US3897815A - Apparatus and method for directional solidification - Google Patents
Apparatus and method for directional solidification Download PDFInfo
- Publication number
- US3897815A US3897815A US411925A US41192573A US3897815A US 3897815 A US3897815 A US 3897815A US 411925 A US411925 A US 411925A US 41192573 A US41192573 A US 41192573A US 3897815 A US3897815 A US 3897815A
- Authority
- US
- United States
- Prior art keywords
- chill
- mold
- heat
- casting
- furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 238000007711 solidification Methods 0.000 title description 9
- 230000008023 solidification Effects 0.000 title description 9
- 238000005266 casting Methods 0.000 claims abstract description 61
- 239000002184 metal Substances 0.000 claims abstract description 45
- 229910052751 metal Inorganic materials 0.000 claims abstract description 45
- 238000010438 heat treatment Methods 0.000 claims abstract description 20
- 239000007787 solid Substances 0.000 claims abstract description 18
- 238000004886 process control Methods 0.000 claims description 12
- 230000033001 locomotion Effects 0.000 claims description 11
- 238000001816 cooling Methods 0.000 claims description 4
- 230000006872 improvement Effects 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 238000012546 transfer Methods 0.000 description 8
- 230000007246 mechanism Effects 0.000 description 7
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 2
- 239000012809 cooling fluid Substances 0.000 description 2
- 238000005058 metal casting Methods 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 206010014970 Ephelides Diseases 0.000 description 1
- 208000003351 Melanosis Diseases 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- -1 for example Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000005495 investment casting Methods 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D27/00—Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
- B22D27/15—Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using vacuum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D27/00—Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
- B22D27/04—Influencing the temperature of the metal, e.g. by heating or cooling the mould
- B22D27/045—Directionally solidified castings
Definitions
- This invention relates to casting of metal articles and, more particularly, to the casting of metal articles directionally solidfied to include an elongated grain structure.
- a key to the efficiency and rate of production of directionally solidified articles is the control of heat transfer from the metal poured into the mold, through the mold and into other furnace apparatus.
- a mold In general, a mold is positioned on a chill plate through which heat passes from the solidifying casting by conduction. If the mold is withdrawn from the heated zone of a furnace as in the withdrawal method, heat transfer is enhanced by radiation into the unheated chamber into which the casting is drawn as the casting solidifies.
- accurate control of the position of the liquidsolid interface at which the grains are solidifying is important yet is difficult to achieve with reported apparatus.
- Still another object is to provide such an apparatus including a furnace with heating means disposed to develop a plurality of heating zones to provide flexibility in heating desired portions of the furnace.
- a further object is to provide an improved directional solidification method in which heat after casting initially is removed predominantly through a chill member which first contacts molten metal poured into a casting mold and then, in addition, through a second chill member about the mold lateral wall, the rate of withdrawal of the mold from the heated portion of the furnace being controlled to maintain the advancing liquid-solid interface preferable in the area of the top of the second chill member.
- the present invention provides a vacuum casting enclosure which includes an upper and a lower chamber along with means to apply heat to the upper chamber.
- a vacuum valve can connect the chambers.
- the upper chamber includes a base having an opening which, through the vacuum valve, connects the upper chamber to the lower chamber and on which a first chill member is mounted.
- the first chill member includes a vertical chill passage through the member to allow passage of a mold through the chill member and through the base of the upper chamber.
- the lower chamber which most conveniently includes an access port, also encloses a second, movable chill member including a portion which is sized to pass through the vertical chill passage of the first chill memher after passing through the base of the upper chamber.
- Such second chill member is adapted to carry a casting mold. Means are provided to move the second chill member vertically between the two chambers.
- the apparatus also includes heating means which can be controlled to apply heat at various rates as desired within the upper chamber.
- One form of the withdrawal method of the present invention includes removing heat from a molten metal filled mold initially at the mold bottom portion predominantly through a base chill member and then, as the mold is withdrawn, additionally through a chill member circumferentially disposed substantially about the mold and closely adjacent lateral portions of the mold.
- the rate of withdrawal of the mold from the heated upper chamber is controlled with the rate of heat transfer from the mold into the chill members to maintain the liquid-solid interface of a solidifying metal article within the mold in the area of the top surface of the first chill member and generally just above such surface.
- the term metal is intended to include metal alloys.
- the withdrawal method involves placing a hot ceramic shell cluster mold on a chill plate mounted on an elevator mechanism. As the solidification zone starts to move upward by conduction of heat to the chill plate, the mold is withdrawn from the hot zone of the furnace at a predetermined rate into an unheated chamber or portion of the furnace. Heat transfer by conduction through the chill plate at the base of the mold is then enhanced by radiation toward walls of the unheated chamber. As the mold is withdrawn, the conductive path through the solidifying casting to the chill plate is increased to a point at which its effectiveness is greatly reduced.
