US3900588A - Non-filming dual additive developer - Google Patents
Non-filming dual additive developer Download PDFInfo
- Publication number
- US3900588A US3900588A US445389A US44538974A US3900588A US 3900588 A US3900588 A US 3900588A US 445389 A US445389 A US 445389A US 44538974 A US44538974 A US 44538974A US 3900588 A US3900588 A US 3900588A
- Authority
- US
- United States
- Prior art keywords
- toner
- particles
- imaging
- image
- developer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000654 additive Substances 0.000 title claims abstract description 56
- 230000000996 additive effect Effects 0.000 title claims abstract description 44
- 230000009977 dual effect Effects 0.000 title description 4
- 239000000203 mixture Substances 0.000 claims abstract description 38
- 238000003384 imaging method Methods 0.000 claims abstract description 35
- 239000003082 abrasive agent Substances 0.000 claims abstract description 10
- 239000000463 material Substances 0.000 claims description 79
- 239000002245 particle Substances 0.000 claims description 69
- 238000000034 method Methods 0.000 claims description 42
- 238000004140 cleaning Methods 0.000 claims description 27
- 230000008569 process Effects 0.000 claims description 23
- 238000011161 development Methods 0.000 description 24
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 23
- 229920001577 copolymer Polymers 0.000 description 17
- -1 polyethylene terephthalate Polymers 0.000 description 14
- 229920005989 resin Polymers 0.000 description 14
- 239000011347 resin Substances 0.000 description 14
- 239000000843 powder Substances 0.000 description 13
- 108091008695 photoreceptors Proteins 0.000 description 12
- 238000012546 transfer Methods 0.000 description 10
- 239000000377 silicon dioxide Substances 0.000 description 9
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 7
- 239000003086 colorant Substances 0.000 description 7
- 229910052717 sulfur Inorganic materials 0.000 description 7
- 239000011593 sulfur Substances 0.000 description 7
- 230000002209 hydrophobic effect Effects 0.000 description 6
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 6
- 229920002554 vinyl polymer Polymers 0.000 description 6
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 5
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 5
- 239000000975 dye Substances 0.000 description 5
- 150000003961 organosilicon compounds Chemical class 0.000 description 5
- 229910052711 selenium Inorganic materials 0.000 description 5
- 239000011669 selenium Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 230000002411 adverse Effects 0.000 description 4
- 239000011324 bead Substances 0.000 description 4
- 239000012876 carrier material Substances 0.000 description 4
- UUAGAQFQZIEFAH-UHFFFAOYSA-N chlorotrifluoroethylene Chemical group FC(F)=C(F)Cl UUAGAQFQZIEFAH-UHFFFAOYSA-N 0.000 description 4
- 229920001519 homopolymer Polymers 0.000 description 4
- 125000000962 organic group Chemical group 0.000 description 4
- 239000000049 pigment Substances 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000002033 PVDF binder Substances 0.000 description 3
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000006229 carbon black Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 150000002430 hydrocarbons Chemical group 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229920000915 polyvinyl chloride Polymers 0.000 description 3
- 239000004800 polyvinyl chloride Substances 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 2
- SYBYTAAJFKOIEJ-UHFFFAOYSA-N 3-Methylbutan-2-one Chemical compound CC(C)C(C)=O SYBYTAAJFKOIEJ-UHFFFAOYSA-N 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229910002012 Aerosil® Inorganic materials 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- IJOOHPMOJXWVHK-UHFFFAOYSA-N chlorotrimethylsilane Chemical compound C[Si](C)(C)Cl IJOOHPMOJXWVHK-UHFFFAOYSA-N 0.000 description 2
- 239000008119 colloidal silica Substances 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- FJKIXWOMBXYWOQ-UHFFFAOYSA-N ethenoxyethane Chemical compound CCOC=C FJKIXWOMBXYWOQ-UHFFFAOYSA-N 0.000 description 2
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 229920002493 poly(chlorotrifluoroethylene) Polymers 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- 229920006122 polyamide resin Polymers 0.000 description 2
- 239000005023 polychlorotrifluoroethylene (PCTFE) polymer Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920013716 polyethylene resin Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920005990 polystyrene resin Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920002620 polyvinyl fluoride Polymers 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- OZCMOJQQLBXBKI-UHFFFAOYSA-N 1-ethenoxy-2-methylpropane Chemical compound CC(C)COC=C OZCMOJQQLBXBKI-UHFFFAOYSA-N 0.000 description 1
- IGGDKDTUCAWDAN-UHFFFAOYSA-N 1-vinylnaphthalene Chemical compound C1=CC=C2C(C=C)=CC=CC2=C1 IGGDKDTUCAWDAN-UHFFFAOYSA-N 0.000 description 1
- CFVWNXQPGQOHRJ-UHFFFAOYSA-N 2-methylpropyl prop-2-enoate Chemical compound CC(C)COC(=O)C=C CFVWNXQPGQOHRJ-UHFFFAOYSA-N 0.000 description 1
- ZPZDIFSPRVHGIF-UHFFFAOYSA-N 3-aminopropylsilicon Chemical compound NCCC[Si] ZPZDIFSPRVHGIF-UHFFFAOYSA-N 0.000 description 1
- SXONZCYCWKRIEM-UHFFFAOYSA-N 4-[2-(4-hydroxy-2-propan-2-yloxyphenyl)propan-2-yl]-3-propan-2-yloxyphenol Chemical compound CC(C)OC1=CC(O)=CC=C1C(C)(C)C1=CC=C(O)C=C1OC(C)C SXONZCYCWKRIEM-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 239000004709 Chlorinated polyethylene Substances 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- 229920006370 Kynar Polymers 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- IRERQBUNZFJFGC-UHFFFAOYSA-L azure blue Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[S-]S[S-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-] IRERQBUNZFJFGC-UHFFFAOYSA-L 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 125000004218 chloromethyl group Chemical group [H]C([H])(Cl)* 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- XCJYREBRNVKWGJ-UHFFFAOYSA-N copper(II) phthalocyanine Chemical compound [Cu+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 XCJYREBRNVKWGJ-UHFFFAOYSA-N 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- LIKFHECYJZWXFJ-UHFFFAOYSA-N dimethyldichlorosilane Chemical compound C[Si](C)(Cl)Cl LIKFHECYJZWXFJ-UHFFFAOYSA-N 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- UIWXSTHGICQLQT-UHFFFAOYSA-N ethenyl propanoate Chemical compound CCC(=O)OC=C UIWXSTHGICQLQT-UHFFFAOYSA-N 0.000 description 1
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical compound FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- PBZROIMXDZTJDF-UHFFFAOYSA-N hepta-1,6-dien-4-one Chemical compound C=CCC(=O)CC=C PBZROIMXDZTJDF-UHFFFAOYSA-N 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000006233 lamp black Substances 0.000 description 1
- PBOSTUDLECTMNL-UHFFFAOYSA-N lauryl acrylate Chemical compound CCCCCCCCCCCCOC(=O)C=C PBOSTUDLECTMNL-UHFFFAOYSA-N 0.000 description 1
- MOUPNEIJQCETIW-UHFFFAOYSA-N lead chromate Chemical compound [Pb+2].[O-][Cr]([O-])(=O)=O MOUPNEIJQCETIW-UHFFFAOYSA-N 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229940002712 malachite green oxalate Drugs 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000005055 methyl trichlorosilane Substances 0.000 description 1
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 1
- CXKWCBBOMKCUKX-UHFFFAOYSA-M methylene blue Chemical compound [Cl-].C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 CXKWCBBOMKCUKX-UHFFFAOYSA-M 0.000 description 1
