US4718280A - Rolling line with measuring means - Google Patents

Rolling line with measuring means Download PDF

Info

Publication number
US4718280A
US4718280A US06/900,753 US90075386A US4718280A US 4718280 A US4718280 A US 4718280A US 90075386 A US90075386 A US 90075386A US 4718280 A US4718280 A US 4718280A
Authority
US
United States
Prior art keywords
rolling
stands
measuring
rolling stands
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US06/900,753
Other languages
English (en)
Inventor
Herrmann Moltner
Hans-Dieter Gerhards
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kocks Technik GmbH and Co KG
Original Assignee
Kocks Technik GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kocks Technik GmbH and Co KG filed Critical Kocks Technik GmbH and Co KG
Assigned to KOCKS TECHNIK GMBH & CO. NEUSTRASSE 69 POSTFACH 7 53 4010 HILDEN reassignment KOCKS TECHNIK GMBH & CO. NEUSTRASSE 69 POSTFACH 7 53 4010 HILDEN ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: GERHARDS, HANS-DIETER, MOLTNER, HERRMANN
Application granted granted Critical
Publication of US4718280A publication Critical patent/US4718280A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/56Elongation control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/16Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section
    • B21B1/18Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section in a continuous process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B17/00Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling
    • B21B17/14Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling without mandrel, e.g. stretch-reducing mills

