US3893852A - Method of manufacturing billets from powder - Google Patents
Method of manufacturing billets from powder Download PDFInfo
- Publication number
- US3893852A US3893852A US367105A US36710573A US3893852A US 3893852 A US3893852 A US 3893852A US 367105 A US367105 A US 367105A US 36710573 A US36710573 A US 36710573A US 3893852 A US3893852 A US 3893852A
- Authority
- US
- United States
- Prior art keywords
- container
- powder
- gas
- pressure
- heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000843 powder Substances 0.000 title claims abstract description 66
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 17
- 238000010438 heat treatment Methods 0.000 claims abstract description 29
- 239000000463 material Substances 0.000 claims abstract description 28
- 239000011551 heat transfer agent Substances 0.000 claims abstract description 5
- 229910052751 metal Inorganic materials 0.000 claims abstract description 5
- 239000002184 metal Substances 0.000 claims abstract description 5
- 239000007789 gas Substances 0.000 claims description 41
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 15
- 229910000997 High-speed steel Inorganic materials 0.000 claims description 7
- 229910052757 nitrogen Inorganic materials 0.000 claims description 7
- 238000007872 degassing Methods 0.000 claims description 4
- 238000003825 pressing Methods 0.000 claims description 3
- 239000000470 constituent Substances 0.000 claims description 2
- 239000012530 fluid Substances 0.000 claims description 2
- 238000007906 compression Methods 0.000 description 14
- 230000006835 compression Effects 0.000 description 13
- 238000005245 sintering Methods 0.000 description 11
- 229910052799 carbon Inorganic materials 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 5
- 239000011261 inert gas Substances 0.000 description 4
- 238000003754 machining Methods 0.000 description 4
- 238000005096 rolling process Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 230000002349 favourable effect Effects 0.000 description 3
- 238000005242 forging Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000003723 Smelting Methods 0.000 description 2
- 239000011358 absorbing material Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000012611 container material Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009172 bursting Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- WGLYADVYCJUFAY-UHFFFAOYSA-N cloran Chemical compound C12CC3C(=O)OC(=O)C3CC2C2(Cl)C(Cl)=C(Cl)C1(Cl)C2(Cl)Cl WGLYADVYCJUFAY-UHFFFAOYSA-N 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 238000005429 filling process Methods 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B30—PRESSES
- B30B—PRESSES IN GENERAL
- B30B11/00—Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
- B30B11/001—Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a flexible element, e.g. diaphragm, urged by fluid pressure; Isostatic presses
- B30B11/002—Isostatic press chambers; Press stands therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
- B22F3/14—Both compacting and sintering simultaneously
- B22F3/15—Hot isostatic pressing
Definitions
- the present invention relates to a method of manufacturing billets to be further worked to the desired shape by means of rolling, forging or machining with a power as the starting material.
- a billet shaped from powder is enclosed in a container and is isostatically compressed by subjecting the container with the enclosed powder to a high, all-sided external pressure in a pressure chamber. This compression is carried out at room temperature.
- the container is inserted into a heating furnace and an evacuation opening is connected to a vacuum pump.
- the container with the powder is heated while being simultaneously degassed, after which the evacuation opening is closed.
- the container is inserted in a pressure furnace and is subjected simultaneously to high pressure and high temperature so that the powder is sintered and further compressed.
- a billet can be shaped in the normal manner by compression and then be sealed within a steel container of sheet metal.
- the container may be used as a mould during the manufacture.
- Powder is poured directly into a cylindrical container without a lid and is packed in this container during the filling process, after which it is closed with a lid which is connected in a gastight manner to the cylindrical part of the container.
- the shape of a con tainer is of no importance per se.
- a cylindrical shape best exploits the space of the expensive pressure sintering furnace and thus gives the lowest volume cost. It is possible, however, by this method to manufacture billets of very complicated shape, for example disc-shaped billets for side-milling cutters with projecting teeth, which can only be given the exact size and shape by machining.
- the container is preferably heated in two stages.
- the heating processes may be performed in one and the same furnace, but it may be practical to perform them in two stages in two separate furnaces.
- a fine-grained powder has a considerable surface area in relation to the volume ofmaterial and thus great affinity to surrounding gases. Gases may partly be ab sorbed on the surface, partly form compounds with the material included in the powder, partly be dissolved in the powder material. Particularly damaging substances are oxygen, (0 and hydrogen (H The powder is therefore manufactured in an inert gas atmosphere. It is often stored and handled in an inert gas atmosphere as well. Argon is a suitable protective gas.