- JLUFWMXJHAVVNN-UHFFFAOYSA-N methyltrichlorosilane Chemical compound C[Si](Cl)(Cl)Cl JLUFWMXJHAVVNN-UHFFFAOYSA-N 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000005673 monoalkenes Chemical class 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- HILCQVNWWOARMT-UHFFFAOYSA-N non-1-en-3-one Chemical compound CCCCCCC(=O)C=C HILCQVNWWOARMT-UHFFFAOYSA-N 0.000 description 1
- ANISOHQJBAQUQP-UHFFFAOYSA-N octyl prop-2-enoate Chemical compound CCCCCCCCOC(=O)C=C ANISOHQJBAQUQP-UHFFFAOYSA-N 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- UCUUFSAXZMGPGH-UHFFFAOYSA-N penta-1,4-dien-3-one Chemical class C=CC(=O)C=C UCUUFSAXZMGPGH-UHFFFAOYSA-N 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920003225 polyurethane elastomer Polymers 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000004172 quinoline yellow Substances 0.000 description 1
- 229940051201 quinoline yellow Drugs 0.000 description 1
- 235000012752 quinoline yellow Nutrition 0.000 description 1
- IZMJMCDDWKSTTK-UHFFFAOYSA-N quinoline yellow Chemical compound C1=CC=CC2=NC(C3C(C4=CC=CC=C4C3=O)=O)=CC=C21 IZMJMCDDWKSTTK-UHFFFAOYSA-N 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 125000005372 silanol group Chemical group 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 239000005051 trimethylchlorosilane Substances 0.000 description 1
- 235000013799 ultramarine blue Nutrition 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- KOZCZZVUFDCZGG-UHFFFAOYSA-N vinyl benzoate Chemical compound C=COC(=O)C1=CC=CC=C1 KOZCZZVUFDCZGG-UHFFFAOYSA-N 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- FUSUHKVFWTUUBE-UHFFFAOYSA-N vinyl methyl ketone Natural products CC(=O)C=C FUSUHKVFWTUUBE-UHFFFAOYSA-N 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- XOSXWYQMOYSSKB-LDKJGXKFSA-L water blue Chemical compound CC1=CC(/C(\C(C=C2)=CC=C2NC(C=C2)=CC=C2S([O-])(=O)=O)=C(\C=C2)/C=C/C\2=N\C(C=C2)=CC=C2S([O-])(=O)=O)=CC(S(O)(=O)=O)=C1N.[Na+].[Na+] XOSXWYQMOYSSKB-LDKJGXKFSA-L 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/087—Binders for toner particles
- G03G9/08702—Binders for toner particles comprising macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- G03G9/08713—Polyvinylhalogenides
- G03G9/08715—Polyvinylhalogenides containing chlorine, bromine or iodine
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/087—Binders for toner particles
- G03G9/08702—Binders for toner particles comprising macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- G03G9/08713—Polyvinylhalogenides
- G03G9/08715—Polyvinylhalogenides containing chlorine, bromine or iodine
- G03G9/08717—Polyvinylchloride
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/09—Colouring agents for toner particles
- G03G9/0906—Organic dyes
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/097—Plasticisers; Charge controlling agents
- G03G9/09708—Inorganic compounds
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/097—Plasticisers; Charge controlling agents
- G03G9/09708—Inorganic compounds
- G03G9/09725—Silicon-oxides; Silicates
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/10—Developers with toner particles characterised by carrier particles
Definitions
- the formation and development of images on the surface of photoconductive materials by electrostatic means is well known.
- the basic electrostatographic process as taught by C. F. Carlson in U.S. Pat. No. 2,297,691 involves placing a uniform electrostatic charge on a photoconductive insulating layer, exposing the layer to a light and shadow image to dissipate the charge on the areas of the layers exposed to the light and developing the resulting electrostatic latent image by depositing on the image a finely divided electroscopic material referred to in the art as toner.
- the toner will normally be attracted to those areas of the layer which retain a charge thereby forming a toner image corresponding to the electrostatic latent image.
- This powder image may then be transferred to a support surface such as paper.
- the transferred image may substantially be permanently affixed to the support surface as by heat.
- latent image formation by uniformly charging the photoconductive layer and then exposing the layer to a light and shadow image
- the powder image may be fixed to the photoconductive layer if the powder image transfer step is not desired.
- Other suitable fixing means such as solvent or overcoating treatment may be substituted for the foregoing heat fixing step.
- Another method for developing electrostatic images is the magnetic brush" process as disclosed, for example, in U.S. Pat. No. 2,874,063.
- a developer material containing toner particles and magnetically attractable carrier particles are carried by a magnet.
- the magnetic field of the magnet causes alignment of the magnetically attractable carrier particles into a brushlike configuration.
- This magnetic brush is engaged with the electrostatic image bearing surface and the toner particles are drawn from the brush to the latent image by electrostatic attraction.
- Still another technique for developing electrostatic latent images is the powder cloud process as disclosed, for example, by C. F. Carlson in U.S. Pat. No. 2,221,776.
- automatic electrostatographic imaging machines should operate with a minimum of maintenance, the developer employed in the machines should be capable of being recycled through many thousands of cycles.
- automatic xerographic equipment it is conventional to employ an electrostatographic plate which is charged, exposed and then developed by contact with a developer mixture.
- the toner image formed on the electrostatographic plate is transferred to a receiving surface and the electrostatographic plate is then cleaned for reuse. Transfer is effected by a corona generating device which imparts an electrostatic charge to attract the powder from the electrostatographic plate to the recording surface.
- the polarity of charge required to effect image transfer is dependent upon the visual form of the original copy relative to the reproduction and to the electroscopic characteristics of the developing material employed to effect development.
- a positive reproduction is to be made of the positive original, it is conventional to employ a positive corona to effect transfer of a negatively charged toner image to the recording surface.
- a positive reproduction from a negative original it is conventional to employ positively charged toner which is repelled by the charged areas on the plate to the discharged areas thereon to form a positive image which may be transferred by negative polarity corona. In either case, a residual powder image usually remains on the image after transfer.
- the plate may be reused for a subsequent cycle, it is necessary that the residual image be removed to prevent further charging and redevelopment of the same image.
- the residual powder is tightly retained on the plate surface by a phenomenon not fully understood which prevents complete transfer of the powder to the support surface, particularly in the image area. Incomplete transfer of toner particles is undesirable because image density of the ultimate copy is reduced and highly abrasive photoreceptor cleaning techniques are required to remove the residual toner from the photoreceptor surface.
- This imaging process is ordinarily repeated from each copy reproduced by the machine any time during the reusable life of the developer and the electrophotographic plate surface.
- a typical brush cleaning apparatus is disclosed by L. E. Walkup et al in U.S. Pat. No. 2,832,977.
- the brush type cleaning means usually comprises one or more rotating brushes, which remove residual powder from the plate into a stream of air which is exhausted through a filtering system.
