energie Atomique | Method for Fabricating Parts by PIM or MICROPIM |
US20100162771A1 (en) * | 2008-12-31 | 2010-07-01 | Zircoa, Inc | Method of forming ceramic strings and fibers |
CN113458398A (zh) * | 2021-06-09 | 2021-10-01 | 北京科技大学 | 一种注射浆料实现金属注射成形的方法 |
Also Published As
Publication number | Publication date |
---|---|
DE3725138A1 (de) | 1989-02-09 |
JPS6442205A (en) | 1989-02-14 |
EP0301408A1 (de) | 1989-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4908172A (en) | Production of ceramic moldings | |
EP0968067B1 (de) | Spritzgiess verfahren zur herstellung von formkörpen aus keramik- und/oder metallpulver mittels gel ausbildung | |
JP2604592B2 (ja) | 金属、セラミック粉末等の成形方法及びそのための組成物 | |
KR100588097B1 (ko) | 수성공정에 의한 지르코니아계 구조재료의 사출주조법 | |
KR920007016B1 (ko) | 세라믹 입자 조성물 | |
CN103406973B (zh) | 一种醇水基料浆凝胶注模制备多孔或致密材料的成型工艺 | |
JP3848959B2 (ja) | ガラス製造装置に用いられる耐クリープ性耐火材料 | |
EP0908427A1 (de) | Formen durch Bindemittelkoagulation | |
US4551496A (en) | Thermoplastic molding of sinterable silicon carbide | |
Frolova et al. | Molding features of silicon carbide products by the method of hot slip casting | |
CN109467419A (zh) | 一种石墨烯增强氧化铝基陶瓷型芯及其制备方法 | |
JP3009705B2 (ja) | 熱衝撃抵抗性が改善された酸化クロム耐火物 | |
US4530808A (en) | Binder removal from thermoplastically formed SiC article | |
US4814302A (en) | Stable slip-casting compositions having a base of powders containing finely divided aluminum nitride | |
JP2001220259A (ja) | アルミナ・ムライト系多孔質シート状耐火物及びその製造方法 | |
Zhang et al. | Preparation of titanium nitride/alumina laminate composites | |
CN108298958B (zh) | 一种高强度耐火坩埚及其制备方法 | |
JPH02267167A (ja) | 複合セラミックスシート状成形物及びその製造方法 | |
JP3312068B2 (ja) | 大型マグネシア成形体及び焼結体の製造方法 | |
Mujahid et al. | Processing and microstructure of alumina-based composites | |
JPH0483752A (ja) | 焼結性物質混合物 | |
KR960008883B1 (ko) | 저압성형 및 승화건조에 의한 물품의 제조방법 | |
KR20010060430A (ko) | 실리카질 슬리브 성형용 조성물 및 이로부터 실리카질슬리브를 제조하는 방법 | |
CA1274645A (en) | Thermoplastic molding of ceramic powder | |
Ebenhöch et al. | New binder system for ceramic injection molding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BASF AKTIENGESELLSCHAFT, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:STERZEL, HANS-JOSEF;MAIR, GUNTHER;REEL/FRAME:005175/0756 Effective date: 19880713 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 19940313 |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |