US4718209A - Wedge anchorage for a tension member in a prestressed concrete structure - Google Patents
Wedge anchorage for a tension member in a prestressed concrete structure Download PDFInfo
- Publication number
- US4718209A US4718209A US06/790,043 US79004385A US4718209A US 4718209 A US4718209 A US 4718209A US 79004385 A US79004385 A US 79004385A US 4718209 A US4718209 A US 4718209A
- Authority
- US
- United States
- Prior art keywords
- cap
- wedge
- anchor member
- concrete structure
- extending
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C5/00—Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
- E04C5/08—Members specially adapted to be used in prestressed constructions
- E04C5/12—Anchoring devices
- E04C5/122—Anchoring devices the tensile members are anchored by wedge-action
Definitions
- the present invention is directed to a wedge anchorage for the end of a single tension member within a prestressed concrete structure to which tensioning means are attached.
- the tension member is completely enclosed within and spaced inwardly from the surface of the concrete structure.
- the anchorage is provided by an anchor member and a wedge seated within the anchor member.
- the anchor member has an axially extending passage for the tension member with the passage having a conically widening surface forming a seat for the correspondingly shaped wedge.
- Such a wedge anchorage is known in the Swiss patent No. 482 080.
- the tension members have two anchorages where the tension forces are transferred to the concrete structure with the members forming the anchorages embedded in the concrete structure.
- One anchorage is designed as a so-called fixed anchorage and is completely encased in the concrete structure, the other anchorage at the end where the tension forces are applied must remain accessible until after the tensioning is carried out, so that a tensioning stress or prestressing jack can connected to the end of the tension member.
- a recess must be provided in the concrete structure for the prestressing equipment. After the prestressing is effected, the recess must be closed off to prevent corrosion.
- the closure for the recess is mainly provided by a cement mortar plug so that the anchorage located within the recess is completely enclosed within the concrete structure. Disregarding the fact that the recess must be formed and subsequently sealed off, a dependable corrosion protection can be obtained only with considerable difficulty, since there is always the possibility of shrinkage of the cement mortar plug causing it to separate from the recess whereby moisture can enter and penetrate to the tension member and its anchorage. It is known in fixed anchorages to provide the anchor member at the point where the tension member passes out of the anchorage with a cap.
- a compression spring is located within the cap and surrounds the end of the tension member extending through the wedge and affords a frictional locking connection between the cover of the cap and the end face of the wedge for securing the wedge in position, note Swiss patent No. 482 080. It is also known to provide projecting means inside the cap arranged so that they extend into connection with the wedge and fix the wedge in position when the cap is threaded on to the anchor member, note German Utility Model No. 80 02 044.
- German Offenlegungsshrift No. 25 06 395 where a plurality of wedge connections are provided in a common anchor member. There is no special noncorrosive covering for the anchorage and the tension member illustrated.
- the primary object of the present invention is to provide a wedge anchorage in which the formation of a recess containing the anchorage and a subsequent plug seal for the recess is avoided.
- a cap is positioned on the end of the anchor member through which the tension member extends out of the concrete structure with the cap locked on the anchor member.
- the cap has at least one opening through which the tension member can extend out of the concrete structure, that is, between the anchorage and the surface of the concrete structure so that the tension member is not tensioned in this region. In this region the tension member is guided so that it is axially displaceable.
- Means are provided inside the cap for limiting the movement of the wedge in the axial direction of the tension member while the member is being prestressed and to assure a safe seating of the wedge within the anchor member at the completion of the tensioning or prestressing operation.
- an essential feature of the invention involves assuring that the wedge, which during tension is pulled out of the conical seat in the anchor member, is effectively returned into the conical seat after the stressing procedure is completed for anchoring the prestressing force in a shrink-free manner.
- means are provided within the cap for limiting the axial movement of the wedge tension member and assures an effective seating of the wedge in the anchor member when the prestressing operation is completed.
- the means are provided by a compression spring with the wedge bearing against the spring during the tensioning operation so that axial movement of the wedge is limited.
- Another embodiment involves the provision of a stop for limiting the axial movement of the wedge within the cap with the stop spaced a distance from the conical seat for the wedge so that the wedge does not lose its frictional contact with the tension member and is guided effectively back into the conical seat when the prestressing force acting on the tension member is released.