- the density of the powder material influences the heating. It has proved valuable to compress a billet before heating, thus increasing its density.
- the compression should take place at a pressure of at least 1000 bar and at low temperature. Temperatures between 0 and 300C are applicable. As a rule the compression can be performed at room temperature. For material of the highspeed steel type with powder grains of spherical type, a pressure of about 4000 bar has given a good result.
- the time for heating a powder-filled container is considerably reduced, because the container, for at least part of the heating process, contains a gas which is harmless in relation to the powder material, said gas acting as a heat transfer agent. It has been found that the porosity of the powder mass in the container is sufficiently great to obtain a considerable gas circulation between warm and cold parts in the powder, so that heat is quickly transferred to the cold parts. In this way, a considerable heat trans fer from the powder in the exterior part of the con- 0 tainer to the powder in its interior part is obtained during heating.
- the heating time can be reduced by several hours. For very large powder-filled containers the time for heating the container fully through can be reduced by 10 hours and more.
- a container is suitably compressed in known manner at room temperature. It is provided with an evacuation connection in the form of a spout.
- the container is evacuated to so low a pressure and for so long a period of timethat the moisture and the gases present in the powder body are removed. This evacuation can in most cases be carried out at room temperature, but a certain heating may be favorable and may expedite the discharge of gas. After this, gas which is hannless to the powder is heated.
- the container may communicate either with a gas source, containing harmless gas, or it may communicate with a space above the container, for example the furnace space or the space above the furnace.
- harmless gas is neant a gas having such properties that no harmful, or nsignificant harmful, compounds are formed between he powder material and the gas, a gas having such Jroperties that it forms compounds with harmful sub- ;tances in the powder so that there are removed, or a gas forming favorable compounds with the powder ma- .erial.
- the harmless gas may be a rare gas, for example helium or argon, or another gas which is neutral in relation to the powder material, for example nitrogen. In some cases it may be appropriate to use a reducing gas together with a rare gas or a neutral gas.
- the container may be evacuated before compression, but it is possible to perform the compression satisfactorily while there is still a certain amount of gas left in the container and in spite of this obtain satisfactory density and satisfactory metallurgical properties. This is the case when the gas forms harmless or the desired favorable solid compounds together with the powder material.
- nitrogen gas may be advantageously used since a limited amount of nitrogen may improve the properties of the material. As a rule rare gases must be completely removed.
- a cold container can be hermetically sealed and heated to hot pressing temperature without the risk of obtaining a harmful overpressure in it.
- Another possibility is to fill the container with gas and supply it with a pressure-limiting discharge means, serving as a check valve. If the con tainer is heated in a pressure furnace, it is possible to apply a pressure in the container exceeding the atmo spheric pressure. The heat transfer capacity of the enclosed gas will then increase.
- the container may contain material which absorbs the enclosed gas during hot compression.
- the container material itself may constitute the absorbing material, but a particular absorbing material can be used.
- the sintering temperature depends on the material and to a certain extent on the pressure to which the material is subjected during the sintering.
- a good result is obtained when the sintering is carried out at a temperature of l [C and at a pressure of I000 bar.
- the container enclosing the powder is subjected to high temperature during sintering and an interchange of material may take place between the powder and the material of the container.
- an interchange of material may take place between the powder and the material of the container.
- the material selected for the container has approximately the same carbon activity at the sintering temperature as the material in the powder enclosed in the container. It has been found that the carbon activity for a container material of steel plate having 010% C, 0.20% Si and 0.35% Mn and a powder material containing 0.85% C, 4.0% Si, 6% W, Mo, 2% Vn and the remainder Fe is approximately the same.
- pressure media are required which neither destroy the containers around the powder billets nor attack the construction material in the insulating layer which surround the furnace space proper, the material in the pressure chamber proper or the material in electric resistance elements for heating the furnace.
- resistance elements of molybdenum are often used, which are rapidly destroyed upon contact with oxygen gas (0 Inert gases must then be used as the pressure medium.
- the inert gases helium (He), argon (A) and nitrogen (N are particularly suitable as pressure media.
- FIG. I shows a layout of a production system
- FIG. 2 the upper part of a container filled with powder which is provided with a lid having an evacuation opening
- FIGS. 3 and 4 a press for cold isostatic compression of billets
- FIG. 5 a pressure sintering furnace.
