US3904014A - Indicator system for on line printer - Google Patents

Indicator system for on line printer Download PDF

Info

Publication number
US3904014A
US3904014A US417318A US41731873A US3904014A US 3904014 A US3904014 A US 3904014A US 417318 A US417318 A US 417318A US 41731873 A US41731873 A US 41731873A US 3904014 A US3904014 A US 3904014A
Authority
US
United States
Prior art keywords
signal
condition
program variable
command
settable device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US417318A
Other languages
English (en)
Inventor
James L Lipo
Ralph W Mahoney
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sperry Corp
Original Assignee
Sperry Rand Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sperry Rand Corp filed Critical Sperry Rand Corp
Priority to US417318A priority Critical patent/US3904014A/en
Priority to DE2453481A priority patent/DE2453481C3/de
Priority to JP1974139390U priority patent/JPS5531640Y2/ja
Priority to FR7437910A priority patent/FR2251442B1/fr
Priority to IT29555/74A priority patent/IT1025793B/it
Priority to GB49931/74A priority patent/GB1488908A/en
Application granted granted Critical
Publication of US3904014A publication Critical patent/US3904014A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J11/00Devices or arrangements  of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form
    • B41J11/36Blanking or long feeds; Feeding to a particular line, e.g. by rotation of platen or feed roller
    • B41J11/42Controlling printing material conveyance for accurate alignment of the printing material with the printhead; Print registering

Definitions

  • ABSTRACT 1 1 pp 417,318 A forms alignment indicator mechanism is provided wherein a bi-stable device is set to a first condition by [52] CL 197/133 [97/186 8 a first predetermined command signal received from [5 I] IL 2 H [5/00 the print data source.
  • the bi-stable device conditions [58] new or Search u 197/133 R 186 R '86 A the indicator mechanism and it in turn is rendered Op 197/ 186 B 137 d rative upon eceipt of a second predetermined comi mand signal from the data source.
  • printers of the instant class utilized, as illustrated by US. Pat. Nos. 2,53l,885 and 2,983,356, a punched paper tape loop for vertical formatting the printing paper used with the printers.
  • the paper loop control was found to have certain disadvantages and as a result finally gave way to the use of a buffer memory control for vertical formatting.
  • US. Pat. Nos. 3,499,5l6 and 3,502,190 illustrate such a control system.
  • a vertical format buffer memory is substituted for the paper loop control.
  • the buffer memory has as many storage locations as there are print lines on the paper form. Thus there exists in the buffer memory a corresponding memory location for each print line on the paper forms to be fed through the printer.
  • a central data processing unit is connected to the printer and is utilized to direct the operation of the printer. It does so by means of a set of command signals which it, under control of its internal program, transmits to the printer. Included in the set of command signals are a Load Format Buffer command and a "Paper Advance command.
  • the former command acts to store a binary coded signal representation at each memory location in the vertical format buffer which corresponds to a print line stopping point on the print forms.
  • the second of these commands activates the printer paper feed mechanism. This command also contains a binary coded signal representation that identifies the desired stopping point for the paper.
  • the coded representations stored in the vertical format buffer are read out and compared with the coded stop representation contained in the Paper Advance command. When the two codes correspond, the desired stopping point for the paper motion is determined and paper motion is halted at this point.
  • Load Format Buffer command causes the addressing circuits of the vertical format buffer to return to an initial or a home position while the form itself may not be at its initial or home position. To correct this disparity it becomes necessary for the operator to physically align the forms.
  • a feature of the present invention is that the cabinet which contains the printer mechanism is equipped with an electrically driven hood or cover member which may be raised by a Raise Cover command from the central processor.
  • a Raise Cover command is received from the central processor, the cover motor is energized and the cover is automatically raised to expose the printer mechanism to the operator to permit operator intervention.
  • An indicator lamp perferably located on the control panel of the printer, is illuminated whenever the Load Format Buffer" command immediately precedes the Raise Cover command.
  • the indicator lamp being lit, will tell the operator why the cover was raised. Since operator intervention is required at other times which do not involve aligning the forms, a Raise Cover command by itself will not activate the lamp nor will a Load Format Buffer command by itself activate the lamp.
  • the logic of the lamp activation circuit requires the central processor program to issue first the Load Format Buffer command and the the Raise Cover command in that sequence and without any other intervening I/O commands.
  • FIG. 1 is a highly simplified block diagram of a prior art printer system in which the present invention may be incorporated.
  • FIG. 2 is a schematic diagram of the indicator circuit of the present invention.
  • FIG. 3 is a simple side elevational view of a typical printer cabinet for the printer mechanism of FIG. 1.
  • Block 13 represents a printer mechanism such as the band printer shown in the above US. Pat. No. 3,499,5 l 6. Included within the block 13 is, inter alia, a constantly moving print band, a set of print hammers and a paper guide and feed mechanism.
  • Block 10 represents a conventional internally programmed data processor which includes a suitable I/O channel 11 from which is obtained the usual printer commands and print data. Interfacing the [/0 channel 11 of the data processor 10 and the printer mechanism 13 is a conventional l/O control unit 12.
  • the control unit 12 typically comprises a data register 12a, a command register 12b, a command decoder 12c, and an operational control circuits section 12d.
  • An out bus 14 and a set of control lines represented at 15 interconnect the I/O channel 11 to the control unit 12.
  • the out bus 14 may, for example, comprise eight parallel lines over which both command and data signals are transmitted from the [/0 channel 11 to the control unit 12.
  • the eight parallel lines comprising the out bus 14 carry the eight binary bits of a binary coded signal byte.
  • the nature of the signal byte being transmitted over the out bus 14 is indicated by the activation of an appropriate one of the control lines represented at 15. For example, if the signal byte being transmitted over out bus 14 is a command signal, then a first control line 15 is activated so that the command byte will be stored in the command register 12b.
  • the signal byte being transmitted over out bus 14 is a data byte such as a character to be printed, or a forms stop code for storage in the vertical format buffer
  • a second one of the control lines 15 will be activated and the received byte will be stored in the data register 12a.
  • the operational control circuits 12d include such components as the vertical format bufier and its addressing circuits; the print line buffer and its addressing circuits; the universal code buffer and its addressing circuits; various control and printer status flip-flops; byte counters, and etc.
  • the command register 12b may be a conventional eight stage flip-flop register, the eight output lines 12e of which drive a conventional decoder 12c.
  • Decoder 126 has a plurality of output lines, represented at 12f, 12f and 12f", at least one of whi .11 is activated for each separate command stored in t t command register 12b.
  • decoder outpi. ine 12f is activated whenever a Raise Cover command is stored in the command register 12b.
  • decoder output line 12f is activated whenever a Load Format Buffer command is stored in register 12b.
  • FIG. 2 shows at 69 a cover motor and at 68 a suitable motor control circuit therefor.
  • the motor 69 is also shown in phantom form in FIG. 3.
  • the motor control circuit 68 has, for example, an up input and a down input.
  • the former input is coupled through an OR gate 65 to a "Raise Button 66 and also via line 57 to the Raise Cover output command line 12f from decoder 12c.
  • the down input of the motor control circuit 68 is connected to a manually operated Down Button" 67.
  • Pivotally attached to the nut members 71 and 72 as by pivots 71a and 7 2a are a pair of arm members 73 and 74 which are in turn coupled together by a pivot pin 78.
  • the pivot pin 78 engages an elongated track member 79 which is secured to the inside of the printer cover member 75.
  • the arms 73 and 74 move upwardly to cause the pivot pin 78 to push against the track 79 and force the cover 75 to pivot upwardly about its hinge 76 thereby exposing the printer mechanism 13 to the operator.
  • a limit stop (not shown) is engaged and the motor 69 de-energized.
  • Pushing the down button 67 activates motor control circuit 68 to cause motor 69 to rotate in the opposite direction. As it does so, lead screw 70 is turned in its opposite direction and nut members 71 and 72 move away from one another thereby closing the cover 75 on the cabinet 77.
  • the indicator circuit of this invention comprises a first flip-flop 54 and a second flip-flop 52.
  • the first flip-flop 54 has its set input terminal connected to the Load Format Buffer command line 12f" of decoder 126.
  • the set output of flip-flop 54 is connected as one input to an AND gate 53 the other input to which is derived from the Raise Cover command line 12f of decoder 12c.
  • the output of the AND gate 53 goes to the set input of flip-flop 52.
  • the set output of flip-flop 52 operates an indicator lamp 50 via a lamp driver circuit 51. From the stated connections it will be seen that when flip-flop 54 has been set by a Load Format Buffer command, gate 53 is conditioned by the set state of flip-flop 54.
  • one of the other output lines 12] of the decoder 120 will reset the flip-flop 54 via the OR gate 55. Resetting the flip-flop 54 deactivates gate 53 and hence prevents a subsequently received Raise Cover command from passing a signal through AND gate 53 to set flip-flop 52. Flip-flop 52 thus remains reset and the indicator lamp 50 is not illuminated.
  • the reason for requiring this sequence of commands to illuminate the indicator lamp 50 is that under certain conditions no alignment of forms is called for even though a new vertical format may be stored in the format buffer. Obviously if no forms alignment is necessary, then raising the cabinet cover is also unnecessary. Conversely, it may be necessary to raise the cabinet cover 75 to permit operator intervention for reasons other than aligning forms. In this case, it would be misleading to the operator to have the indicator lamp 50 lit.
  • the circuit of FIG. 2 contains a third flip-flop 61 which may be termed a Run" flip-flop.
  • This flipflop 61 has a manually operated Run Button" 63 connected to its set input and its reset input is connected through an OR gate 62 to a manual stop button 64 and to line 57 from the Raise Cover output command line 12] of the command decoder 12c.
  • the set output line 60 of this flip-flop 61 is connected, for example, to the control circuits 12d and/or printer mechanism 13 of FIG. 1. When flip-flop 61 is in its set-condition, its set output line 60 enables either or both the control circuits 12d and printer mechanism 13 by means not shown.
  • the printer mechanism 13 In the set condition of the flip-flop 61, the printer mechanism 13 is rendered operative, In the reset condition of flip-flop 61, however, the printer mechanism 13 is rendered inoperative and is said to be in a stop condition. Obviously, manual operation of button 64 or receipt of the Raise Cover command will place the printer mechanism 13 in its stop condition.
  • a single pulser 59 connects the output line 60 of flipflop 61 to the reset inputs of flip-flops S2 and 54. This connection to the latter flip-flop 54 is via the line 58 and the OR gate 55.
  • Thesingle pulser 59 responds to the activation of the output line 60, which occurs when the Run Button 63 has been pushed, to reset both flipflops 52 and 54. Resetting flip-flops 52 and 54 extinguishes the indicator lamp 50, while setting flip-flop 61 restores the printer mechanism 13 to an operative condition.
  • a printer system having, (a) a printer mechanism, (b) a program variable signal source which provides a plurality of different command signals to effect different operations of said printer mechanism at different times, and (c) a printer control section for effecting said different operations of said printer mechanism in response to different ones of said command signals received from said program variable signal source; the improvement which comprises: a first settable device capable of being set in first and second conditions and connected to said program variable signal source and including first condition signal output means to provide a first condition signal thereon in response to the receipt of a first predetermined command signal from said program variable signal source; a second settable device capable of being set in first and second conditions and including a second condition signal output means whereat a second condition signal is provided in response to said second settable device being placed in its second condition; coincidence signal means connected to said program variable signal source and to said first condition signal output means to provide an output signal in response to the receipt of a second predetermined command signal from said program variable signal source in combination with the presence of said first condition signal; circuitry means connecting the output of
  • a printer system having the following components: (a) printer mechanism, (b) a cabinet means enclosing said printer mechanism wherein said cabinet means includes a cover member and a cover raising electric motor means associated therewith, (c) a program variable signal source which provides a plurality of different command signals to effect different operations of said printer mechanism, and (d) a control section for effecting said different operations of said printer mechanism in response to different ones of said command signals received from said program variable signal source; the improvement which comprises: a first settable device connected to said program variable signal source and including a first condition signal output means, said first settable device capable of being set in first and second conditions and responsive to the receipt of a first predetermined command signal from said program variable signal source to provide a first condition signal on said first condition signal output means; a second settable device capable of being set in first and second conditions and including a second condition signal output means upon which there is provided a second condition signal when said second settable device is placed in its second condition; coincidence signal means connected to said program variable signal source and to said first condition