- FIG. 1 is an axially extending sectional view through the anchorage of a tension member while tension is being applied;
- FIG. 2 is a view similar to FIG. 1, however, showing the tension member and anchorage in the final tensioned state;
- FIG. 3 is a view similar to FIG. 1 illustrating another embodiment of the invention while tension is being applied;
- FIG. 4 is a view similar to FIG. 2 displaying another embodiment of a closure for the exit opening in the concrete structure for the tension member;
- FIG. 5 is still another embodiment showing a seal for the exit opening of a plurality of tension members.
- the wedge anchorages shown in FIGS. 1 and 3 are located within a concrete structure 5 with the outside surface of the concrete structure illustrated at the left-hand side of each figure.
- the wedge anchorages each include an anchor member 1 having a first end facing inwardly into the concrete structure 5 and a second end facing the outside surface of the concrete structure.
- An axially extending central passage 2 extends through the anchor member 1 from the first end to the second end.
- a tension member in the form of a steel wire strand 3 extends through the structural component 5 and through the passage 2 within the anchor member 1 and then out of the concrete structure.
- the passage 2 in the anchor member widens conically from the first end to the second end forms an axially extending seat for a multipart annular wedge 4.
- the anchor member 1 includes an outwardly projecting circular annular plate 6 extending transversely of the axial direction of the passageway 2 and forming a stop or abutment for the tension member 3 within the concrete structure 5.
- a cylindrically shaped extension 7 which forms the second end of the anchor member.
- An external thread 8 is formed on the outside surface of the extension 7.
- Cap 9 is screwed on to the external thread 8 by an appropriate female thread in an axially extending portion 10 of the cap which has a larger diameter than the extension 7.
- the arrangement of the threads can be reversed so that a female thread is provided in the anchor member 1 and an external thread is located on the cap 9.
- the cap 9 has an axially extending end section 12, smaller in diameter than the section 10 with a transition section 11 joining the section 10 to the end section 12. At its end closer to the outside surface of the concrete structure, the section 12 projects inwardly forming a cover 13.
- the outside surface of the end section 12 can be hexagonally shaped so that a conventional wrench can be used for screwing the cap on to the extension 7 of the anchor member 1.
- An opening 14 is provided in the cover 13 so that the tension member or strand 3 can extend out of the cap.
- Strand 3 is axially displaceable in the region between the cap 9 and the outside surface of the concrete structure 5 and is laterally enclosed within a coating, such as paint, or a plastics material sheath 15. Within the opening 14 in the cap 9, the plastics sheath 15 is secured by means of a seal 16.
- a compression spring 17 extending in the axial direction of the tension member 3 is located within the cap and abuts at one end against the end of the wedge 4 at the second end of the anchor member and at the other end against the inside surface of the cover 13 at the end of the cap spaced outwardly from the anchor member. Accordingly, the wedge parts making up the wedge 4 are secured by a spring washer inserted into an annular groove in the outside surfaces of the parts. The wedge 4 is pressed by the spring 17 into contact with the conically shaped seat formed in the passage 2.
- the tension member including the anchorages can be placed prior to the installation of the formwork or before the concrete is poured into the formwork. Due to the present invention, no recess is required for the prestressing jack used in tensioning the tension member, only a small opening through the formwork is required so that the tension member or strand 3 extends to the outside of the concrete structure.
- a prestressing jack is positioned for stressing the tension member after the concrete has set and the tensioning head 18 for the jack is shown in dotted lines in FIG. 1.
- the prestressing jack bears against a plate 19 and the effective surface of the plate must be adapted to the compression strength of the concrete forming the structure.
- a sealing cap 20 formed of a rubber-coated spring steel can be placed on the cut end of the tension member so that it grips in between the individual wires of the tension member strand by means of a wedge-shaped extension and is secured by spreading the wires apart.
- the space within the cap 9 and the space in the transition from the anchor member 1 to the enclosure about the tension member can be filled with a permanently plastic corrosion resistant mass 21.
- the portion of the tension member between the anchorage shown in the drawing and the other anchorage located at the opposite end of the tension member can be designed in a random manner.
- the tension member 3 in this region can be enclosed in a plastics material sheathing, such as a PE-sheath, providing corrosion protection. It is also possible to enclose the tension member between the opposite anchorages in a known manner within a sheathing tube and to inject cement mortar or grout into the tube through an injection line 23.
- FIG. 4 a sleeve 24 is placed around the end of the tension member 3 extending inwardly from the outside surface of the concrete structure 5 with the inner end of the sleeve being provided with outwardly spread parts 25.
- a cap 26 is placed over the end of the sleeve at the outside surface of the concrete structure. The cap can be provided in positively locked engagement with the sleeve.
- annular groove is formed in the outside surface of the concrete structure surrounding the sleeve in a pot-shaped manner with the cap 26 having a female thread in threaded engagement with a male thread on the end of the sleeve 24.
- the sleeve 24 and the cap 26 are dimensioned so that they are able to withstand the forces developed upon a failure of the strand or tension member 3.
- FIGS. 3 and 4 another embodiment similar to FIGS. 1 and 2 discloses how the wedge 4 can be prevented from moving out of the anchor member during the prestressing procedure by providing a stop within the cap in position to block movement of the wedge toward the outside surface of the concrete structure.
- a cap 9 is threaded on to the cylindrical extension 7 of the anchor member with an appropriate female thread in the cap corresponding to the male thread on the extension of the anchor member.
- the cap has a larger diameter section 10 extending around the second end of the anchor member 1 with an inwardly extending transition section 11 connecting it to an end section 12 of smaller outside diameter as compared to the section 10.
- the portion of the end section 12 closer to the outside surface of the concrete structure 5 is formed with an end wall or cover 13.
- the interior of the end section 12 forms a passage 17' through which the tension member 3 extends.
- the end of the passage 17' remote from the anchor member 1 forms an exit opening through which the tension member extends and this opening is closed against the plastics material sheath 15 on the tension member 3 by a seal 16.
- annular bead or protuberance which can also be formed of individual parts.
- the axial dimension of the bead corresponding to the axial direction of the tension member 3 is selected so that the wedge, though displaced out of the conically shaped seat within the anchor member when the member is tensioned, can not be displaced from the seat to the extent that it loses the frictional lock with the tension member or strand 3, the bead or stop surface permits the axial displacement of the wedge for only so far so that when the tensioning force is removed, the tension member is safely gripped by the wedge and returned into frictional contact with the seat.
- FIG. 5 another embodiment is illustrated where the anchor member 1 has an annular anchor plate 36 with a plurality of passages extending through the anchor plate for receiving a plurality of tension members 3.
- a cap 39 is provided for the second end of the anchor member 1 and has a number of passages 47 corresponding to the number of openings or passages through the anchor member.
- the remainder of the embodiment set forth in FIG. 5 corresponds essentially to the arrangement shown in FIG. 4.
- the dimensions of the sleeve 54 and of the sealing cap 56 which is threaded on to the sleeve, are adapted to the size of the overall arrangement.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Reinforcement Elements For Buildings (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3438865 | 1984-10-24 | ||
DE3438865A DE3438865C1 (de) | 1984-10-24 | 1984-10-24 | Keilverankerung fuer die Anspannseite eines Einzelspannglieds fuer ein Spannbetonbauteil |
Publications (1)
Publication Number | Publication Date |
---|---|
US4718209A true US4718209A (en) | 1988-01-12 |
Family
ID=6248611
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US06/790,043 Expired - Lifetime US4718209A (en) | 1984-10-24 | 1985-10-22 | Wedge anchorage for a tension member in a prestressed concrete structure |
Country Status (5)
Country | Link |
---|---|
US (1) | US4718209A (no) |
JP (1) | JPS61102946A (no) |
CA (1) | CA1250758A (no) |
DE (1) | DE3438865C1 (no) |
NO (1) | NO166195C (no) |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4878327A (en) * | 1987-03-13 | 1989-11-07 | Dyckerhoff & Widmann Aktiengesellschaft | Corrosion protected tension member for use in prestressed concrete and method of installing same |
US5271199A (en) * | 1992-08-24 | 1993-12-21 | Incast Anchorage Systems, Inc. | Post tensioning anchor system |
US5535561A (en) * | 1994-08-30 | 1996-07-16 | Schuyler; Peter W. | Cable hold down and bracing system |
US5570549A (en) * | 1994-07-15 | 1996-11-05 | Lung; Jimmy R. | Building anchoring system |
WO1997040242A1 (en) * | 1996-04-25 | 1997-10-30 | Sorkin Felix L | Method and apparatus for forming an anchorage of a post-tension system |
US5689923A (en) * | 1995-04-11 | 1997-11-25 | Hilti Aktiengeschaft | Device for securing steel reinforcing or prestressing members in an anchorage |
US5839235A (en) * | 1997-08-20 | 1998-11-24 | Sorkin; Felix L. | Corrosion protection tube for a post-tension anchor system |
US5939003A (en) * | 1997-01-31 | 1999-08-17 | Vsl International | Post-tensioning apparatus and method |
US6026618A (en) * | 1997-10-29 | 2000-02-22 | Reginald A. J. Locke | Masonry reinforcement system |
EP1046759A1 (de) * | 1999-04-19 | 2000-10-25 | BBR Systems Ltd. | Verankerung für Litzen in Beton |
US6176051B1 (en) * | 1999-04-26 | 2001-01-23 | Felix L. Sorkin | Splice chuck for use in a post-tension anchor system |
US6195949B1 (en) * | 1997-09-24 | 2001-03-06 | Peter William Schuyler | Hold down device and method |
US6505450B1 (en) | 1997-10-29 | 2003-01-14 | Reginald A. J. Locke | Masonry reinforcement system |
US6684585B2 (en) * | 2001-05-30 | 2004-02-03 | Robert Campbell | Method and apparatus for providing a visual indication of the tension applied to a tendon of a post-tension system |
US6761002B1 (en) * | 2002-12-03 | 2004-07-13 | Felix L. Sorkin | Connector assembly for intermediate post-tension anchorage system |
US6871453B2 (en) | 2003-03-19 | 2005-03-29 | Reginald A. J. Locke | Modular building connector |
US20050262649A1 (en) * | 2004-06-01 | 2005-12-01 | Dywidag-Systems International Gmbh | Construction of a corrosion-resistant tension member in the area where it enters a structure, particularly an inclined cable on the pylon of a cable stayed bridge |
US20090205273A1 (en) * | 2008-02-20 | 2009-08-20 | Hayes Norris O | Anchor system with substantially longitudinally equal wedge compression |
US20090304441A1 (en) * | 2008-06-10 | 2009-12-10 | Landry Stanley A | Median Barrier Cable Termination |
US9091064B1 (en) * | 2014-03-10 | 2015-07-28 | Christian L. Dahl | Rebar anchorage device and method for connecting same to a rebar |
US20160168854A1 (en) * | 2014-05-19 | 2016-06-16 | Felix Sorkin | Modified permanent cap |
US9481972B1 (en) * | 2013-05-13 | 2016-11-01 | University Of South Florida | Systems and methods for splicing pile segments |
US9874016B2 (en) * | 2015-07-17 | 2018-01-23 | Felix Sorkin | Wedge for post tensioning tendon |
CN110185270A (zh) * | 2019-05-15 | 2019-08-30 | 广东盛翔交通工程检测有限公司 | 一种减少预应力回缩损失的限位板 |
RU194422U1 (ru) * | 2019-11-15 | 2019-12-11 | Общество с ограниченной ответственностью "Э-Молд" | Анкер для натяжения арматуры |
US10711449B2 (en) * | 2016-04-28 | 2020-07-14 | Precase India Infrastructures Pvt. Ltd. | System for wall to wall connection for precast shear walls and method thereof |
US11193277B2 (en) * | 2020-03-04 | 2021-12-07 | Inside Bet Llc | Strand-to-threadbar coupler block for prestressed concrete |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6523430B1 (en) | 1999-10-15 | 2003-02-25 | New Venture Gear, Inc. | Power take-off unit with gearset |
CN104675122B (zh) * | 2015-02-09 | 2017-06-16 | 北京市建筑工程研究院有限责任公司 | 无粘结预应力筋可控分段锚具装置及其装配方法和应用 |
CN105863274B (zh) * | 2016-06-03 | 2023-09-08 | 天津银龙预应力材料股份有限公司 | 一种专用于预应力材料张拉伸长的自动锁定装置 |
CN109531801B (zh) * | 2018-12-29 | 2023-12-19 | 新元果业(山东)集团有限公司 | 预应力水泥柱生产设备及生产方法 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT166560B (de) * | 1948-06-29 | 1950-08-25 | Ernst Braunbock | Verankerungsstücke für Bewehrungseinlagen von vorgespanntem Beton und Verfahren zu dessen Herstellung |
GB1093323A (en) * | 1964-06-04 | 1967-11-29 | Cementation Co Ltd | Improvements in anchorages for structural tensile members |
CH482080A (de) * | 1969-03-26 | 1969-11-30 | Brandestini Antonio | Ankerkörper für Spannglieder |
GB1216923A (en) * | 1968-04-24 | 1970-12-23 | Ccl Systems Ltd | Improvements in or relating to anchorage assemblies for the prestressing of concrete structures |
US3820832A (en) * | 1969-03-12 | 1974-06-28 | A Brandestini | Anchoring device for wire strands in prestressed concrete structures |
US3965543A (en) * | 1974-11-22 | 1976-06-29 | Symons Corporation | She-bolt type gripper device for concrete wall form tie rods of indeterminate length |
DE2506395A1 (de) * | 1975-02-15 | 1976-08-26 | Dyckerhoff & Widmann Ag | Vorrichtung zum spannen und entspannen von buendelspanngliedern fuer spannbeton |
DE8002044U1 (de) * | 1980-01-26 | 1980-04-30 | Dyckerhoff & Widmann Ag, 8000 Muenchen | Keilverankerung fuer ein spannglied in einem betonbauteil |
US4307550A (en) * | 1980-02-29 | 1981-12-29 | Abraham Behar | Apparatus for pre-stressing concrete structural member |
US4363462A (en) * | 1980-01-26 | 1982-12-14 | Dyckerhoff & Widmann Aktiengesellschaft | Recoverable formwork part for forming the anchoring location of a tendon in a concrete structural component |
US4442646A (en) * | 1980-10-28 | 1984-04-17 | Ponteggi Est S.P.A. | Device for anchoring tensioning elements |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5045248U (no) * | 1973-08-23 | 1975-05-07 |
-
1984
- 1984-10-24 DE DE3438865A patent/DE3438865C1/de not_active Expired
-
1985
- 1985-10-22 US US06/790,043 patent/US4718209A/en not_active Expired - Lifetime
- 1985-10-23 NO NO854231A patent/NO166195C/no unknown
- 1985-10-23 CA CA000493685A patent/CA1250758A/en not_active Expired
- 1985-10-24 JP JP60238531A patent/JPS61102946A/ja active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT166560B (de) * | 1948-06-29 | 1950-08-25 | Ernst Braunbock | Verankerungsstücke für Bewehrungseinlagen von vorgespanntem Beton und Verfahren zu dessen Herstellung |
GB1093323A (en) * | 1964-06-04 | 1967-11-29 | Cementation Co Ltd | Improvements in anchorages for structural tensile members |
GB1216923A (en) * | 1968-04-24 | 1970-12-23 | Ccl Systems Ltd | Improvements in or relating to anchorage assemblies for the prestressing of concrete structures |
US3820832A (en) * | 1969-03-12 | 1974-06-28 | A Brandestini | Anchoring device for wire strands in prestressed concrete structures |
CH482080A (de) * | 1969-03-26 | 1969-11-30 | Brandestini Antonio | Ankerkörper für Spannglieder |
US3965543A (en) * | 1974-11-22 | 1976-06-29 | Symons Corporation | She-bolt type gripper device for concrete wall form tie rods of indeterminate length |
DE2506395A1 (de) * | 1975-02-15 | 1976-08-26 | Dyckerhoff & Widmann Ag | Vorrichtung zum spannen und entspannen von buendelspanngliedern fuer spannbeton |
DE8002044U1 (de) * | 1980-01-26 | 1980-04-30 | Dyckerhoff & Widmann Ag, 8000 Muenchen | Keilverankerung fuer ein spannglied in einem betonbauteil |
US4363462A (en) * | 1980-01-26 | 1982-12-14 | Dyckerhoff & Widmann Aktiengesellschaft | Recoverable formwork part for forming the anchoring location of a tendon in a concrete structural component |
