US3923644A - Process and apparatus for re-refining used petroleum products - Google Patents
Process and apparatus for re-refining used petroleum products Download PDFInfo
- Publication number
- US3923644A US3923644A US514176A US51417674A US3923644A US 3923644 A US3923644 A US 3923644A US 514176 A US514176 A US 514176A US 51417674 A US51417674 A US 51417674A US 3923644 A US3923644 A US 3923644A
- Authority
- US
- United States
- Prior art keywords
- evaporator
- flash
- refining
- oil
- recited
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M175/00—Working-up used lubricants to recover useful products ; Cleaning
Definitions
- ABSTRACT Used petroleum products, such as crankcase oils, are reclaimed by an initial treatment step consisting of flash vaporization with continuous recirculation of a substantial portion of the unvaporized liquid.
- initial treatment step consisting of flash vaporization with continuous recirculation of a substantial portion of the unvaporized liquid.
- the unvaporized liquid C C 0 product is mechanically filtered through a vibratory [58] F d f S ar h 208/1 9, 186, filter and then successive cannister filters to produce a 208/187 product which may be used as a fuel oil or further refined into various fuel and/or lubricant products in 1 1 References Cited successive flash distillation stages.
- This invention pertains to an improved process and apparatus for re-refining used oils through a sequential flash evaporation process. More specifically, it relates to improved process and apparatus wherein saleable products are obtainable at any one of various stages including a very early stage, whereby useful product may be reclaimed from used oils with a minimum of apparatus and treatment.
- a more specific object of this invention is to provide a sequential flash evaporation process and apparatus which is efficient, dependable and flexible in its mode of operation.
- Still another object of this invention is to provide a relatively simple apparatus and process for reclaiming lower grade, though saleable, petroleum products, from used petroleum products, such as crankcase oil, with a minimum of apparatus and treatment.
- a used oil feed stream is flash vaporized at atmospheric pressure and 210 240 F; fine solids are then mechanically separated from the unvaporized bottom stream to produce a saleable fuel oil.
- this residual fuel oil is further refined in a second flash evaporator operated at 300-400 F, and 24-28 inches mercury.
- the overhead from this second flash evaporator is condensed and decanted to remove residual water, the product being a kerosene-like fuel.
- the bottom liquid from the second flash evaporator may be passed on successively to third and fourth flash evaporators operated, respectively, at 600-650 F and 7 torr, and at 630 680 F and 1% 3 torr.
- the mechanical filtration associated with the liquid bottom product from the first flash evaporation stage consists primarily of a vibratory filter with a horizontal screen having openings on the order of 40-45 microns from which waste material is removed at the edges.
- the filter product proceeds through the screen to successive cartridge filters having a final filtration range (i.e., filter element capable of removing) of 3 microns in size.
- one or more, and most preferably all, of the flash evaporators are operated by continuously heating and recirculating unvaporized bottom liquid from a specific evaporator to the vapor space above a liquid level in the same evaporator. At the same time, feed to the respective flash evaporator is added to the recycled liquid as it is introduced, almost simultaneously with this mixing, into the evaporator (in a manner similar to that disclosed in US. Pat. No, 2,799,628).
- FIGURE is a schematic view of the process and apparatus of the preferred embodiment of the present invention.
- first flash evaporator 10 including atmospheric vent 12.
- a feed stream of used petroleum products (such as crank-case oil) introduced through feed line 14, is combined with recycled liquid from evaporator 10, near the terminus of recycle line 16.
- a predetermined liquid level in flash evaporator 10 is maintained by liquid level controller 18 operating valve 20 in feed stream line 14.
- a temperature on the order of 210240F is maintained in flash evaporator 10 by heating the recycled liquid from the bottom of flash evaporator 10 in heat exchanger 22, wherein the heating medium is preferably steam at a pressure of -150 lbs./sq.in.