- a typical web cleaning device is disclosed by W. E. Graff, Jr. et al. in U.S. Pat. No. 3,186,838.
- removal of the residual powder on the plate is effected by passing a web of fibrous materials over the plate surface.
- Another useful system for removing residual toner particles from the surface of a photoreceptor comprises a flexible cleaning blade which wipes, scrapes, or otherwise removes the residual toner from the photoreceptor surface as the surface moves past the blade.
- the foregoing cleaning systems do not, however, remove all types of toner particles from all types of reusable photoreceptors. This is not a shortcoming of the cleaning system by itself. If a particular toner would not tend to form an adherent residual film on a particular photoreceptor, the cleaning systems described would effectively remove all residual toner. However, many commerical toners of their very nature do tend to form a residual film on reusable photoreceptors and such films are undesirable because their presence adversely affects the quality of the undeveloped and developed images.
- the toner film problem is particularly acute in high speed copying and duplicating machines where contact between the developer and the imaging surface occurs a great many more times and at a higher velocity than in conventional electrostatographic systems. Ultimately, the toner buildup becomes so great that effective copying or duplicating is impaired.
- an electrostatographic developing composition comprising particles; said particles including (1) a finely divided electroscopic toner material; (2) a minor portion, based upon the weight of said toner material, of a stable, tough, substantially smear less, polymeric additive, and (3) a minor portion, based upon the weight of said toner material, of a finely divided nonsmearable abrasive material having a hardness greater than said polymeric additive and said toner material.
- the developer composition of the present invention comprises three constituents, a toner material and a dual additive comprising a substantially smearless polymeric material and a finely divided abrasive type material.
- a cyclic imaging and development process comprising forming an electrostatic latent image on an imaging surface and forming a developed image by contacting said imaging surface with an electrostatographic developing mixture comprising particles, said particles including l) finely divided electroscopic toner material, (2) a minor proportion based on the weight of said toner of a tough, stable, substantially smearless polymeric additive material, and 3) a minor proportion based on the weight of said toner material of a finely divided, nonsmearable, abrasive material of a hardness greater than said friction-reducing and toner materials; removing at least a portion of at least any residual developed image from said imaging surface by a force which causes the developer mixture to be wiped across at least a portion of said imaging surface; and repeating the process sequence at least one additional time.
- the toner material of the present invention may be any electroscopic toner material which preferably is pigmented or dyed.
- Typical toner materials include polystyrene resin, acrylic resin, polyethylene resin, polyvinyl chloride resin, polyacrylamide resin, methacrylate resin, polyethylene terephthalate resin, polyamide resin, and copolymers, polyblends, and mixtures thereof.
- Vinyl resins having a melting point or melting range starting at least about 1 10F are especially suitable for use in the toner of this invention. These vinyl resins may be a homopolymer or a copolymer of two or more vinyl monomers.
- Typical monomeric units which may be employed to form vinyl polymers include: styrene, vinyl naphthalene, mono-olefins, such as, ethylene, propylene, butylene, isobutylene and the like, vinyl esters, such as vinyl acetate, vinyl propionate, vinyl benzoate, vinyl butryrate and the like, esters of alphamethylene aliphatic monocarboxylic acids such as methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, dodecyl acrylate, n-octyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate and the like; vinyl others such as vinyl methyl ether, vinyl isobutyl ether, vinyl ethyl ether, and the like; vinyl ketones such as vinyl methyl ketone, vinyl hexyl ketone, methyl isopropyl
- Any suitable pigment or dye may be employed as the colorant for the toner particles.
- Toner colorants are well known and include, for example, carbon black, nigrosine dye, aniline blue, Calco Oil Blue, chrome yellow, ultramarine blue, duPont Oil Red, quinoline yellow, methylene blue chloride, phthalocyanine blue, Malachite Green Oxalate, lamp black, Rose Bengal and mixtures thereof.
- the pigment or dyes should be present in the toner in a sufficient quantity to render it highly colored so that it will form a clearly visible image on a recording member.
- the toner may comprise a black pigment such as carbon black or a black dye such as Arnaplast Black Dye available from the National Aniline Products, Incorporated.
- the pigment is employed in an amount of from about 1 percent to about 30 percent, by weight, based on the total weight of the colored toner. if the toner colorant employed is a dye, substantially smaller quantities of the colorant may be used.
- the additives may be introduced into the ultimate developer material in any suitable manner to form a physical mix of additive particles with developing material particles.
- the additive particles may be initially mixed with carrier particles or toner particles and thereafter introduced into the developer mix.
- the additives are physically mixed with toner or carrier particles, satisfactory results are achieved when about 0.11 to about percent additives based on the weight of the toner particles is employed. Greater cleaning efficiency at reduced cleaning pressures is achieved when the additives are present in an amount from about 0.1 percent to about 5 percent based on the weight of the toner in the final developer mixture.
- any suitable stable, tough, smearless, solid, polymeric additive having a Rockwell hardness (ASTM Test D/785) of at least about R-lO may be employed in the developer of this invention. Undesirable filming of the additive is inhibited by employment of tough additive particles having a Rockwell hardness of about R-lO. If desired, additive materials having a Rockwell hardness as high as about R-l may be utilized to form the developer of this invention. Generally, the additive particles have an average particle size less than about the particle size of the toner particles. An average particle size from about 0.05 to about 30 microns is preferred because more copies of higher quality images may be obtained.
- the additives of this invention may be of any suitable shape. Typical shapes include flake, cylindrical, spherical, granular and irregular paricles. Optimum results are obtained with additive particles having a spherical shape because more effective removal of residual toner particles at lower cleaning pressures is achieved, particularly with a blade cleaning system.
- polymeric additive materials more electronegative than sulfur are preferred because a greater number of higher quality images can be obtained on reusable photoreceptors with scraping devices such as doctor blades.
- Whether a material is more electronegative than sulfur may be determined by known techniques such as by determining the position of the additive material relative to sulfur in a triboelectric series.
- the materials in a triboelectric series are arranged in such a way that each material is charged with positive electricity when contacted with any material below it in the series and with negative electricity when contacted with any material above it in the series.
- any material which acquires a negative charge when contacted with sulfur may be considered more electronegative than sulfur and obviously would be below sulfur in the triboelectric series.
- Typical stable, solid, polymeric additive materials below sulfur in the triboelectric series include: polyvinylidene fluoride, polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinyl fluoride, polyvinylchloride, polyvinylidine chloride, polyethylene, polypropylene, chlorinated polyethylene, chlorinated polyether, copolymers of tetrafluoroethylene and chlorotrifluoroethylene, copolymers of tetrafluoroethylene and hexafluoropropylene, copolymers of tetrafluoroethylene and vinylidine fluoride, copolymers of chlorotrifluoroethylene and vinylidine fluoride, copolymers of vinyl chloride and vinyl fluoride, copolymers of vinyl chloride and polyethylene, copolymers of vinyl chloride and polypropylene and mixtures of any of the above homopolymers or copolymers. Homopolymers or copolymers of fluoro-
- the combination of the resin component, colorant, polyr'rieric additive and abrasive additive, whether the resin component is a homopolymer, copolymer or blend, should have a blocking temperature of at least about '1 10F.
- the toner is characterized by a blocking temperature less than about 1 10F. the toner particles tend to agglomerate during storage and machine operation and also from undesirable films on the surface of reusable photoreceptors which adversely affect image quality.
- the toner compositions of the present invention may be prepared by any well-known toner mixing and comminution technique.
- the ingredients may be thoroughly mixed by blending, mixing and milling the components and thereafter micropulverizing the resulting mixture.
- Another well-known technique for forming toner particles is to spray-dry a ball-milled toner composition comprising a colorant, a resin and a solvent.
- the toner mixtures of this invention are to be employed in a cascade development process, the toner should have an average particle size by weight percent less than about 30 microns and preferably between about 4 and about 20 microns for optimum results.
- the additives of this invention are selected from materials having a lower critical surface tension than the critical surface tension of the toner employed therewith. Normally, a difference in critical tension value of at least about 2 dynes per centimeter between the toner and the additive is preferred for optimum cleaning and image quality. Good results are obtained with developer material comprising colored toner particles having a critical surface tension value greater than about 24 dynes per centimeter in combination with additives having a critical surface tension value less than about 33 dynes per centimeter.
- Typical polymeric materials having a critical surface tension value less than about 33 dynes per centimeter include: polyvinylidine fluoride, polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinyl fluoride, copolymers of tetrafluoroethylene and chlorotrifluoroethylene, copolymers of tetrafluoroethylene and hexafluoropropylene, copolymers of chlorotrifluoroethylene and vinylidene fluoride, and mixtures thereof.
- Excellent results are obtained with polyvinylidine fluoride. Developers containing polyvinylidine fluoride additives form the greatest number of dense background free images on reusable imaging surfaces.
- a number of pigmented or dyed electroscopic toner material having a critical surface tension value greater than about 24 dynes per centimeter are described in the patent literature.
- Typical toner materials having a critical surface tension value greater than about 24 dynes per centimeter include polystyrene resin, acrylic resin, polyethylene resin, polyvinyl chloride resin, polyacrylamide resin, methacrylate resin, polyethylene terephthalate resin, polyamide resin, polyamide epichlorohydrin resin, resinous condensation product of 2,2 bis (4-hydroxy-isopropoxy-phenyl) propane and fumaric acid, and copolymers, polyblends and mixtures thereof.
- the critical surface tension values employed herein are based on measurements made between about 20C and about 25C.
- Contemplated abrasive materials include colloidal silica, surface modified organophilic silica, aluminum silicate, surface treated aluminum silicate, titanium dioxide, alumina, calcium carbonate, antimony trioxide, barium titanate, calcium titanate or strontium titanate, CaSiO MgO, ZnO, ZrO etc. and mixtures thereof.
- hydrophobic silicas are prepared by reacting freshly prepared colloidal silica with at least one organosilicon compound having hydrocarbon groups as well as hydrolyzable groups attached to its silicon atom.
- the reactants and steam are pneumatically introduced in parallel flow into a fluidized bed reactor heated to about 400C.
- the organosilicon compound reacts with silanol groups on the surface of the SiO particles and chemical attachment between the silicon atom in the organosilicon compound and the silicon atom in the SiO occurs through an oxygen atom.
- Any suitable hydrocarbon or substituted hydrocarbon organic group directly attached to a silicon atom in the organosilicon compound may be employed in preparing the modified silica.
- the organic group is-preferably one which imparts hydrophobic characteristics to the abrasive material to improve the stability of developer materials under varying humidity conditions.
- the organic groups may comprise saturated or unsaturated hydrocarbon groups or derivatives thereof. Saturated organic groups include methyl, ethyl, propyl, butyl, chloropropyl and chloromethyl groups. Examples of typical organosilicon compounds include: dimethyl dichlorosilane, trimethyl chlorosilane, methyl trichlorosilane, vinyl triethoxy silane.
- the type of organo groups can influence the triboelectric characteristics of the developer. For example, aminopropylsilane treated with silica can be used in a reversal type developer.
- the particle size of the abrasive additive should a fall within the submicron range of from about 1 to about 500 millimicrons and preferably, between about 10 to about 100 millimicrons.
- this material must be harder than both the toner material and the polymeric additive material. While most of the materials disclosed can be considered to be very hard materials falling within Mohs hardness scale, it is to be understood that any material of less hardness than talc of Mohs hardness scale can also be employed so long as it is harder than the toner material and polymeric additive material. Materials softer than talc are conveniently classified according to the Shore durometer penetration technique and placed within either scale A, B, C and D of this test procedure.
- the chemical composition of the abrasive additive is not critical so long as it does not introduce deleterious contaminents or adversely affect the imaging and development aspects of an electrostatographic system.
- Preferred materials are Aerosil R972, a hydrophobic silica available from DeGussa Incorporated, New York, New York and Kaophile-Z, a hydrophobic aluminum silicate, available from Georgia Kaolin Company Elizabeth, New Jersey.
- composition of the present invention finds utility in all known electrostatographic development systems. This includes systems which employ a carrier material such as magnetic brush development and cascade development as well as systems which do not necessarily employ a carrier material such as powder cloud development, fiber brush development and touchdown development.
- Suitable coated and uncoated carrier materials and consumable carrier materials which are known, are useful with this invention.
- the polymeric additive material should be present in an amount of about 0.1 percent to about 10 percent by weight based upon the toner.
- a particularly preferred ratio is from about 0.1 percent to about 5 percent by weight of polymeric additive material based on the weight of toner.
- abrasive material based on the weight of the toner material will achieve the desired results.
- a particularly preferred range is from about 0.1 to about 1 percent by weight.
- the toner compositions of the instant invention may be employed to develop electrostatic latent images on any suitable electrostatic latent image bearing surface including conventional photoconductive surfaces.
- Well known photoconductive materials include: vitreous selenium, organic or inorganic photoconductors embedded in a nonphotoconductive matrix, organic or inorganic photoconductors embedded in a photoconductive matrix or the like.
- Representative patents in which photoconductive materials are disclosed include: U.S. Pat. No. 2,803,542 to Ullrich, U.S. Pat. No. 2,970,906 to Bixby, U.S. Pat. No. 3,121,006 to Middleton, U.S. Pat. No. 3,121,007 to Middleton and U.S. Pat. No. 3,151,982 to Corrsin.
- the toner material must have l a positive triboelectric relationship with respect to the silica and (2) the silica coated toner must be repelled from negatively charged areas of an imaging surface.
- the onlypositively stated pur pose or utility for the silica is to reduce tackiness and improve the free flowing characteristics of the developer powder.
- the vitreous selenium drum of an automatic copying machine is corona charged to a positive voltage of about 800 volts and exposed to a light-and-shadow image to form an electrostatic latent image.
- the selenium drum is then rotated through a cascade development station.
- a control developer comprising 1 part toner having a critical surface tension value of about 30 dynes per centimeter and containing a styrene-butyl methacrylate copolymer and about 10 percent by weight carbon black is prepared by the method disclosed in Example 1 of U.S. Pat. No. 3,079,342 and about 100 parts steel core carrier beads prepared by the proccss disclosed in U.S. Pat. No. 2,618,551 is employed in the developer station.
- the toner particles have an average particle size of about 10 microns and the carrier beads have an average particle size of about 450 microns.