Definitions

  • the invention relates to a rolling line for rolling tubular or rod-shaped material, having a plurality of rolling stands exchangeable clamped in reception pockets of a base frame closely one after the other as well as measuring rolls disposed upstream of the rolling stands at the entry end and/or beyond the rolling stands at the delivery end and rolling on the material.
  • a known rolling line of this type (German Patent Specification No. 29 47 233) is used to stretch-reduce tubes and has a device for controlling the wall thickness of these tubes.
  • the actual elongation of the rolling line should be continuously detected by measuring the run-through speed of the material upstream of the first rolling stand at the entry end and beyond the last rolling stand at the delivery end.
  • the actual elongation is the quotient of the delivery speed and the entry speed.
  • speeeds are measured by measuring rolls which roll on the surface of the material.
  • the measuring rolls actuate a pulse generator whose pulses can be used as measured values for the speed in each case.
  • Such measuring rolls are fixedly disposed in the known design upstream of the first reception pocket on the entry end and beyond the last reception pocket on the delivery end. The distance between these measuring rolls is known and is maintained throughout each operating condition of the rolling line.
  • the period in which either only the measuring roll at the entry end or the measuring roll on the delivery end is working, either because the beginning of the material has not yet reached the measuring roll on the delivery end or because the end of the material has already passed the measuring roll at the entry end, is long. If only one of the two measuring rolls is working, the actual elongation at this moment in the known rolling line can no longer be ascertained, so that the total elongation, and hence the cross-sectional area, in particular the thickness of the material wall, cannot be optimally controlled, as is mentioned in German Patent Specification No. 29 47 233. If only a few rolling stands are required, the distance between the first rolling stand and the fixed measuring roll disposed upstream or the last rolling stand and the fixed measuring roll disposed downstream is unnecessarily large, and thus considerably increases the ineffectiveness of the measuring rolls.
  • the invention resides in a rolling line for rolling tubular or rod-shaped material, having a plurality of rolling stands exchangeably clamped in reception pockets of a base frame closely one after the other, and having a measuring means disposed upstream of the rolling stands at the entry end and beyond the rolling stands at the delivery end and measuring a dimension or other characteristic of the material, each measuring means being supported in or on a measuring roll stand which has the same support and reception surfaces as the rolling stands and which can, like the rolling stands, be inserted and clamped in any reception pocket.
  • the short distance between the measuring rolls and the nearest rolling stand guaranteed in this manner keeps the period in which both measuring rolls cannot work to an optimally short length. Thus the period in which optimum measurement and control is possible is considerably increased.
  • the measuring roll stands have the same support and reception surfaces as the rolling stands, they can readily be moved by the existing exchanging devices for the rolling stands, so that, in the event of a change in the rolling program, the rolling line and measuring rolls are ready for operation again in a very short time.
  • FIG. 1 is a schematic representation of a rolling line having measuring roll stands
  • FIG. 2 is a rolling line of FIG. 1 with a smaller number of rolling stands;
  • FIG. 3 is a front view of a measuring roll stand
  • FIG. 4 is a side view of the measuring roll stand
  • FIG. 5 is a plan view of the measuring roll stand.
  • FIG. 1 shows a number of rolling stands 1 to 12 which are exchangeably clamped in reception pockets of a base frame (not shown) closely one after the other.
  • This rolling line is a stretch-reducing rolling line for tubes, whose drive and other details are known and do not need to be shown or described.
  • the drive has the same number of output shafts as there are pockets for the maximum number of rolling stands, and the input shafts of the latter are releasably coupled to the drive output shafts.
  • the tube 13 to be reduced runs through the rolling stands 1 to 12 in the direction of the arrow X and it can clearly be seen that, in doing so, both the outer diameter and the wall thickness are reduced.
  • measuring rolls 14 and 15 are required which are disposed at the entry end upstream of the first rolling stand 1 and at the delivery end beyond the last rolling stand 12.
  • photoelectric cells, wall thickness measuring devices or other devices may be necessary and may be provided.
  • the arrangement of the measuring rolls 14 and 15 shown here by way of example is known in principle, but, in the known designs, the measuring rolls 14 and 15 are fixedly installed and the distance between them unalterable.
  • the schematic representation in FIG. 1 indicates that, according to the invention, measuring rolls 14 and 15 are located in measuring roll stands 16 which have essentially the same dimensions, and above all the same support and reception surfaces, as the rolling stands 1 to 12.
  • the measuring roll stands 16 are in additional reception pockets which are identical to the reception pockets of the rolling stand 1 to 12, with the exception of the roll drive which is absent. These reception pockets can be provided either additionally in the base frame of the rolling line or in the form of separate holders upstream of and beyond the base frame. The important point is that the measuring roll stands 16 also fit into the reception pockets for the rolling stands 1 to 12 and that they can be exchangeably clamped therein free from play.
  • FIG. 2 shows an operating situation in which only rolling stands 4, 5 and 6 are required because the desired tube is to have a larger outer diameter and a thicker wall.
  • the reception pockets for the rolling stands 1, 2 and 8 to 12 thus remain empty, as is shown by the fact that they are not shaded in.
  • the measuring roll stands 16 with the measuring rolls 14 and 15 are inserted and clamped into the reception pockets for the rolling stands 3 and 7, so that they are positioned, corresponding to FIG. 1, directly upstream of the first rolling stand 4 at the entry end and beyond the last rolling stand 6 at the delivery end.
  • a disadvantageously large distance between the measuring rolls 14 and 15 and the first or last working rolling stand 4 or 6 is not obtained.
  • the distance between the measuring rolls 14 and 15 and the first or last rolling stand respectively, and hence between one another can be kept as small as possible. Furthermore, the distance between these measuring roll stands and hence between the measuring rolls or any other devices can always be precisely defined since the distances between the reception pockets which fix the measuring roll stands 16 and hence the measuring rolls 14 and 15 in the radial and axial directions are known. These distances can be input into the associated control device in order to ensure that the latter function correctly in any operating condition.
  • FIG. 3 shows a base frame 17 and reception pockets 18 in the base frame 17.
  • An adjusting piece 19 and support surfaces 16a of the measuring roll stand 16 as well as reception pockets 18 hold the rolling stand 16 in its correct position.
  • the measuring roll stand 16 is fixed by a clamping device pressing from above but not shown in FIG. 3, which secures the measuring roll stand 16 both axially and radially.
  • FIG. 3 shows hook-like conveying means 20 which are used to insert or remove the measuring roll stand 16 into or from the reception pockets 18.
  • FIGS. 3 to 5 show a working cylinder 21 which can be subjected to a pressure medium and which swings a bearing housing 24 (FIG. 3) for the measuring roll 14 about an axis 25 of rotation (FIG. 4) by way of a rod 22 and lever 23.
  • the measuring roll can be lifted or pressed with a predetermined pressure onto the surface of the tube 13, the bearing pressure being controllable by the pressure medium acting in the cylinder 21.
  • hand wheels 26 are provided, using which a rod 27, and hence the position of the working cylinder 21, can be adjusted and secured. This acts by way of the working cylinder 21, the rod 22, the lever 23 and the bearing housing 24 in such a way that the position of the measuring roll is altered and adapted to the tube diameter.
  • the measuring roll is furthermore driven by a direct current motor 21 having a very smooth characteristic and having the object of compensating only for the torques and the friction of the measuring roll bearing and of a pulse generator 29 in order to prevent the measuring roll 14 slipping on the tube 13.
  • the rotational speed of the measuring roll 14 is, however, not determined by the motor 28 but by the run-through speed of the tube 13.
  • the pulse generator 29 is also rigidly connected to the motor 28 so that the number of pulses generated per unit of time is indicative of the rotational speed of the measuring roll 14 and of the run-through speed of the tube 13.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)
  • Metal Rolling (AREA)
US06/900,753 1985-09-17 1986-08-27 Rolling line with measuring means Expired - Lifetime US4718280A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3533120 1985-09-17
DE19853533120 DE3533120A1 (de) 1985-09-17 1985-09-17 Walzstrasse zum walzen von rohr- oder stabfoermigem gut

Publications (1)

Publication Number Publication Date
US4718280A true US4718280A (en) 1988-01-12

Family

ID=6281175

Family Applications (1)

Application Number Title Priority Date Filing Date
US06/900,753 Expired - Lifetime US4718280A (en) 1985-09-17 1986-08-27 Rolling line with measuring means

Country Status (7)

Country Link
US (1) US4718280A (enrdf_load_stackoverflow)
JP (1) JPS6264419A (enrdf_load_stackoverflow)
AT (1) AT392227B (enrdf_load_stackoverflow)
DE (1) DE3533120A1 (enrdf_load_stackoverflow)
FR (1) FR2589759B1 (enrdf_load_stackoverflow)
GB (1) GB2180480B (enrdf_load_stackoverflow)
IT (1) IT1197167B (enrdf_load_stackoverflow)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5108928A (en) * 1989-11-13 1992-04-28 General Dynamics Corporation Method and apparatus for delivering a sample to multiple analytical instruments