- Product draw-off line 24 passes a portion of the unvaporized liquid in flash evaporator 10 to a mechanical filtration system comprising, in the preferred embodiment of this invention, a vibratory filter 26 having a horizontally vibrating screen filter element 28, with screen openings less than 100 microns and preferably on the order of 40 to 45 microns, and a feed dispersing member 30 located above filter element 28. Waste sludge containing heavy particle contaminants and insolubles is removed at the periphery of vibrating screen element 28 while the filtrate passes through to the bottom of filter 26 and to a surge tank, from which a prod uct saleable as a residual fuel may be withdrawn.
- a mechanical filtration system comprising, in the preferred embodiment of this invention, a vibratory filter 26 having a horizontally vibrating screen filter element 28, with screen openings less than 100 microns and preferably on the order of 40 to 45 microns, and a feed dispersing member 30 located above filter element 28. Waste sludge containing heavy particle contaminants and insoluble
- this liquid may be forwarded for future processing to a sequence of pairs 32, 34 and 36 of cartridge filters of successively smaller pore size in the filter elements.
- these cannister filters house filter elements ranging progressively from 25 microns to 15 microns to 3 microns in maximum pore size.
- the initial removal of water at relatively low temperature and the subsequent filtration comprises a practical process which may be operated for extended periods of time without equipment fouling and relatively low energy consumption to produce a useful product.
- a still more refined (and valuable) product is produced in the final filter train.
- This product may be sold, for example, as a cutting oil or as a quench oil.
- the used oil feed stream may comprise from 0 to 40 percent water; this more typically lies in the range of 1 l5 percent.
- this system is designed for a relatively low proportion of that feed stream to be combined with the recycled liquid entering flash evaporator in order to maintain a relatively constant temperature there and thereby to operate flash evaporator 10 with a high degree of efficiency.
- the proportion of this mixture will therefore change depending on water content of the feed stream in order that the heat contributed by heat exchanger 22 will balance the heat loss through evaporation of water in flash evaporator 10.
- Another important factor in maintaining the equilibrium in flash evaporator 10 is the mixing of the feed stream and recycle liquid just as these materials are introduced into the flash evaporator in the vapor space above the liquid level therein.
- Vapors leaving flash evaporator 10 through atmospheric vent 12 are predominantly water, and may ordinarily be released to the atmosphere. This is a further advantage of the simple reclamation technique described to this point. However, in some situations, it may be necessary or desirable to collect the vapors exiting vent 12 and perhaps to remove or to recover residual non-aqueous contaminants in the vapors.
- Evaporator 40 is similar to flash evaporator 10, both in design and operation, but differs in design operating conditions and in the absence of an atmospheric vent.
- flash evaporator 40 includes overhead removal line 42 through which collected vapors from evaporator 40 are passed to condenser 44.
- a cooling medium such as cold water, cools the vapors and causes them to condense.
- Vacuum pump 46 in communication with the vapor space in condenser 44, maintains a pressure of about 24-28 (preferably about 26) inches mercury in evaporator 40.
- Liquid level controller 48 associated with valve 50 on filtrate line 38 holds the liquid level in evaporator 40 at a predetermined point, maintaining a vapor space of some vertical height in evaporator 40.
- Recycle line 52 carries heated recycle liquid after its passage through a heat exchanger 54 wherein steam at 130-150 psi (preferably 150 psi) provides the necessary heat input to maintain a temperature level in the second flash evaporator 40 on the order of 300-400F, and preferably about 350 F.
- steam at 130-150 psi preferably 150 psi
- anhydrous ammonia may be injected into the liquid phase in evaporator 40.
- Condensate from overhead condenser 44 is collected in an accumulator 58 and then pumped to decanter 56 through line 39.
- the liquid level is determined by level control 41 controlling a valve 43 in line 39.
- a small amount of residual water is removed from decanter 56.
- the pH of this residual water is controlled at or near 7.5 by the addition of caustic soda to the vapors in line 42.
- the remaining product stream may be sold or used inplant as a fuel.
- the volatility of this product stream is generally comparable to that of kerosene.
- the bottom liquid drawoff not recycled to evaporator 40 may also be sold as a fuel oil product, but preferably it is further upgraded by passage to subsequent flash evaporation stages.
- bottom liquid draw-off product passes through line 58 to a third flash evaporator 60 where it is introduced into the vapor space, along with recycled and heated liquid from recycle line 62 and heat exchanger 64, (wherein a hot heat exchange liquid, such as Dowtherm liquid, a commercial product of the Dow Chemical Co., is the heating media), which provides the heat input to evaporator 60.
- a hot heat exchange liquid such as Dowtherm liquid, a commercial product of the Dow Chemical Co., is the heating media
- recycle liquid in line 62 is combined with stage feed in line 58 just prior to release in the vapor space of evaporator 60.
- the liquid is maintained at a predetermined level in evaporator 60 by liquid level controller 66 associated with a stage output valve 68.
- Overhead vapors are collected and condensed in a cooler 70, usually with cold water as the cooling fluid, to which a steam aspirator 72 is connected to maintain the pressure in evaporator 60 at 6-8 torr, preferably about 7 torr.
- the recycled liquid drawoff is heated in heat exchanger 64 to a temperature in the range of 600650F (preferably 625F) to maintain a temperature in evaporator 60 on that order.
- Condensate product from cooler after passing through accumulator 73 is steam stripped in stripper 74, the overhead vapors of which are condensed in cold water cooler 75.
- the bottom product of steam stripper 74 is a lube oil within the range of SAE 10.
- the bottom liquid draw-off of evaporator 60 may also be used or sold as fuel oil (with volatility characteristics comparable to to that of Number 5 or 6 fuel oil). However, it is preferably fed through line 76 to fourth flash evaporator 80.
- a cold water condenser 84 receives and condenses the overhead product from evaporator 80 and passes the condensate through accumulator 81 to steam stripper 86.
- the product of stripper 86 is a lubricant within the viscosity range of SAE 20 or 30 oil.
- Steam aspirator 82 in connection with the vapor side of condenser 84 maintains the pressure in evaporator 80 at about 1% 3 torr.
- Liquid level controller 83 in accumulator 81 controls valve 85 to draw-off condensate from accumulator 81 to steam stripper 86.
- Unvaporized liquid from evaporator 80 is drawn off and may be sold as a high boiling point residual oil product or for other purposes where a heavy petroleum fraction is required.
- a substantial proportion of the liquid drawn off from evaporator 80 is recycled through recycle line 87 to evaporator 80, after passing through Dowthermheated heat exchanger 78. In heat exchanger 78, the liquid is heated to 630680F to maintain a temperature in that range, and preferably about 650F, in evaporator 80.
- the intermediate streams in the preferred embodiment of this invention may be withdrawn in whole or in part as product streams.
- the filtered product stream from the first flash evaporation stage is, it should again be noted, a useful saleable product.
- a feasible used oil refining process and apparatus may therefore encompass the first flash evaporation stage and subsequent filter alone.
- any one or more of the products of this invention may be further refined and treated, such as by clay percolation to pick up color bodies.
- a process for re-refining a used hydrocarbon oil as recited in claim 1, wherein at least a portion of unvaporized liquid removed from the bottom of said evaporator is passed at relatively low pressure through a vibratory filter having a horizontally disposed screen filter element having openings on the order of 40-45 microns.
- a process of re-refining a used hydrocarbon oil as recited in claim 2, wherein the filtrate from said vibratory filter is further filtered to remove remaining particles having a maximum dimension larger than 3 microns.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
- Heat Treatment Of Water, Waste Water Or Sewage (AREA)
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US514176A US3923644A (en) | 1974-10-11 | 1974-10-11 | Process and apparatus for re-refining used petroleum products |
CA235,554A CA1067439A (en) | 1974-10-11 | 1975-09-16 | Process and apparatus for re-refining used petroleum products |
AU85349/75A AU8534975A (en) | 1974-10-11 | 1975-10-01 | Flushable sanitary napkin |
FR7530238A FR2287500A1 (fr) | 1974-10-11 | 1975-10-02 | Procede et dispositif de raffinage de produits petroliers uses |
ZA00756287A ZA756287B (en) | 1974-10-11 | 1975-10-03 | Process and apparatus for re-refining used petroleum products |
GB40472/75A GB1515020A (en) | 1974-10-11 | 1975-10-03 | Process and apparatus for re-refining used petroleum products |
BE160685A BE834188A (fr) | 1974-10-11 | 1975-10-03 | Procede et dispositif de raffinage de produits petroliers uses |
IT69481/75A IT1047283B (it) | 1974-10-11 | 1975-10-07 | Procedimento e apparecchiatura migliorati per rigenerare prodotti petroliferi usati |
DE19752545070 DE2545070A1 (de) | 1974-10-11 | 1975-10-08 | Verfahren und vorrichtung zur raffination benuetzter oele |
JP50121412A JPS5164508A (xx) | 1974-10-11 | 1975-10-09 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US514176A US3923644A (en) | 1974-10-11 | 1974-10-11 | Process and apparatus for re-refining used petroleum products |
Publications (1)
Publication Number | Publication Date |
---|---|
US3923644A true US3923644A (en) | 1975-12-02 |
Family
ID=24046103
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US514176A Expired - Lifetime US3923644A (en) | 1974-10-11 | 1974-10-11 | Process and apparatus for re-refining used petroleum products |
Country Status (10)
Country | Link |
---|---|
US (1) | US3923644A (xx) |
JP (1) | JPS5164508A (xx) |
AU (1) | AU8534975A (xx) |
BE (1) | BE834188A (xx) |
CA (1) | CA1067439A (xx) |
DE (1) | DE2545070A1 (xx) |
FR (1) | FR2287500A1 (xx) |
GB (1) | GB1515020A (xx) |
IT (1) | IT1047283B (xx) |
ZA (1) | ZA756287B (xx) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4179019A (en) * | 1978-01-09 | 1979-12-18 | Danziger Harry Lee | Apparatus for reclaiming used lubricating oils |
US4265733A (en) * | 1979-11-01 | 1981-05-05 | Phillips Petroleum Company | De-ashing lubricating oils |
US4681660A (en) * | 1984-07-26 | 1987-07-21 | Budny Rick R | Method and device for reclaiming fluid lubricants |
US4968410A (en) * | 1989-09-05 | 1990-11-06 | Electrolube Devices, Inc. | Oil recovery system |
US4990237A (en) * | 1987-07-27 | 1991-02-05 | Heuer Steven R | Process for the recovery of oil from waste oil sludges |
US5011579A (en) * | 1990-01-16 | 1991-04-30 | Merichem Company | Neutral oil recovery process for the production of naphthenic acids |
US5269906A (en) * | 1987-07-27 | 1993-12-14 | Reynolds Victor R | Process for the recovery of oil from waste oil sludges |
US5391304A (en) * | 1991-03-04 | 1995-02-21 | Lantos; Federico E. | Method for decreasing the level of contamination of fuels such as residual fuels and other liquid fuels containing residual hydrocarbons used for diesel engines and gas turbines |
US6372123B1 (en) * | 2000-06-26 | 2002-04-16 | Colt Engineering Corporation | Method of removing water and contaminants from crude oil containing same |
US6849175B2 (en) * | 2000-06-27 | 2005-02-01 | Colt Engineering Corporation | Method of removing water and contaminants from crude oil containing same |
US7208079B2 (en) | 2002-07-30 | 2007-04-24 | Nouredine Fakhri | Process for the treatment of waste oils |
US20090078652A1 (en) * | 2007-08-27 | 2009-03-26 | H2Oil, Inc. | System and method for purifying an aqueous stream |
CN102140368A (zh) * | 2011-01-28 | 2011-08-03 | 胡勇刚 | 一种重污油回炼工艺 |
US20110278151A1 (en) * | 2005-03-08 | 2011-11-17 | Macdonald Martin R | Method for Producing Base Lubricating Oil from Waste Oil |
CN102517067A (zh) * | 2011-12-02 | 2012-06-27 | 中国海洋石油总公司 | 含硫油井产物脱硫化氢方法 |
CN102559251A (zh) * | 2010-12-30 | 2012-07-11 | 中国石油化工股份有限公司 | 压力式进料的原油蒸馏方法及设备 |
US20120205289A1 (en) * | 2009-11-09 | 2012-08-16 | Rohit Joshi | Method and apparatus for processing of spent lubricating oil |
CN101717658B (zh) * | 2009-12-03 | 2012-10-17 | 中国石油天然气集团公司 | 一种油品分馏塔的多次汽化进料方法 |
US20140224640A1 (en) * | 2011-08-18 | 2014-08-14 | Roger Fincher | Distillation Solids Removal System and Method |
US9243191B1 (en) * | 2010-07-16 | 2016-01-26 | Delta Technologies LLC | Re-refining used motor oil |
CN105419861A (zh) * | 2015-12-31 | 2016-03-23 | 惠生(南京)清洁能源股份有限公司 | 一种mto工艺过程中重烃、重油及富氧水的分离装置 |
US9677013B2 (en) | 2013-03-07 | 2017-06-13 | Png Gold Corporation | Method for producing base lubricating oil from oils recovered from combustion engine service |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3246354A1 (de) * | 1982-12-15 | 1984-08-09 | Hans-Peter 4600 Dortmund Jenau | Anlage zur gewinnung von kohlenwasserstoffprodukten aus altoelen o.ae. |
DE19830046C1 (de) * | 1998-07-04 | 1999-09-09 | Sommer | Verfahren und Anlage zur prozeß- und kanalfähigen Aufbereitung von ölhaltigen Emulsionen |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2799628A (en) * | 1953-04-24 | 1957-07-16 | Phillips Petroleum Co | Method for obtaining increased depth of flash vaporization |
US3173859A (en) * | 1961-08-24 | 1965-03-16 | Berks Associates Inc | Crankcase oil refining |
US3198241A (en) * | 1963-01-31 | 1965-08-03 | Artisan Ind | Evaporator stripper and fractionator |
US3304255A (en) * | 1963-10-23 | 1967-02-14 | Mitsubishi Heavy Ind Ltd | Method for continuous removal of contaminants from lubricating oil and apparatus therefor |
US3489676A (en) * | 1967-09-05 | 1970-01-13 | Exxon Research Engineering Co | Novel oil treatment and lubricating oil filters for internal combustion engines |
US3625881A (en) * | 1970-08-31 | 1971-12-07 | Berks Associates Inc | Crank case oil refining |
US3791965A (en) * | 1972-04-07 | 1974-02-12 | Petrocon Corp | Process for re-refining used petroleum products |
-
1974
- 1974-10-11 US US514176A patent/US3923644A/en not_active Expired - Lifetime
-
1975
- 1975-09-16 CA CA235,554A patent/CA1067439A/en not_active Expired
- 1975-10-01 AU AU85349/75A patent/AU8534975A/en not_active Expired
- 1975-10-02 FR FR7530238A patent/FR2287500A1/fr active Granted
- 1975-10-03 GB GB40472/75A patent/GB1515020A/en not_active Expired
- 1975-10-03 ZA ZA00756287A patent/ZA756287B/xx unknown
- 1975-10-03 BE BE160685A patent/BE834188A/xx not_active IP Right Cessation
- 1975-10-07 IT IT69481/75A patent/IT1047283B/it active
- 1975-10-08 DE DE19752545070 patent/DE2545070A1/de not_active Withdrawn
- 1975-10-09 JP JP50121412A patent/JPS5164508A/ja active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2799628A (en) * | 1953-04-24 | 1957-07-16 | Phillips Petroleum Co | Method for obtaining increased depth of flash vaporization |
US3173859A (en) * | 1961-08-24 | 1965-03-16 | Berks Associates Inc | Crankcase oil refining |
US3198241A (en) * | 1963-01-31 | 1965-08-03 | Artisan Ind | Evaporator stripper and fractionator |
US3304255A (en) * | 1963-10-23 | 1967-02-14 | Mitsubishi Heavy Ind Ltd | Method for continuous removal of contaminants from lubricating oil and apparatus therefor |
US3489676A (en) * | 1967-09-05 | 1970-01-13 | Exxon Research Engineering Co | Novel oil treatment and lubricating oil filters for internal combustion engines |
US3625881A (en) * | 1970-08-31 | 1971-12-07 | Berks Associates Inc | Crank case oil refining |
US3791965A (en) * | 1972-04-07 | 1974-02-12 | Petrocon Corp | Process for re-refining used petroleum products |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4179019A (en) * | 1978-01-09 | 1979-12-18 | Danziger Harry Lee | Apparatus for reclaiming used lubricating oils |
US4265733A (en) * | 1979-11-01 | 1981-05-05 | Phillips Petroleum Company | De-ashing lubricating oils |
US4681660A (en) * | 1984-07-26 | 1987-07-21 | Budny Rick R | Method and device for reclaiming fluid lubricants |
US4990237A (en) * | 1987-07-27 | 1991-02-05 | Heuer Steven R | Process for the recovery of oil from waste oil sludges |
WO1992004424A1 (en) * | 1987-07-27 | 1992-03-19 | Heuer Steven R | Process for the recovery of oil from waste oil sludges |
US5269906A (en) * | 1987-07-27 | 1993-12-14 | Reynolds Victor R | Process for the recovery of oil from waste oil sludges |
US4968410A (en) * | 1989-09-05 | 1990-11-06 | Electrolube Devices, Inc. | Oil recovery system |
US5011579A (en) * | 1990-01-16 | 1991-04-30 | Merichem Company | Neutral oil recovery process for the production of naphthenic acids |
US5391304A (en) * | 1991-03-04 | 1995-02-21 | Lantos; Federico E. | Method for decreasing the level of contamination of fuels such as residual fuels and other liquid fuels containing residual hydrocarbons used for diesel engines and gas turbines |
US6372123B1 (en) * | 2000-06-26 | 2002-04-16 | Colt Engineering Corporation | Method of removing water and contaminants from crude oil containing same |
US6849175B2 (en) * | 2000-06-27 | 2005-02-01 | Colt Engineering Corporation | Method of removing water and contaminants from crude oil containing same |
US7208079B2 (en) | 2002-07-30 | 2007-04-24 | Nouredine Fakhri | Process for the treatment of waste oils |
US20110278151A1 (en) * | 2005-03-08 | 2011-11-17 | Macdonald Martin R | Method for Producing Base Lubricating Oil from Waste Oil |
US20150129412A1 (en) * | 2005-03-08 | 2015-05-14 | Verolube, Inc. | Method for producing base lubricating oil from waste oil |
US8936718B2 (en) * | 2005-03-08 | 2015-01-20 | Verolube, Inc. | Method for producing base lubricating oil from waste oil |
US20090078652A1 (en) * | 2007-08-27 | 2009-03-26 | H2Oil, Inc. | System and method for purifying an aqueous stream |
US20090082906A1 (en) * | 2007-08-27 | 2009-03-26 | H2Oil, Inc. | System and method for providing aqueous stream purification services |
US7837768B2 (en) * | 2007-08-27 | 2010-11-23 | General Electric Capital Corporation As Administrative Agent | System and method for purifying an aqueous stream |
US7842121B2 (en) * | 2007-08-27 | 2010-11-30 | General Electric Capital Corporation | System and method for providing aqueous stream purification services |
US8986536B2 (en) * | 2009-11-09 | 2015-03-24 | Rohit Joshi | Method and apparatus for processing of spent lubricating oil |
US20120205289A1 (en) * | 2009-11-09 | 2012-08-16 | Rohit Joshi | Method and apparatus for processing of spent lubricating oil |