- the resulting toner image is transferred to a sheet of paper at a transfer station.
- the residual toner particles remaining on the selenium drum after passage through the transfer station is removed by means of a cleaning blade comprising a rectangular strip of about 3/32 inch thick polyurethane elastomer having an edge spring biased against the photoreceptor surface.
- the trailing face of the cleaning blade is positioned to form an acute angle of about 22 with the line of tangency extending through the line of blade contact. Sufficient pressureis applied to the blade to obtain maximum removal of the toner particles from the drum surface.
- the drum surface is rotated at a surface speed of about 10 inches per second past the cleaning blade and 500 copies are made. After only a few copies are made, the copies and drum surface are examined for quality and condition, respectively, The copies made at the start and near the termination of the test are characterized by high background, streak marks, and irregular image density. Large portions of the drum are covered by a continuous toner film and occasional streaks and scratch marks. The electrical properties of the drum are measured and found to be erratic along the surface due to the toner deposits and scratches.
- Example II The procedure of Example I is repeated under substantially the same conditions except that about 1 part of polyvinylidene fluoride particles and 0.25 part of hydrophobic silica are added to about 100 parts toner particles.
- the polyvinylidene fluoride (Kynar 201- Pennwalt Chemical Corporation) particles have a spherical shape, a particle size range from about 0.3 micron to about 0.4 micron, Shore D hardness (ASTM Test D676) of about -80 (Rockwell hardness 95).
- the silica is Aerosil R972.
- a fresh vitreous selenium drum is also substituted for the drum employed in Example 1. After about 5,000 cycles, the copies, the drum surface, and the carrier particles are examined for quality and conditions, respectively.
- the copies formed throughout the test are characterized by high density print quality and substantially no background toner deposits.
- the electrical properties of the drum are measured and are found to exhibit substantially the same responses before and after the test.
- the drum surface shows no signs of toner-filming, streaks, or scratches.
- the carrier triboelectric properties are xerographically enhanced over a saxnple without silica.
- developer material as em oyed herein is intended to include electroscopic tone? .naterial or combinations of toner material and carrii .r material.
- An imaging process comprising the steps of:
- said latent image by bringing an electrostatographic developing mixture within the influence of said latent image, said developing mixture comprising particles, said particles including (l) finely divided electroscopic toner material, (2) a minor portion, based upon the weight of said toner material of a stable, tough, substantially smearless, polymeric additive having an average particle size less than about the average particle size of said finely divided toner material, and (3) a minor proportion based on the weight of said toner material of a finely divided, nonsmearable, abrasive material of a hardness greater than said polymeric additive and toner materials;
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Inorganic Chemistry (AREA)
- Developing Agents For Electrophotography (AREA)
Priority Applications (15)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US445389A US3900588A (en) | 1974-02-25 | 1974-02-25 | Non-filming dual additive developer |
CA217,164A CA1054838A (en) | 1974-02-25 | 1974-12-31 | Non-filming dual additive developer |
DE2502659A DE2502659C3 (de) | 1974-02-25 | 1975-01-23 | Elektrostatographischer Entwickler |
NLAANVRAGE7500938,A NL179946C (nl) | 1974-02-25 | 1975-01-27 | Werkwijze voor het bereiden van een electrofotografisch ontwikkelmengsel alsmede electrofotografische beeldvormingswerkwijze. |
US05/544,095 US4051077A (en) | 1974-02-25 | 1975-01-27 | Non-filming dual additive developer |
BR546/75A BR7500546A (pt) | 1974-02-25 | 1975-01-28 | Composicao de revelacao eletrostatografica e processo de formacao de imagem |
GB5116/75A GB1494360A (en) | 1974-02-25 | 1975-02-06 | Electrostatographic developer |
AU78312/75A AU487989B2 (en) | 1974-02-25 | 1975-02-18 | An electrostatographic developer |
SE7501782A SE401567B (sv) | 1974-02-25 | 1975-02-18 | Elektrostatografisk framkallare |
JP50020300A JPS50120631A (enrdf_load_html_response) | 1974-02-25 | 1975-02-18 | |
FR7505307A FR2262336B1 (enrdf_load_html_response) | 1974-02-25 | 1975-02-20 | |
IT20528/75A IT1031952B (it) | 1974-02-25 | 1975-02-21 | Composizione per lo sviluppo di immagini elettrostatografiche latenti |
SU752107234A SU649335A3 (ru) | 1974-02-25 | 1975-02-24 | Электростатографический про витель |
BE153685A BE825924A (fr) | 1974-02-25 | 1975-02-25 | Composition de developpement a double additif, ne formant pas de film |
ES435074A ES435074A1 (es) | 1974-02-25 | 1975-02-25 | Un metodo para producir una copia de un documento original. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US445389A US3900588A (en) | 1974-02-25 | 1974-02-25 | Non-filming dual additive developer |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US05/544,095 Division US4051077A (en) | 1974-02-25 | 1975-01-27 | Non-filming dual additive developer |
Publications (1)
Publication Number | Publication Date |
---|---|
US3900588A true US3900588A (en) | 1975-08-19 |
Family
ID=23768711
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US445389A Expired - Lifetime US3900588A (en) | 1974-02-25 | 1974-02-25 | Non-filming dual additive developer |
Country Status (13)
Cited By (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3977871A (en) * | 1975-08-15 | 1976-08-31 | International Business Machines Corporation | Electrophotographic developer with fibers of polytetrafluoroethylene |
US4164476A (en) * | 1976-06-09 | 1979-08-14 | Konishiroku Photo Industry Co. Ltd. | Developer for latent electrostatic image and process for preparation thereof |
US4245022A (en) * | 1975-10-13 | 1981-01-13 | Fuji Xerox Co., Ltd. | Dry electrophotographic developers |
US4256818A (en) * | 1979-11-05 | 1981-03-17 | Xerox Corporation | Magnetic or electrostatographic imaging and high speed fusing method uses polyamide resin in toner |
US4272600A (en) * | 1980-01-07 | 1981-06-09 | Xerox Corporation | Magnetic toners containing cubical magnetite |
