US3888389A - Flow controller for flowing products, more particularly, bulk materials - Google Patents

Flow controller for flowing products, more particularly, bulk materials Download PDF

Info

Publication number
US3888389A
US3888389A US388783A US38878373A US3888389A US 3888389 A US3888389 A US 3888389A US 388783 A US388783 A US 388783A US 38878373 A US38878373 A US 38878373A US 3888389 A US3888389 A US 3888389A
Authority
US
United States
Prior art keywords
force
flow
control
improvement
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US388783A
Other languages
English (en)
Inventor
Hans Oetiker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Buehler AG
Original Assignee
Buehler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CH1249872A external-priority patent/CH557060A/de
Priority claimed from CH609273A external-priority patent/CH575626A5/de
Application filed by Buehler AG filed Critical Buehler AG
Application granted granted Critical
Publication of US3888389A publication Critical patent/US3888389A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/03Control of flow with auxiliary non-electric power

Definitions

  • the flow controller has a closure member of adjustable through-flow cross-section arranged on a storage 1 June 10, 1975 bin or a gravity discharge pipe, and a regulating drive for regulating the through-flow cross-section.
  • An inclined impact plate is secured on a first lever arm of a balance beam, in downwardly spaced relation to the closure member, so that the impact force on the plate, due to deflection thereby of the product falling through a given distance, is proportional to the actual value of the flow rate as expressed as quantity by weight per unit of time.
  • the balance beam is pivotally connected intermediate its ends to a fixed frame and has at least one counter weight on a second lever arm, and an ajustable force-producing device acts on the balance beam in opposition to the impact force to regulate the through-flow cross-section.
  • the deviation between the desired and actual values of the flow rate of the product, resulting from the interaction between the impact force and the force-producing device, is converted into a corresponding positive or negative pressure signal serving as a regulating signal for the regulating drive.
  • An auxiliary beam is pivotally connected separately to the fixed frame, and the adjustable force-producing device loads the auxiliary beam.
  • a supporting edge is mounted on the auxiliary beam for adjustment longitudinally thereof in engagement with the second lever arm of the balance beam to transmit to the latter a precisely balanced proportion of the load produced by the adjustable forceproducing means, indicative of the desired value of flow rate of the product, and acting in opposition to the impact force.
  • the adjustable force-producing device may comprise a weight movable longitudinally of the auxiliary beam in cooperation with a percentage scale, or a pressure responsive diaphragm element acting on the auxiliary beam through a lever arm extending therefrom, and the diaphragm element may be adjustable longitudinally of the auxiliary beam.
  • Several such flow controllers may be individually adjustable with respect to different products and controlled from a central station.
  • the invention relates to a flow or quantity controller for substances that can flow herein generally referred to as flowable product, particularly but not exclusively for bulk materials.
  • Such flow controllers commonly have a closure device of adjustable throughflow cross-section for the product arranged at a storage bin or silo, or a down pipe of some other installation. and an inclined impact plate disposed at a distance below the closure device.
  • the impact plate is secured on a balance beam and receives the impact force or momentum due to deflection of the product falling a specific constant distance.
  • the impact force is indicative of the outflow quantity of product per unit of time.
  • the balance beam is pivotably connected to a fixed frame and supports a counterweight on its lever arm remote from the impact plate.
  • the desired value of the outflow quantity can be set and compared with the actual value as indicated by the impact force. The result of the comparison is then utilized to adjust the closure device by way of a regulating drive to regulate the flow.
  • a deviation from the position of equilibrium is detected either mechanically directly or by conversion into a proportional pressure or voltage signal, sometimes by a combined use thereof, with the correct preceding sign, and fed as a regulating signal to the regulating drive.
  • the energy necessary for operating the latter is usually in the same form as that used for transmitting signals.
  • the controller can operate continuously (analog type) or noncontinuously (digital type, switching controller).
  • the force of a sliding weight or a spring, opposing the impact force on the impact plate acts directly, in accordance with the setting thereof, as set on a weight scale, on the corresponding lever arm of the balance beam.
  • the desired value setting of the product outflow is valid for a specific weight quantity per unit of time, to which there corresponds a volume flow which is variable in the opposite sense to the bulk weight of the product. It will be clear that the control precision decreases as the throughput decreases.
  • the objective of the present invention is to provide an apparatus of the mentioned kind and which is capable of a precisely regulatable and, if necessary, remotecontrollable, discharge of a product adapted rapidly to particular output requirements.
  • the apparatus which is based on the lever principle, attains this objective by including an auxiliary beam pivotally connected to the fixed frame of the apparatus separately from the balance beam.