CN101717658B (zh) * | 2009-12-03 | 2012-10-17 | 中国石油天然气集团公司 | 一种油品分馏塔的多次汽化进料方法 |
US9243191B1 (en) * | 2010-07-16 | 2016-01-26 | Delta Technologies LLC | Re-refining used motor oil |
CN102559251B (zh) * | 2010-12-30 | 2015-01-14 | 中国石油化工股份有限公司 | 压力式进料的原油蒸馏方法及设备 |
CN102559251A (zh) * | 2010-12-30 | 2012-07-11 | 中国石油化工股份有限公司 | 压力式进料的原油蒸馏方法及设备 |
CN102140368B (zh) * | 2011-01-28 | 2013-12-11 | 胡勇刚 | 一种重污油回炼工艺 |
CN102140368A (zh) * | 2011-01-28 | 2011-08-03 | 胡勇刚 | 一种重污油回炼工艺 |
US20140224640A1 (en) * | 2011-08-18 | 2014-08-14 | Roger Fincher | Distillation Solids Removal System and Method |
US9808739B2 (en) * | 2011-08-18 | 2017-11-07 | 212 Water Services, Llc | Distillation solids removal system and method |
CN102517067A (zh) * | 2011-12-02 | 2012-06-27 | 中国海洋石油总公司 | 含硫油井产物脱硫化氢方法 |
US9677013B2 (en) | 2013-03-07 | 2017-06-13 | Png Gold Corporation | Method for producing base lubricating oil from oils recovered from combustion engine service |
US10287513B2 (en) | 2013-03-07 | 2019-05-14 | Gen Iii Oil Corporation | Method and apparatus for recovering synthetic oils from composite oil streams |
US10287514B2 (en) | 2013-03-07 | 2019-05-14 | Gen Iii Oil Corporation | Method and apparatus for recovering synthetic oils from composite oil streams |
CN105419861A (zh) * | 2015-12-31 | 2016-03-23 | 惠生(南京)清洁能源股份有限公司 | 一种mto工艺过程中重烃、重油及富氧水的分离装置 |
Also Published As
Publication number | Publication date |
---|---|
FR2287500A1 (fr) | 1976-05-07 |
CA1067439A (en) | 1979-12-04 |
IT1047283B (it) | 1980-09-10 |
AU8534975A (en) | 1977-04-07 |
GB1515020A (en) | 1978-06-21 |
FR2287500B1 (xx) | 1979-09-07 |
DE2545070A1 (de) | 1976-04-22 |
BE834188A (fr) | 1976-02-02 |
JPS5164508A (xx) | 1976-06-04 |
ZA756287B (en) | 1976-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3923644A (en) | Process and apparatus for re-refining used petroleum products | |
US3625881A (en) | Crank case oil refining | |
CA1076507A (en) | Rerefining of used motor oils | |
US3791965A (en) | Process for re-refining used petroleum products | |
CN1197794C (zh) | 一种含油污泥的处理方法 | |
US4941967A (en) | Process for re-refining spent lubeoils | |
US4360420A (en) | Distillation and solvent extraction process for rerefining used lubricating oil | |
US4381992A (en) | Reclaiming used lubricating oil | |
SA95160353B1 (ar) | طريقة ومحطة لتنقية الزيت المستهلك purifying | |
RU2356939C2 (ru) | Способ регенерации отработанных масел путем деметаллизации и дистилляции | |
US4342645A (en) | Method of rerefining used lubricating oil | |
RU96115921A (ru) | Способ повторной очистки масла без образования кислого гудрона | |
US4333822A (en) | Method of treating waste engine oils | |
US4406743A (en) | Fractionation column for reclaiming used lubricating oil | |
RU2161176C1 (ru) | Способ переработки отработанных нефтепродуктов и установка для его осуществления | |
US3666828A (en) | Condensate purification and recovery for use as dilution steam to pyrolysis furnace | |
US1891402A (en) | Method of treating oils | |
GB2099847A (en) | Reclaiming used lubricating oil | |
US2222475A (en) | Process for refining lubricating oil stocks | |
RU2720193C1 (ru) | Способ разделения побочных продуктов и отходов металлургической промышленности и устройство для его осуществления | |
US1592324A (en) | Treatment and refining of mineral oils | |
US2050772A (en) | Process of refining mineral oil | |
US1735546A (en) | Process for reclaiming lubricating oil | |
US1664977A (en) | Art of distilling lubricating oils | |
RU2805550C1 (ru) | Способ переработки отработанных технических жидкостей и масел |