US4345014A (en) * | 1979-10-24 | 1982-08-17 | Minolta Camera Kabushiki Kaisha | Magnetic brush developing method for use in electrography employing dual-component developing material |
US4468445A (en) * | 1983-01-31 | 1984-08-28 | Kelly Paul P | Electrophotographic mixture containing toner particles and coated carrier particles |
US4623605A (en) * | 1983-12-26 | 1986-11-18 | Minolta Camera Kabushiki Kaisha | Dry developer for developing electrostatic latent images contains silica and titanium dioxide |
US4647522A (en) * | 1985-01-14 | 1987-03-03 | Xerox Corporation | Toner compositions containing certain cleaning additives |
EP0198363A3 (en) * | 1985-04-05 | 1988-06-01 | Mitsubishi Kasei Corporation | Amorphous silicon photoreceptors for electrophotography, process for the preparation and/or regeneration thereof, and method for the electrophotography using such materials |
US4788123A (en) * | 1987-06-08 | 1988-11-29 | Xerox Corporation | Process for minimizing image de-enhancement in flash fusing systems |
EP0335676A3 (en) * | 1988-03-30 | 1990-04-25 | Canon Kabushiki Kaisha | Developer for developing electrostatic image and image forming method |
EP0431737A1 (en) * | 1989-10-16 | 1991-06-12 | Mita Industrial Co., Ltd. | A toner composition and image forming method using the same |
US5064715A (en) * | 1986-11-12 | 1991-11-12 | Minnesota Mining And Manufacturing Company | Dielectric coating for recording member containing hydrophobic silica |
US5162856A (en) * | 1990-04-19 | 1992-11-10 | Kabushiki Kaisha Toshiba | Abrasive, polishing and friction-reducing agent and means for applying the agent on an image carrier of an image forming apparatus |
US5308732A (en) * | 1991-08-01 | 1994-05-03 | Xerox Corporation | Magnetic brush cleaning processes |
US5482805A (en) * | 1994-10-31 | 1996-01-09 | Xerox Corporation | Magnetic toner compositions with aluminum oxide, strontium titanate and polyvinylidene fluoride |
US5486443A (en) * | 1994-10-31 | 1996-01-23 | Xerox Corporation | Magnetic toner compositions with silica, strontium titanate and polyvinylidene fluoride |
US5489497A (en) * | 1994-09-01 | 1996-02-06 | Xerox Corporation | Magnetic toner compositions with surface additives |
US5504559A (en) * | 1993-08-30 | 1996-04-02 | Minolta Co., Ltd. | Method for image formation |
US5622806A (en) * | 1995-12-21 | 1997-04-22 | Xerox Corporation | Toner aggregation processes |
US5670289A (en) * | 1995-05-26 | 1997-09-23 | Xerox Corporation | Method of using scavengeless developer compositions |
US5691097A (en) * | 1996-11-01 | 1997-11-25 | Xerox Corporation | Toner compositions |
US5716752A (en) * | 1997-04-17 | 1998-02-10 | Xerox Corporation | Method of making toner compositions |
US5763132A (en) * | 1997-04-17 | 1998-06-09 | Xerox Corporation | Toner compositions |
US5916722A (en) * | 1998-02-05 | 1999-06-29 | Xerox Corporation | Toner compositions |
US5948583A (en) * | 1998-04-13 | 1999-09-07 | Xerox Corp | Toner composition and processes thereof |
US6004714A (en) * | 1998-08-11 | 1999-12-21 | Xerox Corporation | Toner compositions |
US6017668A (en) * | 1999-05-26 | 2000-01-25 | Xerox Corporation | Toner compositions |
US6087059A (en) * | 1999-06-28 | 2000-07-11 | Xerox Corporation | Toner and developer compositions |
US6103440A (en) * | 1998-05-04 | 2000-08-15 | Xerox Corporation | Toner composition and processes thereof |
USH1889H (en) * | 1999-10-12 | 2000-10-03 | Xerox Corporation | Toner compositions |
US6190814B1 (en) * | 1994-04-28 | 2001-02-20 | Xerox Corporation | Modified silica particles |
US6190815B1 (en) | 1998-08-11 | 2001-02-20 | Xerox Corporation | Toner compositions |
US6203963B1 (en) | 2000-03-15 | 2001-03-20 | Xerox Corporation | Particulate surface treatment process |
US6203960B1 (en) | 2000-08-22 | 2001-03-20 | Xerox Corporation | Toner compositions |
US6214507B1 (en) | 1998-08-11 | 2001-04-10 | Xerox Corporation | Toner compositions |
US6420078B1 (en) | 2000-12-28 | 2002-07-16 | Xerox Corporation | Toner compositions with surface additives |
US6566025B1 (en) | 2002-01-16 | 2003-05-20 | Xerox Corporation | Polymeric particles as external toner additives |
US20040157148A1 (en) * | 2002-11-12 | 2004-08-12 | Toyo Ink Manufacturing Co., Ltd & Fujimi Incorporated | Electrostatic image developer and image-forming process |
US20060257767A1 (en) * | 2005-05-11 | 2006-11-16 | Xerox Corporation | Imaging member |
US20060263708A1 (en) * | 2005-05-20 | 2006-11-23 | Xerox Corporation | Imaging member |
US20070015072A1 (en) * | 2005-07-12 | 2007-01-18 | Xerox Corporation | Imaging members |
US20070020539A1 (en) * | 2005-07-19 | 2007-01-25 | Xerox Corporation | Imaging member |
US20070020540A1 (en) * | 2005-07-19 | 2007-01-25 | Xerox Corporation | Silane-phenol compound, overcoat formulation, and electrophotographic imaging member |
US8435474B2 (en) | 2006-09-15 | 2013-05-07 | Cabot Corporation | Surface-treated metal oxide particles |
US8455165B2 (en) * | 2006-09-15 | 2013-06-04 | Cabot Corporation | Cyclic-treated metal oxide |
US20150024317A1 (en) * | 2013-07-17 | 2015-01-22 | Stratasys, Inc. | High-Performance Consumable Materials for Electrophotography-Based Additive Manufacturing |
US10407571B2 (en) | 2006-09-15 | 2019-09-10 | Cabot Corporation | Hydrophobic-treated metal oxide |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53128339A (en) * | 1977-04-15 | 1978-11-09 | Canon Inc | Toner for electric latent image |
FR2436423A1 (fr) * | 1978-09-12 | 1980-04-11 | Cii Honeywell Bull | Poudre pour le developpement d'images latentes et son procede de fabrication |
JPS55157755A (en) * | 1979-05-28 | 1980-12-08 | Canon Inc | Developing method |
FR2478839B1 (fr) * | 1980-03-20 | 1987-07-17 | Bull Sa | Poudre pour le developpement d'images latentes et son procede de fabrication |
JPS58132757A (ja) * | 1982-02-03 | 1983-08-08 | Konishiroku Photo Ind Co Ltd | 静電荷像現像剤及び画像形成方法 |
JPS58205160A (ja) * | 1982-05-25 | 1983-11-30 | Konishiroku Photo Ind Co Ltd | 静電荷像現像剤及び画像形成方法 |
US4626487A (en) * | 1983-08-03 | 1986-12-02 | Canon Kabushiki Kaisha | Particulate developer containing inorganic scraper particles and image forming method using the same |
GB2170610B (en) * | 1985-01-08 | 1989-02-15 | Canon Kk | Developer for developing electrostatic latent images |
US5335517A (en) * | 1993-07-23 | 1994-08-09 | James L. Throneburg | Anatomical isotonic sock and method of knitting the same |
TW249196B (enrdf_load_html_response) * | 1993-07-23 | 1995-06-11 | James L Throneburg | |
US7472495B2 (en) | 2006-02-08 | 2009-01-06 | Jack Milbourn | Postural corrective ankle stabilizing insole |