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018217378B3 (de) * 2018-10-11 2020-03-26 Sms Group Gmbh Wanddickenkontrolle beim Streckreduzieren von Rohren

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3221529A (en) * 1961-10-19 1965-12-07 Yoder Co Quick mass assembly of mill housings
US4002048A (en) * 1975-12-19 1977-01-11 Aetna-Standard Engineering Company Method of stretch reducing of tubular stock

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1035607B (de) * 1956-09-27 1958-08-07 Hermann Boecher Vorrichtung zum Messen und Steuern der Geschwindigkeit von geradlinig bewegtem Gut, z. B. von einem aus dem Walzgeruest auf einen Haspel auflaufenden Draht
DE2834102C2 (de) * 1978-08-03 1982-11-18 Siemens AG, 1000 Berlin und 8000 München Vorrichtung zur Regelung der im Walzgut übertragenenZugkraft in einer m Gerüste enthaltenden Walzstraße
DE2947233C2 (de) * 1979-11-23 1992-03-12 Kocks Technik Gmbh & Co, 4010 Hilden Vorrichtung zur Steuerung der Wanddicke von Rohren

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3221529A (en) * 1961-10-19 1965-12-07 Yoder Co Quick mass assembly of mill housings
US4002048A (en) * 1975-12-19 1977-01-11 Aetna-Standard Engineering Company Method of stretch reducing of tubular stock

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5108928A (en) * 1989-11-13 1992-04-28 General Dynamics Corporation Method and apparatus for delivering a sample to multiple analytical instruments

Also Published As

Publication number Publication date
DE3533120C2 (enrdf_load_stackoverflow) 1988-02-18
AT392227B (de) 1991-02-25
IT8621600A0 (it) 1986-09-05
GB2180480A (en) 1987-04-01
JPH0337803B2 (enrdf_load_stackoverflow) 1991-06-06
FR2589759A1 (fr) 1987-05-15
DE3533120A1 (de) 1987-03-19
JPS6264419A (ja) 1987-03-23
GB8622220D0 (en) 1986-10-22
IT8621600A1 (it) 1988-03-05
GB2180480B (en) 1988-09-14
FR2589759B1 (fr) 1990-04-13
ATA127286A (de) 1990-08-15
IT1197167B (it) 1988-11-30

Similar Documents

Publication Publication Date Title
SE458523B (sv) Anordning foer automatisk montering av en till en rulle lindad materialbana paa ett rullstativ
US4718280A (en) Rolling line with measuring means
FI117193B (fi) Menetelmä syötön ohjaamiseksi keskiöttömässä vanerisorvissa
US4501134A (en) Rolling mill plants
JP3345601B2 (ja) ロッドミル用の改良したローラ入口ガイド
ITMI960407A1 (it) Dispositivo per la laminazione obliqua di materiale da laminare tubolare o in barre
RU2002131461A (ru) Способ эксплуатации редукционно-растяжного прокатного стана и редукционно-растяжной прокатный стан
EP1193158A3 (en) Torque detecting apparatus and steering apparatus
EP0904863A3 (en) A device in a wire rolling mill
CN218968357U (zh) 一种圆织机的下料装置
JPS57126340A (en) Mill roll stand provided with raw paper control device
JP2640272B2 (ja) 表面駆動ロール型シート巻取装置におけるタッチ圧自動制御装置
HU181767B (en) Apparatus for hot pilger mills serving for rolling seamless pipes
JPS563249A (en) Controller for winder
JPS60237335A (ja) 形状検出装置
Dinnik Increasing the Accuracy of the End Section of Wire Rod
JPS5772554A (en) Windup device
EP0860389A3 (en) Device and method for sensing paper entry
GB2287458A (en) Winding webs
RU1801638C (ru) Способ гор чей пилигримовой прокатки труб
JP3445748B2 (ja) 板圧延機
Berger Roll-Support Device for Correcting the Strip Cross-Section as the Result of Elastic Deformations of a Multi-Roll Stand for Strip
JP2550287Y2 (ja) 幅調整用圧延ロールのロール幅測定装置
Fel'dman et al. The Effect of Rolling Instability in Cold Rolled Tube Mills on Tube Dimensional Accuracy
EP1208927A3 (en) Rolling machine capable of forming different types of teeth simultaneously

Legal Events

Date Code Title Description
AS Assignment

Owner name: KOCKS TECHNIK GMBH & CO. NEUSTRASSE 69 POSTFACH 7

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:MOLTNER, HERRMANN;GERHARDS, HANS-DIETER;REEL/FRAME:004607/0247

Effective date: 19860516

Owner name: KOCKS TECHNIK GMBH & CO. NEUSTRASSE 69 POSTFACH 7

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MOLTNER, HERRMANN;GERHARDS, HANS-DIETER;REEL/FRAME:004607/0247

Effective date: 19860516

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12