- the furnace involved with the present invention provides capability for attaining such maximum thermal gradient through a combination of a plurality of chill members along with precise, selective heat application.
- the plurality of chill members includes one which during withdrawal closely surrounds a single mold. Another, on which the mold is mounted, constitutes a base chill plate movable with the mold and through which heat is conducted from the metal from which the article is being made.
- the drawing shows one form of the apparatus in a partially sectional, partially diagrammatic view.
- the vacuum casting apparatus involving the present invention includes an enclosure shown in the embodiment of the drawing to have an upper chamber shown generally at 10, a lower chamber shown generally at 12 and a vacuum valve shown generally at 14 connecting the upper and lower chambers.
- Associated with the upper and lower chambers are means to evacuate such chambers such as through ports at 16 and 18.
- Such means can, for example, include a common vacuum pump 19, or individual pumps, to create a vacuum within the upper chamber and lower chamber as desired.
- Each winding is powered from a source of electrical energy and is controlled through a furnace control means 22 which can vary the power input to each source.
- Control means 22 also can coordinate the rate of heat applied by each heat source to the hollow interior of chamber 10 through the use of standard variable power control apparatus commercially available and well known in the electrical art.
- the heating means which applies heat to the furnace in the upper chamber is shown as a resistance-wound three-part unit, it will be understood by those skilled in the art that a variety of means of applying and controlling heat might be used to accomplish the intended thermal control in the various zones involved.
- the furnace walls formed by the heating means and which together define a furnace hollow interior 35 are disposed closely adjacent and substantially enclose a casting mold lateral and top portions. This arrangement, along with the heating means, provides more accurate control of the metal within the mold, particularly at the start of the method involved with the present invention.
- the furnace walls enclosing the heating elements generally are of a ceramic material such as alumina.
- Upper chamber 10 includes a base 24 having an opening 26 therethrough to enable communication between upper chamber 10 and lower chamber 12 through vacuum valve 14.
- a circumferentially disposed first chill member 28 which includes a top surface 30 and a vertical chill passage 32 through the first chill member and aligned with upper chamber base opening 26.
- the first chill member is preferably metal, for example, copper or a copper-base alloy, and preferably includes means diagrammatically represented as conduit 33 associated with a cooling fluid source (not shown) to circulate a cooling fluid through the chill, for example water, to enhance the heat transfer through the first chill member.
- Such cooling means can be disposed as cooling coils within or around the chill in a manner well known in the art, for example, in connection with water-cooled heat transfer members.
- vacuum valve 14 includes a means 34 to operate vacuum valve 14.
- Vacuum valve 14 and means 34 are of a type commercially available, well known and widely used in the vacuum furnace art involving multiple compartment furnaces. Through the use of such a vacuum valve, upper chamber 10 can be environmentally isolated from lower chamber 12 to maintain in upper chamber 10 a vacuum, once it has been developed there, while lower chamber 12 is used for loading and unloading molds before and after operation.
- Lower chamber 12 has an access port 3 1 which includes a door 38 having associated vacuum sealing means 39.
- Access port 36 can be of any convenient shape, for example to accommodate loading or unloading of a casting mold, such as of ceramic shown gener ally at 40. Mold 40 includes a foot or base 4], lateral walls 43 and top portion 45.
- a mold platform 42 Shown in lower chamber 12 is a mold platform 42 operatively connected with a vertically operating elevator mechanism 44 adapted to raise and lower mold platform 42 toward and away from upper chamber 10.
- a second chill member 46 Mounted on mold platform 42 is a second chill member 46, movable with the mold platform, and having a top surface 47 on which casting mold 40 is mounted. This is one example of means to provide relative movement between the chill members 28 and 46 and hence such movement between mold 411 and first chill member 28.
- Second chill member 46 preferably is metal and can be fluid cooled in a manner similar to the first chill member.
- the second member is shaped to pass into vertical chill passage 32 of first chill member 28 in upper chamber 10, for example, by having its lateral wall 49 shaped to a slightly smaller configuration of chill passage 32. Accordingly, elevator mechanism 44 has a vertical stroke sufficient to raise second chill member 46 into vertical chill passage 32, thus to enable positioning of casting mold 40 within upper chamber 10, as is shown in phantom in the drawing.
- Elevator 44 which can be a machine screw type mechanism driven by a reversible rotating means such as a reversible motor diagrammatically represented by arrows 48, is housed within a jacket 50 including appropriate vacuum sealing means to isolate lower chamber 12 from the atmosphere.