US4307550A (en) * | 1980-02-29 | 1981-12-29 | Abraham Behar | Apparatus for pre-stressing concrete structural member |
US4442646A (en) * | 1980-10-28 | 1984-04-17 | Ponteggi Est S.P.A. | Device for anchoring tensioning elements |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4878327A (en) * | 1987-03-13 | 1989-11-07 | Dyckerhoff & Widmann Aktiengesellschaft | Corrosion protected tension member for use in prestressed concrete and method of installing same |
US5271199A (en) * | 1992-08-24 | 1993-12-21 | Incast Anchorage Systems, Inc. | Post tensioning anchor system |
US5570549A (en) * | 1994-07-15 | 1996-11-05 | Lung; Jimmy R. | Building anchoring system |
US5535561A (en) * | 1994-08-30 | 1996-07-16 | Schuyler; Peter W. | Cable hold down and bracing system |
US5689923A (en) * | 1995-04-11 | 1997-11-25 | Hilti Aktiengeschaft | Device for securing steel reinforcing or prestressing members in an anchorage |
WO1997040242A1 (en) * | 1996-04-25 | 1997-10-30 | Sorkin Felix L | Method and apparatus for forming an anchorage of a post-tension system |
US5755065A (en) * | 1996-04-25 | 1998-05-26 | Sorkin; Felix L. | Method and apparatus for forming an anchorage of a post-tension system |
US5939003A (en) * | 1997-01-31 | 1999-08-17 | Vsl International | Post-tensioning apparatus and method |
US5839235A (en) * | 1997-08-20 | 1998-11-24 | Sorkin; Felix L. | Corrosion protection tube for a post-tension anchor system |
US6195949B1 (en) * | 1997-09-24 | 2001-03-06 | Peter William Schuyler | Hold down device and method |
US6026618A (en) * | 1997-10-29 | 2000-02-22 | Reginald A. J. Locke | Masonry reinforcement system |
US6505450B1 (en) | 1997-10-29 | 2003-01-14 | Reginald A. J. Locke | Masonry reinforcement system |
EP1046759A1 (de) * | 1999-04-19 | 2000-10-25 | BBR Systems Ltd. | Verankerung für Litzen in Beton |
US6176051B1 (en) * | 1999-04-26 | 2001-01-23 | Felix L. Sorkin | Splice chuck for use in a post-tension anchor system |
US6684585B2 (en) * | 2001-05-30 | 2004-02-03 | Robert Campbell | Method and apparatus for providing a visual indication of the tension applied to a tendon of a post-tension system |
US6761002B1 (en) * | 2002-12-03 | 2004-07-13 | Felix L. Sorkin | Connector assembly for intermediate post-tension anchorage system |
US6871453B2 (en) | 2003-03-19 | 2005-03-29 | Reginald A. J. Locke | Modular building connector |
US20050262649A1 (en) * | 2004-06-01 | 2005-12-01 | Dywidag-Systems International Gmbh | Construction of a corrosion-resistant tension member in the area where it enters a structure, particularly an inclined cable on the pylon of a cable stayed bridge |
US7200886B2 (en) * | 2004-06-01 | 2007-04-10 | Dywidag-Systems International Gmbh | Construction of a corrosion-resistant tension member in the area where it enters a structure, particularly an inclined cable on the pylon of a cable stayed bridge |
US20090205273A1 (en) * | 2008-02-20 | 2009-08-20 | Hayes Norris O | Anchor system with substantially longitudinally equal wedge compression |
US7765752B2 (en) * | 2008-02-20 | 2010-08-03 | Hayes Specialty Machining, Ltd. | Anchor system with substantially longitudinally equal wedge compression |
US20090304441A1 (en) * | 2008-06-10 | 2009-12-10 | Landry Stanley A | Median Barrier Cable Termination |
US8286309B2 (en) * | 2008-06-10 | 2012-10-16 | Actuant Corporation | Median barrier cable termination |
US9481972B1 (en) * | 2013-05-13 | 2016-11-01 | University Of South Florida | Systems and methods for splicing pile segments |
US9091064B1 (en) * | 2014-03-10 | 2015-07-28 | Christian L. Dahl | Rebar anchorage device and method for connecting same to a rebar |
US20160168854A1 (en) * | 2014-05-19 | 2016-06-16 | Felix Sorkin | Modified permanent cap |
US9879427B2 (en) * | 2014-05-19 | 2018-01-30 | Felix Sorkin | Modified permanent cap |