JP5773664B2 (ja) * | 2011-01-27 | 2015-09-02 | キヤノン株式会社 | 画像形成方法及び画像形成装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2919247A (en) * | 1954-12-23 | 1959-12-29 | Haloid Xerox Inc | Tripartite developer for electrostatic images |
US3041169A (en) * | 1958-03-28 | 1962-06-26 | Rca Corp | Reversal type electrostatic developer powder |
US3650797A (en) * | 1960-07-27 | 1972-03-21 | Kalle Ag | Developing electrostatic latent images with a mixture of positive and negative toners |
US3720617A (en) * | 1970-05-20 | 1973-03-13 | Xerox Corp | An electrostatic developer containing modified silicon dioxide particles |
US3743682A (en) * | 1970-02-02 | 1973-07-03 | Ibm | An electrophotographic developer composition containing boron nitride |
US3781207A (en) * | 1968-12-18 | 1973-12-25 | Continental Can Co | Developer mixture for electrostatic printing |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE789988A (fr) * | 1971-10-12 | 1973-04-12 | Xerox Corp | Composition de revelateur et procede pour son emploi |
-
1974
- 1974-02-25 US US445389A patent/US3900588A/en not_active Expired - Lifetime
- 1974-12-31 CA CA217,164A patent/CA1054838A/en not_active Expired
-
1975
- 1975-01-23 DE DE2502659A patent/DE2502659C3/de not_active Expired
- 1975-01-27 NL NLAANVRAGE7500938,A patent/NL179946C/xx not_active IP Right Cessation
- 1975-01-28 BR BR546/75A patent/BR7500546A/pt unknown
- 1975-02-06 GB GB5116/75A patent/GB1494360A/en not_active Expired
- 1975-02-18 SE SE7501782A patent/SE401567B/xx not_active IP Right Cessation
- 1975-02-18 JP JP50020300A patent/JPS50120631A/ja active Pending
- 1975-02-20 FR FR7505307A patent/FR2262336B1/fr not_active Expired
- 1975-02-21 IT IT20528/75A patent/IT1031952B/it active
- 1975-02-24 SU SU752107234A patent/SU649335A3/ru active
- 1975-02-25 ES ES435074A patent/ES435074A1/es not_active Expired
- 1975-02-25 BE BE153685A patent/BE825924A/xx not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2919247A (en) * | 1954-12-23 | 1959-12-29 | Haloid Xerox Inc | Tripartite developer for electrostatic images |
US3041169A (en) * | 1958-03-28 | 1962-06-26 | Rca Corp | Reversal type electrostatic developer powder |
US3650797A (en) * | 1960-07-27 | 1972-03-21 | Kalle Ag | Developing electrostatic latent images with a mixture of positive and negative toners |
US3781207A (en) * | 1968-12-18 | 1973-12-25 | Continental Can Co | Developer mixture for electrostatic printing |
US3743682A (en) * | 1970-02-02 | 1973-07-03 | Ibm | An electrophotographic developer composition containing boron nitride |
US3720617A (en) * | 1970-05-20 | 1973-03-13 | Xerox Corp | An electrostatic developer containing modified silicon dioxide particles |
Cited By (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3977871A (en) * | 1975-08-15 | 1976-08-31 | International Business Machines Corporation | Electrophotographic developer with fibers of polytetrafluoroethylene |
US4245022A (en) * | 1975-10-13 | 1981-01-13 | Fuji Xerox Co., Ltd. | Dry electrophotographic developers |
US4164476A (en) * | 1976-06-09 | 1979-08-14 | Konishiroku Photo Industry Co. Ltd. | Developer for latent electrostatic image and process for preparation thereof |
US4345014A (en) * | 1979-10-24 | 1982-08-17 | Minolta Camera Kabushiki Kaisha | Magnetic brush developing method for use in electrography employing dual-component developing material |
US4256818A (en) * | 1979-11-05 | 1981-03-17 | Xerox Corporation | Magnetic or electrostatographic imaging and high speed fusing method uses polyamide resin in toner |
US4272600A (en) * | 1980-01-07 | 1981-06-09 | Xerox Corporation | Magnetic toners containing cubical magnetite |
US4468445A (en) * | 1983-01-31 | 1984-08-28 | Kelly Paul P | Electrophotographic mixture containing toner particles and coated carrier particles |
US4623605A (en) * | 1983-12-26 | 1986-11-18 | Minolta Camera Kabushiki Kaisha | Dry developer for developing electrostatic latent images contains silica and titanium dioxide |
US4647522A (en) * | 1985-01-14 | 1987-03-03 | Xerox Corporation | Toner compositions containing certain cleaning additives |
EP0198363A3 (en) * | 1985-04-05 | 1988-06-01 | Mitsubishi Kasei Corporation | Amorphous silicon photoreceptors for electrophotography, process for the preparation and/or regeneration thereof, and method for the electrophotography using such materials |
US5064715A (en) * | 1986-11-12 | 1991-11-12 | Minnesota Mining And Manufacturing Company | Dielectric coating for recording member containing hydrophobic silica |
US4788123A (en) * | 1987-06-08 | 1988-11-29 | Xerox Corporation | Process for minimizing image de-enhancement in flash fusing systems |
EP0335676A3 (en) * | 1988-03-30 | 1990-04-25 | Canon Kabushiki Kaisha | Developer for developing electrostatic image and image forming method |
US5141833A (en) * | 1988-03-30 | 1992-08-25 | Canon Kabushiki Kaisha | One component developer for developing electrostatic image and image forming method |
US5041351A (en) * | 1988-03-30 | 1991-08-20 | Canon Kabushiki Kaisha | One component developer for developing electrostatic image and image forming method |
US5143811A (en) * | 1989-10-16 | 1992-09-01 | Mita Industrial Co., Ltd. | Toner composition for developing an electrostatic latent image and an image-forming method using the same |
EP0431737A1 (en) * | 1989-10-16 | 1991-06-12 | Mita Industrial Co., Ltd. | A toner composition and image forming method using the same |
US5162856A (en) * | 1990-04-19 | 1992-11-10 | Kabushiki Kaisha Toshiba | Abrasive, polishing and friction-reducing agent and means for applying the agent on an image carrier of an image forming apparatus |
US5308732A (en) * | 1991-08-01 | 1994-05-03 | Xerox Corporation | Magnetic brush cleaning processes |
US5504559A (en) * | 1993-08-30 | 1996-04-02 | Minolta Co., Ltd. | Method for image formation |
US6190814B1 (en) * | 1994-04-28 | 2001-02-20 | Xerox Corporation | Modified silica particles |
US5489497A (en) * | 1994-09-01 | 1996-02-06 | Xerox Corporation | Magnetic toner compositions with surface additives |
US5482805A (en) * | 1994-10-31 | 1996-01-09 | Xerox Corporation | Magnetic toner compositions with aluminum oxide, strontium titanate and polyvinylidene fluoride |
US5486443A (en) * | 1994-10-31 | 1996-01-23 | Xerox Corporation | Magnetic toner compositions with silica, strontium titanate and polyvinylidene fluoride |
US5670289A (en) * | 1995-05-26 | 1997-09-23 | Xerox Corporation | Method of using scavengeless developer compositions |
US5622806A (en) * | 1995-12-21 | 1997-04-22 | Xerox Corporation | Toner aggregation processes |