- elevator control 52 Associated with rotating means 48 is an elevator control 52 capable of initiating and terminating the operation of rotating means 48 and, if desired its speed.
- elevator control 52 is coordinated with furnace control 22, in a manner which will be described in more detail in connection with one form of the method associated with the present invention. This can be accomplished through process control means 54, one principal function of which is to time the heat applied in upper chamber 10 through furnace control 22 with the rate of withdrawal of casting mold 40 from furnace 21 through elevator control 52.
- coordinating process control means 54 can initiate operation of means 34 to operate vacuum valve 14 as a function of a signal from a pressure sensor 56 within lower chamber 12 signalling control means 54 that an adequate vacuum has been provided within lower chamber 12 to enable opening of vacuum valve 14.
- control means 54 can be programmed to close valve 34 as a function of the position of casting mold 40 being withdrawn from upper chamber and passing through vacuum valve 14.
- sensing means can be a commercially available proximity switch 58 in lower chamber 12 and a similar switch (not shown) in upper chamber 10 to sense the position of mold 40 such as through mold platform 42.
- a further function which can be performed by coordinating control means 54 is to initiate production of a vacuum, or to release the vacuum, within lower chamber 12, for example as a function of the sealing of access port 36 or of the mold position. For example, this can be accomplished through a valve 60 associated with lower chamber evacuation port 18 to provide evacuation of the lower chamber.
- the vacuum casting furnace can be supported in a variety of ways, as those skilled in the art will recognize.
- a support member 62 is shown diagrammatically in the drawing to represent support means. The location of a single furnace or an arrangement of a plurality of such vacuum casting furnaces, which with its controls each defines a furnace module, may suggest a particular support means most useful to one skilled in the art.
- the close control for directional solidification provided by the present invention is accomplished in part by applying heat wiithin furnace 21 at a plurality of rates to accomplish different functions.
- heat is applied to the interior of furnace 21 in amounts first to melt a solid metal charge and then to maintain the temperature of melted metal within casting mold 40 at a temperature greater than its melting temperature, except that perhaps for a relatively small area at the base of the mold in which solidification is occurring.
- the present invention is particularly adapted to use a self-casting mold, for example of the type described in co-pending application Ser. No. 41 l ,927, filed concurrently with this application.
- one form of the method associated with the present invention requires heat application to achieve the highest temperature in the mold in the top zone of the furnace, indicated at A, in order to bring about as rapid alloy charge melting as possible. If desired, further variation of heat application within a zone such as top zone A can be provided for more selective control of charge melting. Because of the heat carried away by chill member 30, heat application to the lower zone, indicated at C, is relatively high compared with intermediate zone, indicated at B, in order to maintain metal within the mold above its melting temperature, except below the liquid-solid in terface near the base of the mold at which directional solidification initially is occurring.
- the present invention includes the application of heat to the furnace interior at a plurality of rates to control more closely the casting and then the directional solidification of the metal within the mold as the method proceeds.
- the close control afforded by such variable application of heat in the zones described is enhanced by disposing the furnace walls closely adjacent and substantially enclosing the casting mold lateral and top portions.
- Practice of the method includes coordinating elevator control 52 with furnace control 22 to maintain the liquid-solid interface of the directionally solidifying alloy within mold 40 in the vicinity of the top surface 30 of the first or circumferentially disposed chill member 28.
- This improved control of heat fiow through the practice of the present invention employing the plurality of chill members diverging one from the other but disposed at those areas of the mold requiring the closest heat flow control, eliminates casting defects such as stray equiaxed grains, freckles, misoriented grains and shrink.
- one form of the method involved in the present invention is practiced by first closing vacuum valve 14 while elevator mechanism 44 and platform 42 are disposed substantially as shown in the drawing within lower chamber 12.
- a vacuum is then provided in upper chamber 10 and furnace 21 through upper chamber port 16 and vacuum pump 19.
- a self-casting mold 40 including a solid metal charge in its upper porion, is secured to base or second chill member 46.
- Access door 38 is closed and sealed after which lower chamber 12 is evacuated through port 18 and a vacuum pump such as 19.
- the closing and sealing of door 38 can signal valve to initiate creation of the desired vacuum in lower chamber 12.
- Such pressure level can be sensed by pressure sensor 56 which can then signal process control 54 to operate means 34 to open vacuum valve 14.
- process control 54 can signal elevator control 52 to raise mold 40 to the position shown in phantom in the drawing as sensed by a proximity switch appropriately located.
- this form of the method of the present invention basically includes providing an appropriate vacuum in lower chamber 12, opening vac uum valve 14 and elevating mold 40 into position within furnace 21.
- the rate of withdrawal is coordinated with the heat applied through furnace control 22 to the various zones within furnace 21 to maintain the liquid-solid interface of the directionally solidifying metal within the mold in the general area of the top surface 30 of the first chill member 28 circumferentially disposed about the withdrawing mold.
- the liquid-solid interface traverses the mold at a closely controlled rate to provide a directionally solidified article of improved quality.
- valve 14 is closed to maintain vacuum in upper chamber 10. Closing of valve 14, such as through means 34, can be accomplished as a result of a signal, such as from a proximity switch, to process control 54 which directs such closure. Vacuum is then released from lower chamber 12, such as by opening valve 60, manually or on signal from process control 54. Access door 38 is then opened, mold 40 is then removed, and the apparatus is ready for another cycle.
- a signal such as from a proximity switch
- the improvement comprising, in combination, the
- each of said walls configured to be closely adjacent one to the other during the relative motion between the mold and the chill member, with the chill wall circumferentially disposed about the outer lateral wall, the lateral wall enclosing a single article casting chamber communicating with the mold foot;
- the molten metal charge is deposited in the casting chamber by applying concurrently with the first and the second amounts of heat, a third amount of heat in a third furnace area toward the mold top portion holding the solid metal charge,
- the third amount of heat being greater than the second amount and less than the first amount but sufficient to melt the solid metal charge.
- Vacuum casting apparatus including:
- isolating means to environmentally isolate the upper and lower chambers one from the other;
- a first chill member having a chill passage therethrough and located within the upper chamber;
- a second chill member within the enclosure sized to pass into the chill passage and adapted to carry a casting mold
- heating means comprising a plurality of elements in substantial vertical array to heat the upper chamber
- the heating means includes a vertically stacked plurality of separately controlled heat sources, each positioned substantially vertically above the first chill member, the heat sources having interior surfaces substantially aligned with each other and with the chill passage to define a hollow furnace interior adapted to receive a casting mold with a single article casting cavity enclosed by lateral walls, the interior surfaces being positioned closely adjacent and substantially enclosing the mold lateral walls dur ing operation;
- the apparatus including furnace control means operatively connected with each heat source and including means for applying heat concurrently at a plurality of rates and for varying the intensity electrical power to each heat source independent of the other heat sources.
- furnace control means is adapted to apply a relatively larger amount of electrical power to a first of the heat sources adjacent the first chill member concurrently with the application of a relatively smaller amount of electrical power to a heat source above the first heat source.
- process control means to coordinate the rate of heat application to the hollow furnace interior through the furnace control means with the means to move the second chill member between the lower chamber and the first chill passage.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US411925A US3897815A (en) | 1973-11-01 | 1973-11-01 | Apparatus and method for directional solidification |
CA209,943A CA1031929A (en) | 1973-11-01 | 1974-09-24 | Apparatus and method for directional solidification |
IT28856/74A IT1025249B (it) | 1973-11-01 | 1974-10-28 | Perfezionati apparato e metodo di solidificazione direzionale di pezzi fusi |
FR7436057A FR2249731B1 (enrdf_load_stackoverflow) | 1973-11-01 | 1974-10-29 | |
DE2451464A DE2451464C2 (de) | 1973-11-01 | 1974-10-30 | Vakuum-Gießvorrichtung und Verfahren zum gerichteten Erstarren |
BE150133A BE821765A (fr) | 1973-11-01 | 1974-10-31 | Appareil et procede de moulage sous vide |
GB47174/74A GB1489883A (en) | 1973-11-01 | 1974-10-31 | Directional solidification in casting moulds |
JP49125569A JPS5079426A (enrdf_load_stackoverflow) | 1973-11-01 | 1974-11-01 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US411925A US3897815A (en) | 1973-11-01 | 1973-11-01 | Apparatus and method for directional solidification |
Publications (1)
Publication Number | Publication Date |
---|---|
US3897815A true US3897815A (en) | 1975-08-05 |
Family
ID=23630831
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US411925A Expired - Lifetime US3897815A (en) | 1973-11-01 | 1973-11-01 | Apparatus and method for directional solidification |
Country Status (8)
Country | Link |
---|---|
US (1) | US3897815A (enrdf_load_stackoverflow) |
JP (1) | JPS5079426A (enrdf_load_stackoverflow) |
BE (1) | BE821765A (enrdf_load_stackoverflow) |
CA (1) | CA1031929A (enrdf_load_stackoverflow) |
DE (1) | DE2451464C2 (enrdf_load_stackoverflow) |
FR (1) | FR2249731B1 (enrdf_load_stackoverflow) |
GB (1) | GB1489883A (enrdf_load_stackoverflow) |
IT (1) | IT1025249B (enrdf_load_stackoverflow) |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4178986A (en) * | 1978-03-31 | 1979-12-18 | General Electric Company | Furnace for directional solidification casting |
US4190094A (en) * | 1978-10-25 | 1980-02-26 | United Technologies Corporation | Rate controlled directional solidification method |
US4541475A (en) * | 1981-12-30 | 1985-09-17 | Rolls-Royce Limited | Method of, and apparatus for, producing castings in a vacuum |
US4590983A (en) * | 1984-05-12 | 1986-05-27 | Leybold-Heraeus Gmbh | Precision vacuum melting and casting furnace with a melting chamber and a casting chamber |
US4659288A (en) * | 1984-12-10 | 1987-04-21 | The Garrett Corporation | Dual alloy radial turbine rotor with hub material exposed in saddle regions of blade ring |
US4750541A (en) * | 1986-03-14 | 1988-06-14 | Leybold-Heraeus Gmbh | Lifting mechanism for casting molds |
US4925636A (en) * | 1987-12-14 | 1990-05-15 | Grumman Aerospace Corporation | Apparatus for directional solidification of a crystal material |
US5116456A (en) * | 1988-04-18 | 1992-05-26 | Solon Technologies, Inc. | Apparatus and method for growth of large single crystals in plate/slab form |
US5168916A (en) * | 1978-06-30 | 1992-12-08 | Societe Nationale D'etude Et De Construction De Moteurs D'aviation | Foundry installation for the fabrication of cast metal parts with an oriented structure |
US5197531A (en) * | 1990-06-13 | 1993-03-30 | Leybold Aktiengesellschaft | Method of manufacturing directionally solidified castings |
US5232043A (en) * | 1989-03-14 | 1993-08-03 | Leybold Aktiengesellschaft | Device for identifying the solid-liquid interface of a melt |
US5248377A (en) * | 1989-12-01 | 1993-09-28 | Grumman Aerospace Corporation | Crystal-growth furnace for interface curvature control |
US5399313A (en) * | 1981-10-02 | 1995-03-21 | General Electric Company | Nickel-based superalloys for producing single crystal articles having improved tolerance to low angle grain boundaries |
DE3612628A1 (de) * | 1986-03-27 | 1998-11-05 | Gen Electric | Superlegierungen auf Nickelbasis zur Herstellung von Einkristall-Gegenständen mit verbesserter Kleinwinkel-Korngrenzen-Toleranz |
US5921310A (en) * | 1995-06-20 | 1999-07-13 | Abb Research Ltd. | Process for producing a directionally solidified casting and apparatus for carrying out this process |
US5931214A (en) * | 1997-08-07 | 1999-08-03 | Howmet Research Corporation | Mold heating vacuum casting furnace |
WO2000051761A1 (en) * | 1998-11-20 | 2000-09-08 | Allison Engine Company, Inc. | Method and apparatus for production of a cast component |
US6206081B1 (en) | 1999-05-04 | 2001-03-27 | Chromalloy Gas Turbine Corporation | Withdrawal elevator mechanism for withdrawal furnace with a center cooling spool to produce DS/SC turbine airfoils |
US6209618B1 (en) | 1999-05-04 | 2001-04-03 | Chromalloy Gas Turbine Corporation | Spool shields for producing variable thermal gradients in an investment casting withdrawal furnace |
US6308767B1 (en) * | 1999-12-21 | 2001-10-30 | General Electric Company | Liquid metal bath furnace and casting method |
US20050022959A1 (en) * | 2003-07-30 | 2005-02-03 | Soderstrom Mark L. | Directional solidification method and apparatus |
EP1531020A1 (en) * | 2003-11-06 | 2005-05-18 | ALSTOM Technology Ltd | Method for casting a directionally solidified article |
RU2297583C2 (ru) * | 2005-05-20 | 2007-04-20 | Открытое акционерное общество "Электромеханика" | Вакуумная индукционная установка с печью подогрева форм |
US20080135204A1 (en) * | 1998-11-20 | 2008-06-12 | Frasier Donald J | Method and apparatus for production of a cast component |
US20100132906A1 (en) * | 2008-12-03 | 2010-06-03 | Graham Lawrence D | Method of casting a metal article |
US20120080158A1 (en) * | 2010-09-30 | 2012-04-05 | General Electric Company | Unidirectional solidification process and apparatus therefor |
US20140251572A1 (en) * | 2013-03-07 | 2014-09-11 | Howmet Corporation | Vacuum or air casting using induction hot topping |
RU2663025C1 (ru) * | 2017-08-29 | 2018-08-01 | Публичное акционерное общество "Электромеханика" | Вакуумная индукционная плавильно-заливочная установка |
CN109365788A (zh) * | 2018-11-07 | 2019-02-22 | 深圳市万泽中南研究院有限公司 | 单晶铸件的制造方法、系统及设备 |
RU2814835C2 (ru) * | 2022-05-18 | 2024-03-05 | Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" Национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт" - ВИАМ) | Вакуумная установка для литья отливок лопаток с направленной и монокристаллической структурой |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4018924A1 (de) * | 1990-06-13 | 1991-12-19 | Leybold Ag | Verfahren zur herstellung von gerichtet erstarrten giessteilen |
DE29715846U1 (de) * | 1997-09-04 | 1997-12-11 | ALD Vacuum Technologies GmbH, 63526 Erlensee | Vorrichtung zum gerichteten Erstarren von Schmelzen |
CN113732272B (zh) * | 2021-08-25 | 2022-06-03 | 中国联合重型燃气轮机技术有限公司 | 定向凝固装置及定向凝固方法 |
CN115365477B (zh) * | 2022-10-26 | 2023-01-03 | 华北理工大学 | 一种真空加压铸造机 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3376915A (en) * | 1964-10-21 | 1968-04-09 | Trw Inc | Method for casting high temperature alloys to achieve controlled grain structure and orientation |
US3532155A (en) * | 1967-12-05 | 1970-10-06 | Martin Metals Co | Process for producing directionally solidified castings |
US3700023A (en) * | 1970-08-12 | 1972-10-24 | United Aircraft Corp | Casting of directionally solidified articles |
US3714977A (en) * | 1971-07-23 | 1973-02-06 | United Aircraft Corp | Method and apparatus for the production of directionally solidified castings |
US3810504A (en) * | 1971-03-26 | 1974-05-14 | Trw Inc | Method for directional solidification |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3690367A (en) * | 1968-07-05 | 1972-09-12 | Anadite Inc | Apparatus for the restructuring of metals |
US3538981A (en) * | 1968-08-05 | 1970-11-10 | United Aircraft Corp | Apparatus for casting directionally solidified articles |
US3763926A (en) * | 1971-09-15 | 1973-10-09 | United Aircraft Corp | Apparatus for casting of directionally solidified articles |
GB1349099A (en) * | 1971-12-04 | 1974-03-27 | Rolls Royce | Apparatus for casting in a vacuum |
JPS5214845B2 (enrdf_load_stackoverflow) * | 1972-06-06 | 1977-04-25 |
-
1973
- 1973-11-01 US US411925A patent/US3897815A/en not_active Expired - Lifetime
-
1974
- 1974-09-24 CA CA209,943A patent/CA1031929A/en not_active Expired
- 1974-10-28 IT IT28856/74A patent/IT1025249B/it active
- 1974-10-29 FR FR7436057A patent/FR2249731B1/fr not_active Expired
- 1974-10-30 DE DE2451464A patent/DE2451464C2/de not_active Expired
- 1974-10-31 GB GB47174/74A patent/GB1489883A/en not_active Expired
- 1974-10-31 BE BE150133A patent/BE821765A/xx not_active IP Right Cessation
- 1974-11-01 JP JP49125569A patent/JPS5079426A/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3376915A (en) * | 1964-10-21 | 1968-04-09 | Trw Inc | Method for casting high temperature alloys to achieve controlled grain structure and orientation |
US3532155A (en) * | 1967-12-05 | 1970-10-06 | Martin Metals Co | Process for producing directionally solidified castings |
US3700023A (en) * | 1970-08-12 | 1972-10-24 | United Aircraft Corp | Casting of directionally solidified articles |
US3810504A (en) * | 1971-03-26 | 1974-05-14 | Trw Inc | Method for directional solidification |
US3714977A (en) * | 1971-07-23 | 1973-02-06 | United Aircraft Corp | Method and apparatus for the production of directionally solidified castings |
Cited By (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4178986A (en) * | 1978-03-31 | 1979-12-18 | General Electric Company | Furnace for directional solidification casting |
US5168916A (en) * | 1978-06-30 | 1992-12-08 | Societe Nationale D'etude Et De Construction De Moteurs D'aviation | Foundry installation for the fabrication of cast metal parts with an oriented structure |