Landscapes

  • Accessory Devices And Overall Control Thereof (AREA)
  • Record Information Processing For Printing (AREA)
  • Handling Of Sheets (AREA)
US417318A 1973-11-19 1973-11-19 Indicator system for on line printer Expired - Lifetime US3904014A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US417318A US3904014A (en) 1973-11-19 1973-11-19 Indicator system for on line printer
DE2453481A DE2453481C3 (de) 1973-11-19 1974-11-12 Steuerschaltung für einen Schnelldrucker mit einer optischen Anzeige-Vorrichtung zur Überwachung der Arbeitsweise des Schnelldruckers
JP1974139390U JPS5531640Y2 (de) 1973-11-19 1974-11-18
FR7437910A FR2251442B1 (de) 1973-11-19 1974-11-18
IT29555/74A IT1025793B (it) 1973-11-19 1974-11-18 Sistema indicatore per una stampante in linea
GB49931/74A GB1488908A (en) 1973-11-19 1974-11-19 Computer line-printers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US417318A US3904014A (en) 1973-11-19 1973-11-19 Indicator system for on line printer

Publications (1)

Publication Number Publication Date
US3904014A true US3904014A (en) 1975-09-09

Family

ID=23653469

Family Applications (1)

Application Number Title Priority Date Filing Date
US417318A Expired - Lifetime US3904014A (en) 1973-11-19 1973-11-19 Indicator system for on line printer

Country Status (6)

Country Link
US (1) US3904014A (de)
JP (1) JPS5531640Y2 (de)
DE (1) DE2453481C3 (de)
FR (1) FR2251442B1 (de)
GB (1) GB1488908A (de)
IT (1) IT1025793B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4941109A (en) * 1985-04-24 1990-07-10 Kabushiki Kaisha Toshiba Method of effectively performing a feed operation and printing apparatus for realizing the method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6137951U (ja) * 1984-07-31 1986-03-10 ジェコー株式会社 プリンタ−

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1887165A (en) * 1929-05-07 1932-11-08 Royal Typewriter Co Inc Typewriter cabinet
US3308919A (en) * 1965-05-28 1967-03-14 Ibm Ventilated and soundproofed enclosure for printer
US3334722A (en) * 1964-05-15 1967-08-08 Bull General Electric Device for advancing paper webs in printing mechanisms
US3509817A (en) * 1968-11-21 1970-05-05 Mohawk Data Sciences Corp Line printing with proportional spacing and justification
US3524528A (en) * 1967-06-29 1970-08-18 Rca Corp Printer paper feed control system
US3601297A (en) * 1968-12-18 1971-08-24 Burroughs Corp Dual speed paper advance system with skip to format heading

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1887165A (en) * 1929-05-07 1932-11-08 Royal Typewriter Co Inc Typewriter cabinet
US3334722A (en) * 1964-05-15 1967-08-08 Bull General Electric Device for advancing paper webs in printing mechanisms
US3308919A (en) * 1965-05-28 1967-03-14 Ibm Ventilated and soundproofed enclosure for printer
US3524528A (en) * 1967-06-29 1970-08-18 Rca Corp Printer paper feed control system
US3509817A (en) * 1968-11-21 1970-05-05 Mohawk Data Sciences Corp Line printing with proportional spacing and justification
US3601297A (en) * 1968-12-18 1971-08-24 Burroughs Corp Dual speed paper advance system with skip to format heading

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4941109A (en) * 1985-04-24 1990-07-10 Kabushiki Kaisha Toshiba Method of effectively performing a feed operation and printing apparatus for realizing the method

Also Published As

Publication number Publication date
DE2453481C3 (de) 1979-11-29
FR2251442A1 (de) 1975-06-13
DE2453481B2 (de) 1979-04-05
IT1025793B (it) 1978-08-30
FR2251442B1 (de) 1976-10-22
DE2453481A1 (de) 1975-05-22
JPS5531640Y2 (de) 1980-07-28
JPS5115834U (de) 1976-02-05
GB1488908A (en) 1977-10-19

Similar Documents

Publication Publication Date Title
GB1108805A (en) Improvements in or relating to electronic data processing systems
US4156932A (en) Programmable communications controller
GB2195800A (en) Printer
JPS60203473A (ja) 印字装置
US3904014A (en) Indicator system for on line printer
JPS57157374A (en) Remote test controlling system
EP0067267A1 (de) Terminalcomputersystem zur Bearbeitung von Dokumenten und Verfahren zum Betreiben desselben
ES341265A1 (es) Un aparato de tratamiento de datos.
GB1098890A (en) Computer peripheral device control
US3034711A (en) Card reader
US3604906A (en) Verifier for signal controlled mechanism
US3115963A (en) Record material feeding mechanism
EP0387359A4 (en) Method and apparatus for remotely operating mdi
US3781813A (en) Machine log system
US3757920A (en) Electric typewriter with input-output arrangement
JPS6028018B2 (ja) 入出力制御方式
US2953203A (en) Perforating apparatus
JPS62158082A (ja) プリンタ装置
JPH0234371A (ja) プリンタ
KR880002982Y1 (ko) Fdc의 준비신호 강제 압력회로
JPS61134288A (ja) 電子プリンタ
KR890002304Y1 (ko) 라이프린터용 한글 조합장치
GB1106253A (en) Limit switch mechanism for hoists
JP2716552B2 (ja) プリンタ接続方法
JPS6213159Y2 (de)