US5691097A (en) * | 1996-11-01 | 1997-11-25 | Xerox Corporation | Toner compositions |
US5716752A (en) * | 1997-04-17 | 1998-02-10 | Xerox Corporation | Method of making toner compositions |
US5763132A (en) * | 1997-04-17 | 1998-06-09 | Xerox Corporation | Toner compositions |
US5916722A (en) * | 1998-02-05 | 1999-06-29 | Xerox Corporation | Toner compositions |
US5948583A (en) * | 1998-04-13 | 1999-09-07 | Xerox Corp | Toner composition and processes thereof |
US6103440A (en) * | 1998-05-04 | 2000-08-15 | Xerox Corporation | Toner composition and processes thereof |
US6004714A (en) * | 1998-08-11 | 1999-12-21 | Xerox Corporation | Toner compositions |
US6190815B1 (en) | 1998-08-11 | 2001-02-20 | Xerox Corporation | Toner compositions |
US6214507B1 (en) | 1998-08-11 | 2001-04-10 | Xerox Corporation | Toner compositions |
US6379856B2 (en) | 1998-08-11 | 2002-04-30 | Xerox Corporation | Toner compositions |
US6017668A (en) * | 1999-05-26 | 2000-01-25 | Xerox Corporation | Toner compositions |
US6087059A (en) * | 1999-06-28 | 2000-07-11 | Xerox Corporation | Toner and developer compositions |
USH1889H (en) * | 1999-10-12 | 2000-10-03 | Xerox Corporation | Toner compositions |
US6203963B1 (en) | 2000-03-15 | 2001-03-20 | Xerox Corporation | Particulate surface treatment process |
US6203960B1 (en) | 2000-08-22 | 2001-03-20 | Xerox Corporation | Toner compositions |
US6420078B1 (en) | 2000-12-28 | 2002-07-16 | Xerox Corporation | Toner compositions with surface additives |
US6566025B1 (en) | 2002-01-16 | 2003-05-20 | Xerox Corporation | Polymeric particles as external toner additives |
US20040157148A1 (en) * | 2002-11-12 | 2004-08-12 | Toyo Ink Manufacturing Co., Ltd & Fujimi Incorporated | Electrostatic image developer and image-forming process |
US7141344B2 (en) | 2002-11-12 | 2006-11-28 | Toyo Ink Manufacturing Co., Ltd. | Electrostatic image developer and image-forming process |
US20060257767A1 (en) * | 2005-05-11 | 2006-11-16 | Xerox Corporation | Imaging member |
US7867677B2 (en) | 2005-05-11 | 2011-01-11 | Xerox Corporation | Imaging member having first and second charge transport layers |
US20090325094A1 (en) * | 2005-05-11 | 2009-12-31 | Xerox Corporation | Imaging member |
US7618757B2 (en) | 2005-05-11 | 2009-11-17 | Xerox Corporation | Imaging member having first and second charge transport layers |
US20060263708A1 (en) * | 2005-05-20 | 2006-11-23 | Xerox Corporation | Imaging member |
US7563549B2 (en) | 2005-05-20 | 2009-07-21 | Xerox Corporation | Imaging member |
US20070015072A1 (en) * | 2005-07-12 | 2007-01-18 | Xerox Corporation | Imaging members |
US7439002B2 (en) | 2005-07-12 | 2008-10-21 | Xerox Corporation | Imaging members |
US7470493B2 (en) | 2005-07-19 | 2008-12-30 | Xerox Corporation | Imaging member |
US7632617B2 (en) | 2005-07-19 | 2009-12-15 | Xerox Corporation | Silane-phenol compound, overcoat formulation, and electrophotographic imaging member |
US20070020540A1 (en) * | 2005-07-19 | 2007-01-25 | Xerox Corporation | Silane-phenol compound, overcoat formulation, and electrophotographic imaging member |
US20070020539A1 (en) * | 2005-07-19 | 2007-01-25 | Xerox Corporation | Imaging member |
US8435474B2 (en) | 2006-09-15 | 2013-05-07 | Cabot Corporation | Surface-treated metal oxide particles |
US8455165B2 (en) * | 2006-09-15 | 2013-06-04 | Cabot Corporation | Cyclic-treated metal oxide |
US10407571B2 (en) | 2006-09-15 | 2019-09-10 | Cabot Corporation | Hydrophobic-treated metal oxide |
US20150024317A1 (en) * | 2013-07-17 | 2015-01-22 | Stratasys, Inc. | High-Performance Consumable Materials for Electrophotography-Based Additive Manufacturing |
US11150570B2 (en) | 2013-07-17 | 2021-10-19 | Evolve Additive Solutions, Inc. | Method of printing parts with a high-performance consumable materials with electrophotography based additive manufacturing system |
Also Published As
Publication number | Publication date |
---|---|
SE7501782L (enrdf_load_html_response) | 1975-08-26 |
SE401567B (sv) | 1978-05-16 |
DE2502659A1 (de) | 1975-08-28 |
JPS50120631A (enrdf_load_html_response) | 1975-09-22 |
FR2262336A1 (enrdf_load_html_response) | 1975-09-19 |
GB1494360A (en) | 1977-12-07 |
FR2262336B1 (enrdf_load_html_response) | 1978-07-21 |
CA1054838A (en) | 1979-05-22 |
BR7500546A (pt) | 1975-12-02 |
NL179946C (nl) | 1986-12-01 |
NL7500938A (nl) | 1975-04-29 |
AU7831275A (en) | 1976-08-19 |
DE2502659B2 (de) | 1979-06-28 |
ES435074A1 (es) | 1977-04-16 |
SU649335A3 (ru) | 1979-02-25 |
NL179946B (nl) | 1986-07-01 |
DE2502659C3 (de) | 1980-02-28 |
IT1031952B (it) | 1979-05-10 |
BE825924A (fr) | 1975-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3900588A (en) | Non-filming dual additive developer | |
US4051077A (en) | Non-filming dual additive developer | |
US3983045A (en) | Three component developer composition | |
US3720617A (en) | An electrostatic developer containing modified silicon dioxide particles | |
US4297427A (en) | Polyblend coated carrier materials | |
US2940934A (en) | Electrostatic developer composition and method therefor | |
US3819367A (en) | Imaging system | |
US4522907A (en) | Method for developing latent images using resin donor member | |
US3884825A (en) | Imaging composition | |
US5447815A (en) | Developer for developing electrostatic image and image forming method | |
US3635704A (en) | Imaging system | |
US5486443A (en) | Magnetic toner compositions with silica, strontium titanate and polyvinylidene fluoride | |
US4099968A (en) | Dicarboxylic acid bis-amides in electrostatic imaging compositions and processes | |
US4960665A (en) | Toner and developer compositions containing additives with certain morphologies | |
CA1048839A (en) | Electrophotographic developer | |
CA1169915A (en) | Particles for magnetic brush cleaning | |
US5482805A (en) | Magnetic toner compositions with aluminum oxide, strontium titanate and polyvinylidene fluoride | |
US3926824A (en) | Electrostatographic developer composition | |
EP0751437B1 (en) | Toner for developing electrostatic image, image forming method, developing apparatus unit, and process cartridge | |
JPH0350265B2 (enrdf_load_html_response) | ||
US4223085A (en) | Semi-conductive nickel carrier particles | |
DE69710680T2 (de) | Träger für elektrophotographische Entwickler, Entwickler des Zwei-Komponententyps, und Bildherstellungsverfahrens | |
US4187329A (en) | Electrophotographic developing process and compositions for use therein | |
US4076641A (en) | ω-AND CIS Alkenoic acid amides in electrostatographic developers | |
US3743682A (en) | An electrophotographic developer composition containing boron nitride |