US4190094A (en) * | 1978-10-25 | 1980-02-26 | United Technologies Corporation | Rate controlled directional solidification method |
US5399313A (en) * | 1981-10-02 | 1995-03-21 | General Electric Company | Nickel-based superalloys for producing single crystal articles having improved tolerance to low angle grain boundaries |
US4541475A (en) * | 1981-12-30 | 1985-09-17 | Rolls-Royce Limited | Method of, and apparatus for, producing castings in a vacuum |
US4590983A (en) * | 1984-05-12 | 1986-05-27 | Leybold-Heraeus Gmbh | Precision vacuum melting and casting furnace with a melting chamber and a casting chamber |
US4659288A (en) * | 1984-12-10 | 1987-04-21 | The Garrett Corporation | Dual alloy radial turbine rotor with hub material exposed in saddle regions of blade ring |
US4750541A (en) * | 1986-03-14 | 1988-06-14 | Leybold-Heraeus Gmbh | Lifting mechanism for casting molds |
DE3612628C2 (de) * | 1986-03-27 | 2001-11-08 | Gen Electric | Gußwerkstücke und gegossenes Einkristallwerkstück aus Superlegierungen auf Nickelbasis zur Herstellung von Einkristall-Gegenständen mit verbesserter Kleinwinkel-Korngrenzen-Toleranz |
DE3612628A1 (de) * | 1986-03-27 | 1998-11-05 | Gen Electric | Superlegierungen auf Nickelbasis zur Herstellung von Einkristall-Gegenständen mit verbesserter Kleinwinkel-Korngrenzen-Toleranz |
US4925636A (en) * | 1987-12-14 | 1990-05-15 | Grumman Aerospace Corporation | Apparatus for directional solidification of a crystal material |
US5116456A (en) * | 1988-04-18 | 1992-05-26 | Solon Technologies, Inc. | Apparatus and method for growth of large single crystals in plate/slab form |
US5232043A (en) * | 1989-03-14 | 1993-08-03 | Leybold Aktiengesellschaft | Device for identifying the solid-liquid interface of a melt |
US5248377A (en) * | 1989-12-01 | 1993-09-28 | Grumman Aerospace Corporation | Crystal-growth furnace for interface curvature control |
US5197531A (en) * | 1990-06-13 | 1993-03-30 | Leybold Aktiengesellschaft | Method of manufacturing directionally solidified castings |
US5921310A (en) * | 1995-06-20 | 1999-07-13 | Abb Research Ltd. | Process for producing a directionally solidified casting and apparatus for carrying out this process |
US5931214A (en) * | 1997-08-07 | 1999-08-03 | Howmet Research Corporation | Mold heating vacuum casting furnace |
US8082976B2 (en) | 1998-11-20 | 2011-12-27 | Rolls-Royce Corporation | Method and apparatus for production of a cast component |
US8181692B2 (en) | 1998-11-20 | 2012-05-22 | Rolls-Royce Corporation | Method and apparatus for production of a cast component |
US8851152B2 (en) | 1998-11-20 | 2014-10-07 | Rolls-Royce Corporation | Method and apparatus for production of a cast component |
US8844607B2 (en) | 1998-11-20 | 2014-09-30 | Rolls-Royce Corporation | Method and apparatus for production of a cast component |
US8087446B2 (en) | 1998-11-20 | 2012-01-03 | Rolls-Royce Corporation | Method and apparatus for production of a cast component |
WO2000051761A1 (en) * | 1998-11-20 | 2000-09-08 | Allison Engine Company, Inc. | Method and apparatus for production of a cast component |
US7824494B2 (en) | 1998-11-20 | 2010-11-02 | Rolls-Royce Corporation | Method and apparatus for production of a cast component |
US7779890B2 (en) | 1998-11-20 | 2010-08-24 | Rolls-Royce Corporation | Method and apparatus for production of a cast component |
US20080169081A1 (en) * | 1998-11-20 | 2008-07-17 | Frasier Donald J | Method and apparatus for production of a cast component |
US20080149295A1 (en) * | 1998-11-20 | 2008-06-26 | Frasier Donald J | Method and apparatus for production of a cast component |
US20080135204A1 (en) * | 1998-11-20 | 2008-06-12 | Frasier Donald J | Method and apparatus for production of a cast component |
US20080142185A1 (en) * | 1998-11-20 | 2008-06-19 | Frasier Donald J | Method and apparatus for production of a cast component |
US20080149294A1 (en) * | 1998-11-20 | 2008-06-26 | Frasier Donald J | Method and apparatus for production of a cast component |
US20080149296A1 (en) * | 1998-11-20 | 2008-06-26 | Frasier Donald J | Method and apparatus for production of a cast component |
US6209618B1 (en) | 1999-05-04 | 2001-04-03 | Chromalloy Gas Turbine Corporation | Spool shields for producing variable thermal gradients in an investment casting withdrawal furnace |