US9874016B2 (en) * | 2015-07-17 | 2018-01-23 | Felix Sorkin | Wedge for post tensioning tendon |
US9909315B2 (en) * | 2015-07-17 | 2018-03-06 | Felix Sorkin | Wedge for post tensioning tendon |
US10106983B2 (en) * | 2015-07-17 | 2018-10-23 | Felix Sorkin | Wedge for post tensioning tendon |
US10711449B2 (en) * | 2016-04-28 | 2020-07-14 | Precase India Infrastructures Pvt. Ltd. | System for wall to wall connection for precast shear walls and method thereof |
CN110185270A (zh) * | 2019-05-15 | 2019-08-30 | 广东盛翔交通工程检测有限公司 | 一种减少预应力回缩损失的限位板 |
RU194422U1 (ru) * | 2019-11-15 | 2019-12-11 | Общество с ограниченной ответственностью "Э-Молд" | Анкер для натяжения арматуры |
US11193277B2 (en) * | 2020-03-04 | 2021-12-07 | Inside Bet Llc | Strand-to-threadbar coupler block for prestressed concrete |
Also Published As
Publication number | Publication date |
---|---|
DE3438865C1 (de) | 1986-04-03 |
JPS61102946A (ja) | 1986-05-21 |
NO854231L (no) | 1986-04-25 |
NO166195C (no) | 1991-06-12 |
NO166195B (no) | 1991-03-04 |
CA1250758A (en) | 1989-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4718209A (en) | Wedge anchorage for a tension member in a prestressed concrete structure | |
US5630301A (en) | Anchorage assembly and method for post-tensioning in pre-stressed concrete structures | |
US3596330A (en) | Anchors for structural tensile members | |
EP0606820B1 (de) | Spannverankerung für mindestens ein innerhalb eines Hüllrohres verlaufendes Zugelement und Verfahren zum Herstellen der Spannverankerung | |
EP3172387B1 (en) | Apparatus with a cartridge for retaining a sheathing of a tendon within an anchor assembly | |
US7950196B1 (en) | Sealing trumpet for a post-tension anchorage system | |
US6634147B2 (en) | Process for the installation and tensioning of a brace having a false bearing, in particular a stay cable for a cable-stayed bridge and anchoring device with which to carry out the process | |
US7841140B1 (en) | Apparatus for preventing shrinkage of a sheathing over a tendon | |
CA1064745A (en) | Corrosion protected tensioning member for a prestressable anchor in solid rock | |
US3820832A (en) | Anchoring device for wire strands in prestressed concrete structures | |
US4619088A (en) | Stressed reinforcing tendon and structure including such a tendon | |
US4348844A (en) | Electrically isolated reinforcing tendon assembly and method | |
WO1997040242A1 (en) | Method and apparatus for forming an anchorage of a post-tension system | |
JPS5920615A (ja) | プレストレストコンクリ−ト用束緊張材のための定着装置及び接続装置 | |
US7797894B1 (en) | Apparatus and method for preventing shrinkage of a sheathing over a tendon | |
US11512469B2 (en) | Intermediate concrete anchor system with cap | |
CN212376149U (zh) | 用于后浇带内连接无粘结预应力钢绞线的连接器 | |
AU674788B2 (en) | Anchor bolt for stabilising rock strata | |
JPH0533557Y2 (no) | ||
US10995494B2 (en) | Apparatus for repairing a tension member | |
KR102118120B1 (ko) | 재긴장이 가능한 정착장치 및 정착방법 | |
KR200434370Y1 (ko) | 정착구가 설치된 영구앵커 | |
FR2347504A1 (fr) | Coupleurs pour cables de precontrainte | |
US2965356A (en) | Cable pulling and anchoring means | |
JP2001173157A (ja) | 一部埋め込み型pc鋼より線接続構造 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: DYCKERHOFF & WIDMANN AKTIENGESELLSCHAFT,GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HANSEN, PER CHRISTIAN;HERRMANN, GERO;SIGNING DATES FROM 19851018 TO 19851108;REEL/FRAME:004544/0537 Owner name: DYCKERHOFF & WIDMAN AKTIENGESELLSCHAFT, ERDINGER L Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:HANSEN, PER CHRISTIAN;HERRMANN, GERO;REEL/FRAME:004544/0537;SIGNING DATES FROM 19851018 TO 19851108 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: DYWIDAG-SYSTEMS INTERNATIONAL GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BAU-AKTIENGESELLSCHAFT, WALTER;REEL/FRAME:014027/0331 Effective date: 20030320 |