- FIG. 1 designates a storage container for powder and 2 a rotatable table which can be turned stepwise. Close to the table is a store of containers 3. An empty container 3a has been placed on the table which, by turning the table 2 stepwise, is moved between a number of different stations. Opposite the storage container 1 is a container 3b in a filling station where it is filled with a powder from the storage container 1 through a hose or a pipe 64. At the next station is a store oflids 4 with a pipe connection 5 and welding equipment 6.
- a container 3c filled with powder 9 is provided with a lid 4 which is welded to the wall 7 of the container 3 by means of a welding seam 8 as shown in FIG. 2.
- the container 3d is at a transfer station from which it is transferred to a testing station where the tightness of the containers are checked. There are three containers 3e at this station.
- the testing equipment is designated 10.
- the plant 11 which is further described with reference to FIGS. 3 and 4, consists of a high-pressure container 12 supported by a stand 13 and a movable press stand 14 which runs on rails 15.
- the press stand 14 is of the type having two yokes and two spacers which are held together by a prestressed strip sheath. It is supported by two pairs of brackets 16, in which the shafts 18 of the transport wheels 17 are journalled. An electric motor 19 drives the shaft 18 of one of the wheel pairs by way of a gear drive, not shown, in one of the brackets 16.
- the transport wheels run on rails IS.
- the cylinder I2 is provided with two end closures 20 and 21 projecting into the cylinder, the lower one being suspended and vertically movable to a limited extent in the cylinder 12, whereas the upper one can easily be lifted for charging and emptying the container.
- the container 12 is provided at its ends with flanges 22 and the stand I3 with brackets 23 having holes, through which a rod 24 passes. During charging and emptying the stand is a little distance from the press cylinder, as shown in FIGS.
- FIG. 1 a group of pre-heating furnaces 2 are shown. Containers in the furnaces are connected, by way of the pipe connection 5 and a conduit 26 which passes through the lid of the furnace, to a vacuum pump and a gas source with harmless gas 27. When the containers have been evacuated, a desired amount of harmless gas is admitted into the containers. The pressure is suitably kept at the same value as or somewhat higher than the atmospheric pressure, so that air is fully prevented from leaking in. After heating to the desired temperature, the containers are fully or partly evacuated and are transferred to pressure furnaces 32. There may be a certain degree of postheating before cold compression in separate postheating furnaces 30 having auxiliary equipment 31 or in pressure furnaces.
- the heating furnaces may be of conventional kind, for example electric resistance furnaces.
- FIG. 1 A group of two pressure furnaces 32a and 32b is shown in FIG. 1. These furnaces are further described with reference to FIG. 5.
- the furnaces are of the type described in US. Pat. No. 3,695,597 and are thus charged from below.
- the furnaces comprise a furnace room which is enclosed in a pressure chamber.
- This pressure chamber consists of a high-pressure cylinder 33 of the type which is built up ofa tube 34 and a sur rounding prestressed strip sheath 35, an upper end closure 36 and a lower end closure 37.
- the cylinder is suspended in a stand 38.
- the upper end closure 36 remains permanently in the cylinder and is designed with a channel 38 for the supply of pressure medium and a channel for an electric cable 40 to feed electric heating elements 41 and to obtain measuring values from the thermoelement.
- the end closure 36 Above the end closure 36 lies a plate 42 with an outlet for the cable 40.
- an insulating sheath 43 and an insulating lid 44 which separate the actual furnace space 45 from the inner wall of the tube 34 and the lower surface of the end closure.
- the heating elements 41 are suspended in the upper end closure 36.
- a ring 46 In the lower part of the tube 34 is a ring 46 projecting permanently into the tube.
- the lower end closure 37 is provided with a bracket 47 and a guide 48 and is vertically slidable and turnable on a guide 49. Lowering and raising is done with the help of an operating cylinder 50 attached on the stand, the operating rod 51 of which is connected to the guide.
- the pressure furnace unit also comprises a movable press stand to take up the com pressive forces operating on the end closures.
- this press stand is of the type containing two yokes 53 and 54, two spacers 55 and a strip sheath 56 holding them together.
- the stand is provided with brackets 57 to journal wheels 58 running on rails 59.
- On the lower end closure is a cylinder 60 of insulating material.
- a container having an outer diameter of 350 mm with a highspeed steel powder which has been cold compressed at high pressure piror to heating requires as a rule a heating time of more than 8 hours, with the method used up to now, before the powder in the center has reached such a high temperature, 1100C, that the powder is bonded together and the desired density is obtained during cold compression.
- the container contains a harmless gas which fills up the spaces between the powder grains, a quicker heat transfer is obtained, by means of convection inside the powder, from the exterior part of the container to its interior part. In many cases the time of heating may be reduced by more than 50%.
- a method of manufacturing high-speed steel from metal powder which comprises enclosing powder or a green body shaped of powder in a container, heating the container with its contents and subjecting the container to a high, all sided fluid pressure in a pressure furnace at such a temperature that the powder body is bonded together and a solid body is formed, the steps of degassing the container and powder therein and, after degassing, supplying to the container gas consisting essentially of nitrogen, said gas acting during the subsequent heating as a heat transfer agent circulating within the container, heating the container with the gas therein, and subjecting the closed, heated container to a pressure which is required for bonding at a selected pressing temperature, said nitrogen being included as a constituent in the manufactured material.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Powder Metallurgy (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE7207685A SE366673C (sv) | 1972-06-12 | 1972-06-12 | Forfarande for framstellning av snabbstal med utgangspunkt fran metallpulver |
Publications (1)
Publication Number | Publication Date |
---|---|
US3893852A true US3893852A (en) | 1975-07-08 |
Family
ID=20272035
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US367105A Expired - Lifetime US3893852A (en) | 1972-06-12 | 1973-06-05 | Method of manufacturing billets from powder |
Country Status (8)
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4065303A (en) * | 1973-12-19 | 1977-12-27 | Messerschmitt-Bolkow-Blohm Gesellschaft Mit Beschrankter Haftung | Method of producing shaped objects |
US4153485A (en) * | 1974-12-28 | 1979-05-08 | Kobe Steel, Ltd. | Process for heating steel powder compacts |
US4156943A (en) * | 1977-08-24 | 1979-06-05 | Collier John P | High-strength porous prosthetic device and process for making the same |
US4259413A (en) * | 1977-05-16 | 1981-03-31 | Carpenter Technology Corporation | Composite stainless steel boron-containing article |
US4359336A (en) * | 1979-07-16 | 1982-11-16 | Pressure Technology, Inc. | Isostatic method for treating articles with heat and pressure |
US4427626A (en) | 1980-02-13 | 1984-01-24 | Petrov Alexei K | Method of making products from powders of tool steels |
US4448747A (en) * | 1981-09-01 | 1984-05-15 | Kabushiki Kaisha Kobe Seiko Sho | High density sintering method for powder molded products |
US4582681A (en) * | 1981-10-24 | 1986-04-15 | Kabushiki Kaisha Kobe Seiko Sho | Method and apparatus for hot isostatic pressing |
US4602952A (en) * | 1985-04-23 | 1986-07-29 | Cameron Iron Works, Inc. | Process for making a composite powder metallurgical billet |
US4659546A (en) * | 1985-01-26 | 1987-04-21 | Imi Titanium Limited | Formation of porous bodies |
US4693863A (en) * | 1986-04-09 | 1987-09-15 | Carpenter Technology Corporation | Process and apparatus to simultaneously consolidate and reduce metal powders |
US4861546A (en) * | 1987-12-23 | 1989-08-29 | Precision Castparts Corp. | Method of forming a metal article from powdered metal |
US4965043A (en) * | 1987-05-21 | 1990-10-23 | Avesta Nyby Powder Ab | Method of powder-metallurgical production of objects, specifically of tubes, rods, or the like |
US5503795A (en) * | 1995-04-25 | 1996-04-02 | Pennsylvania Pressed Metals, Inc. | Preform compaction powdered metal process |
US20150266253A1 (en) * | 2012-10-15 | 2015-09-24 | Avere Technologies Ab | Arrangement and method for handling a load for isostatic pressure treatment |
CN106964769A (zh) * | 2016-11-09 | 2017-07-21 | 湘西自治州丰达合金科技有限公司 | 一种高性能锻轧锰的生产工艺以及专用生产设备 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5118905A (en) * | 1974-08-08 | 1976-02-14 | Nippon Tungsten | Chitan * moribudenshoketsutaino seizoho |
JPS5321018A (en) * | 1976-08-11 | 1978-02-27 | Nippon Tungsten | Hot hydrostatic pressure sintering process |
DE2737208C2 (de) * | 1977-08-18 | 1986-06-19 | MTU Motoren- und Turbinen-Union München GmbH, 8000 München | Verfahren zur Kapselung eines Formkörpers aus Keramik |
JPS5435806A (en) * | 1977-08-25 | 1979-03-16 | Kobe Steel Ltd | Hot pressing method at static pressure |
JPS5451909A (en) * | 1977-09-30 | 1979-04-24 | Kobe Steel Ltd | Hot hydrostatic press method |
DE3115095C2 (de) * | 1981-04-14 | 1985-03-14 | Nyby Uddeholm AB, Torshälla | Verfahren zum pulvermetallurgischen Herstellen von stranggepreßten Rohren aus rostfreiem Stahl oder hochlegierten Nickelstählen unter Verwendung von auf Dichtigkeit geprüften Hüllen |
CN106735191B (zh) * | 2016-12-20 | 2018-09-14 | 北京科技大学 | 一种制备粉末高速钢的方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3341325A (en) * | 1966-12-09 | 1967-09-12 | Crucible Steel Co America | Method for producing alloy-steel articles |
US3384481A (en) * | 1967-07-06 | 1968-05-21 | Mallory & Co Inc P R | Method of forming composites of thermally unstable materials |
US3469976A (en) * | 1967-07-31 | 1969-09-30 | Du Pont | Isostatic hot pressing of metal-bonded metal carbide bodies |
US3698962A (en) * | 1971-04-30 | 1972-10-17 | Crucible Inc | Method for producing superalloy articles by hot isostatic pressing |
US3700435A (en) * | 1971-03-01 | 1972-10-24 | Crucible Inc | Method for making powder metallurgy shapes |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3109735A (en) * | 1961-10-30 | 1963-11-05 | John M Googin | Sintering method |
US3156011A (en) * | 1962-01-10 | 1964-11-10 | Donald M Olson | Self-contained variable-environment pressing die |
US3413392A (en) * | 1966-10-17 | 1968-11-26 | Du Pont | Hot pressing process |
US3419935A (en) * | 1966-12-19 | 1969-01-07 | Atomic Energy Commission Usa | Hot-isostatic-pressing apparatus |
US3466734A (en) * | 1967-03-16 | 1969-09-16 | Crucible Steel Co America | Metal articles and method |
US3627514A (en) * | 1969-05-07 | 1971-12-14 | Crucible Inc | High-speed steel containing chromium tungsten molybdenum vanadium and cobalt |
-
1972
- 1972-06-12 SE SE7207685A patent/SE366673C/xx unknown
-
1973
- 1973-05-30 DE DE2327568A patent/DE2327568C3/de not_active Expired
- 1973-06-05 US US367105A patent/US3893852A/en not_active Expired - Lifetime
- 1973-06-05 SU SU731930036A patent/SU621308A3/ru active
- 1973-06-08 JP JP6461773A patent/JPS5549145B2/ja not_active Expired
- 1973-06-11 GB GB2767073A patent/GB1424109A/en not_active Expired
- 1973-06-12 IT IT1018/73A patent/IT983238B/it active
- 1973-06-12 FR FR7321236A patent/FR2187934B1/fr not_active Expired
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3341325A (en) * | 1966-12-09 | 1967-09-12 | Crucible Steel Co America | Method for producing alloy-steel articles |
US3384481A (en) * | 1967-07-06 | 1968-05-21 | Mallory & Co Inc P R | Method of forming composites of thermally unstable materials |
US3469976A (en) * | 1967-07-31 | 1969-09-30 | Du Pont | Isostatic hot pressing of metal-bonded metal carbide bodies |
US3700435A (en) * | 1971-03-01 | 1972-10-24 | Crucible Inc | Method for making powder metallurgy shapes |
US3698962A (en) * | 1971-04-30 | 1972-10-17 | Crucible Inc | Method for producing superalloy articles by hot isostatic pressing |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4065303A (en) * | 1973-12-19 | 1977-12-27 | Messerschmitt-Bolkow-Blohm Gesellschaft Mit Beschrankter Haftung | Method of producing shaped objects |
US4153485A (en) * | 1974-12-28 | 1979-05-08 | Kobe Steel, Ltd. | Process for heating steel powder compacts |
US4259413A (en) * | 1977-05-16 | 1981-03-31 | Carpenter Technology Corporation | Composite stainless steel boron-containing article |
US4156943A (en) * | 1977-08-24 | 1979-06-05 | Collier John P | High-strength porous prosthetic device and process for making the same |
US4359336A (en) * | 1979-07-16 | 1982-11-16 | Pressure Technology, Inc. | Isostatic method for treating articles with heat and pressure |
US4427626A (en) | 1980-02-13 | 1984-01-24 | Petrov Alexei K | Method of making products from powders of tool steels |