US6206081B1 (en) | 1999-05-04 | 2001-03-27 | Chromalloy Gas Turbine Corporation | Withdrawal elevator mechanism for withdrawal furnace with a center cooling spool to produce DS/SC turbine airfoils |
US6308767B1 (en) * | 1999-12-21 | 2001-10-30 | General Electric Company | Liquid metal bath furnace and casting method |
US20050022959A1 (en) * | 2003-07-30 | 2005-02-03 | Soderstrom Mark L. | Directional solidification method and apparatus |
US6896030B2 (en) | 2003-07-30 | 2005-05-24 | Howmet Corporation | Directional solidification method and apparatus |
US7017646B2 (en) | 2003-11-06 | 2006-03-28 | Alstom Technology Ltd. | Method for casting a directionally solidified article |
US20050103462A1 (en) * | 2003-11-06 | 2005-05-19 | Martin Balliel | Method for casting a directionally solidified article |
EP1531020A1 (en) * | 2003-11-06 | 2005-05-18 | ALSTOM Technology Ltd | Method for casting a directionally solidified article |
RU2297583C2 (ru) * | 2005-05-20 | 2007-04-20 | Открытое акционерное общество "Электромеханика" | Вакуумная индукционная установка с печью подогрева форм |
US20100132906A1 (en) * | 2008-12-03 | 2010-06-03 | Graham Lawrence D | Method of casting a metal article |
US8186418B2 (en) * | 2010-09-30 | 2012-05-29 | General Electric Company | Unidirectional solidification process and apparatus therefor |
US20120080158A1 (en) * | 2010-09-30 | 2012-04-05 | General Electric Company | Unidirectional solidification process and apparatus therefor |
EP2436461A3 (en) * | 2010-09-30 | 2017-08-30 | General Electric Company | Unidirectional solidification process and apparatus therefor |
US20140251572A1 (en) * | 2013-03-07 | 2014-09-11 | Howmet Corporation | Vacuum or air casting using induction hot topping |
US9381569B2 (en) * | 2013-03-07 | 2016-07-05 | Howmet Corporation | Vacuum or air casting using induction hot topping |
RU2663025C1 (ru) * | 2017-08-29 | 2018-08-01 | Публичное акционерное общество "Электромеханика" | Вакуумная индукционная плавильно-заливочная установка |
CN109365788A (zh) * | 2018-11-07 | 2019-02-22 | 深圳市万泽中南研究院有限公司 | 单晶铸件的制造方法、系统及设备 |
RU2814835C2 (ru) * | 2022-05-18 | 2024-03-05 | Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" Национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт" - ВИАМ) | Вакуумная установка для литья отливок лопаток с направленной и монокристаллической структурой |
Also Published As
Publication number | Publication date |
---|---|
GB1489883A (en) | 1977-10-26 |
IT1025249B (it) | 1978-08-10 |
CA1031929A (en) | 1978-05-30 |
FR2249731B1 (enrdf_load_stackoverflow) | 1981-12-24 |
DE2451464A1 (de) | 1975-05-07 |
JPS5079426A (enrdf_load_stackoverflow) | 1975-06-27 |
DE2451464C2 (de) | 1984-04-26 |
BE821765A (fr) | 1975-02-17 |
FR2249731A1 (enrdf_load_stackoverflow) | 1975-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3897815A (en) | Apparatus and method for directional solidification | |
US3900064A (en) | Metal casting | |
US5335711A (en) | Process and apparatus for metal casting | |
US4178986A (en) | Furnace for directional solidification casting | |
US11364539B2 (en) | Method and apparatus for counter-gravity mold filling | |
GB1438693A (en) | Metho- for producing directionally solidified castings | |
US3895672A (en) | Integrated furnace method and apparatus for the continuous production of individual castings | |
CN111690832A (zh) | 冷坩埚感应熔炼-压铸装置及制备块体非晶材料的方法 | |
CN109822088B (zh) | 大型高温高强度材料真空精密铸造设备 | |
TWI787369B (zh) | 用於模製特別是金屬玻璃的方法與設備 | |
US3700023A (en) | Casting of directionally solidified articles | |
US3845808A (en) | Apparatus for casting directionally solidified articles | |
US3814170A (en) | Apparatus for melting and casting material under pressure | |
US3381742A (en) | Metal casting and solidification | |
JPH0225701B2 (enrdf_load_stackoverflow) | ||
EP0293960B1 (en) | Process and apparatus for metal casting | |
US2796644A (en) | Method and apparatus for casting refractory metals | |
GB1256058A (en) | Apparatus and method for single cyrstal casting | |
CN112846130A (zh) | 一种真空熔炼压射成型装置 | |
US3760864A (en) | Method of casting in thin-walled molds | |
US2983973A (en) | Methods and apparatus for melting and casting metals in a vacuum | |
JPH0783926B2 (ja) | 鋳造方法 | |
JPS6352983B2 (enrdf_load_stackoverflow) | ||
CN214814653U (zh) | 一种真空熔炼压射成型装置 | |
US3393836A (en) | Metal dispensing apparatus |