US4448747A (en) * | 1981-09-01 | 1984-05-15 | Kabushiki Kaisha Kobe Seiko Sho | High density sintering method for powder molded products |
US4582681A (en) * | 1981-10-24 | 1986-04-15 | Kabushiki Kaisha Kobe Seiko Sho | Method and apparatus for hot isostatic pressing |
US4659546A (en) * | 1985-01-26 | 1987-04-21 | Imi Titanium Limited | Formation of porous bodies |
US4602952A (en) * | 1985-04-23 | 1986-07-29 | Cameron Iron Works, Inc. | Process for making a composite powder metallurgical billet |
US4693863A (en) * | 1986-04-09 | 1987-09-15 | Carpenter Technology Corporation | Process and apparatus to simultaneously consolidate and reduce metal powders |
US4965043A (en) * | 1987-05-21 | 1990-10-23 | Avesta Nyby Powder Ab | Method of powder-metallurgical production of objects, specifically of tubes, rods, or the like |
US4861546A (en) * | 1987-12-23 | 1989-08-29 | Precision Castparts Corp. | Method of forming a metal article from powdered metal |
US5503795A (en) * | 1995-04-25 | 1996-04-02 | Pennsylvania Pressed Metals, Inc. | Preform compaction powdered metal process |
US20150266253A1 (en) * | 2012-10-15 | 2015-09-24 | Avere Technologies Ab | Arrangement and method for handling a load for isostatic pressure treatment |
US10022931B2 (en) * | 2012-10-15 | 2018-07-17 | Avure Technologies Ab | Arrangement and method for handling a load for isostatic pressure treatment |
CN106964769A (zh) * | 2016-11-09 | 2017-07-21 | 湘西自治州丰达合金科技有限公司 | 一种高性能锻轧锰的生产工艺以及专用生产设备 |
Also Published As
Publication number | Publication date |
---|---|
JPS5549145B2 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) | 1980-12-10 |
IT983238B (it) | 1974-10-31 |
SE366673B (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) | 1974-05-06 |
DE2327568A1 (de) | 1974-01-03 |
SE366673C (sv) | 1984-04-09 |
FR2187934B1 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) | 1979-04-13 |
DE2327568B2 (de) | 1978-05-18 |
DE2327568C3 (de) | 1983-12-15 |
GB1424109A (en) | 1976-02-11 |
SU621308A3 (ru) | 1978-08-25 |
JPS4955508A (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) | 1974-05-29 |
FR2187934A1 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) | 1974-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3893852A (en) | Method of manufacturing billets from powder | |
US3703278A (en) | Furnace for sintering powder | |
US4341557A (en) | Method of hot consolidating powder with a recyclable container material | |
US3622313A (en) | Hot isostatic pressing using a vitreous container | |
DE2419014C3 (de) | Verfahren zum Herstellen von Rohren aus rostfreiem Stahl und Anwendung des Verfahrens auf das Herstellen von Verbundrohren | |
US3728111A (en) | Method of manufacturing billets from powder | |
US3689259A (en) | Method of consolidating metallic bodies | |
US2725288A (en) | Process and apparatus for fabricating metallic articles | |
US3704115A (en) | High alloy steel powders and their consolidation into homogeneous tool steel | |
US3697261A (en) | Manufacture of cylindrical bodies from metal powder | |
US5445787A (en) | Method of extruding refractory metals and alloys and an extruded product made thereby | |
US3772009A (en) | Method for manufacturing an object from iron-based alloy by isostatic compression | |
US3276867A (en) | Cermet materials and process of making | |
US2818339A (en) | Method for producing malleable and ductile beryllium bodies | |
JPS646241B2 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) | ||
US4178178A (en) | Method of sealing hot isostatic containers | |
US3695597A (en) | Furnace for heat treating objects under pressure | |
US3775043A (en) | Means in furnaces for vacuum-pressure-sintering | |
US3861839A (en) | Diffusion molding apparatus | |
DE2104708A1 (de) | Verfahren zur Herstellung von Rohlingen aus Pulver | |
CN115894033A (zh) | 一种大尺寸氟化镁慢化体的制备方法 | |
US3384481A (en) | Method of forming composites of thermally unstable materials | |
US3237293A (en) | Manufacture of cermets with metal members bonded thereto | |
JPS6361096B2 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) | ||
JPS63162863A (ja) | スパツタリング用クロムタ−ゲツトの製造方法 |