  • This auxiliary beam is loaded by a regulatable force-producing device, and a longitudinally adjustable supporting edge is secured to the auxiliary beam for precisely balanced transmission of the load, emanating from the regulatable force-producing device, to the balance beam.
  • Simple constructional features such as the arrangement of the regulatable force-producing device for displacement along a percentage scale on the auxiliary beam, and the possibility of balancing the load, ema nating from the regulatable force-producing device, by means of the supporting edge which is adjustable longitudinally of the auxiliary beam, make it possible to attain increased control precision as well as independence from tolerance fluctuations.
  • the supporting edge can be arranged in the plane including the pivots of the balance beam and the auxiliary beam. Such an arrangement makes it possible to have only a small amount of rolling friction during the movement of the supporting edge on the balance beam, as well as hysteresis-free operation of the apparatus.
  • the invention includes a control nozzle which is connected to a source of pressure medium and, through a pressure conduit, to the regulating drive, and which nozzle is directed in the direction of movement of the balance beam on the fixed frame.
  • the nozzle cross-section starting from the nozzle entrance, initially merges into a throttle element which is followed by an abrupt widening of the cross-section, after which the nozzle crosssection does not substantially decrease up to the nozzle discharge mouth.
  • the nozzle has associated therewith a connection for the pressure conduit leading to the regulating drive and which connection is very close to the cross-section widening, preferably immediately thereafter.
  • the precision is, in fact, not influenced by the moving line of action of the impact force, but the proportionality of the spring force is adversely effected by the preload at load adjustment. More especially, here again there are no measures for meeting the other aforesaid conditions for control precision.
  • the regulating drive comprises a cylinder-diaphragm system of considerable volume acting without friction and loaded by an opposing force
  • the closure device having a rotationally symmetrical geometry with axes directed in the direction of the balance beam
  • the impact plate having a variable inclination and a surface quality which has an advantageous effect on friction conditions.
  • An emergency closing device connected between the control nozzle and the regulating driive, can provide the safety function.
  • control devices each consisting of a pressure medium operated proportional controller which is operatively connected at the output side by its own control line to the forceproducing device of the associated flow controller, and respective desired value setting devices controlling the proportional controller, with a force-producing device for converting the given variable pressure into a force and with elements for receiving the force-producing device and for displacement thereof along a scale with percentage graduation, and with the force-producing device loading a lever of the proportional controller at a point of action which is displaceable along this lever, are arranged at a central control station.
  • the central control station also includes a control device determining the entire product discharge of the mixing battery and which, for presetting a pressure which is variable in accordance with an increase or decrease in the calibrated total discharge output, is connected through control lines to the respective force-producing devices of the desired value setting devices of the control devices associated with the flow controllers.
  • the percentage proportion of a mixing component, to be supplied by a flow controller, in the total product discharge can be adjusted, in each case, at the control device associated with the flow controller.
  • the subordination of all the control devices associated with the individual flow controllers to a further control device determining the entire product discharge of the mixing battery has the advantage that the total discharge output of the installation, once fixed by calibration, can be increased or reduced by a desired percentage to adapt to the fluctuating operating requirements.
  • the mixing ratio of the components, once set, remains unaltered.
  • An object of the invention is to provide an improved flow controller for flowable products.
  • Another object of the invention is to provide such a flow controller which permits a precisely regulatable discharge of the product rapidly to particular output requirements.
  • a further object of the invention is to provide such a flow controller which is capable of remote control of the discharge of the product.
  • Another object of the invention is to provide such a flow controller which is free of disadvantages of prior art flow controllers of the same general type.
  • FIG. 1 is a diagrammatic view of a flow controller embodying the invention as seen in the direction of the Arrow I of FIG. 2;
  • FIG. 2 is a side view of the flow controller as seen in longitudinal section through the regulating drive along II II of FIG. 1;
  • FIG. 3 shows the construction of the control nozzle
  • FIG. 4 illustrates a first constructional variant for remote control
  • FIG. 5 illustrates a second example for remote control operation
  • FIG. 6 shows a remote control arrangement intended for the construction shown in FIG. 4.
  • the flow controller of FIG. 1 has a balance beam 6 and an auxiliary beam 1 both pivotally connected to a fixed frame (not shown) by respective pivots 7 and 8 in the form of cross-spring bands.
  • Auxiliary beam 1 carries a regulating weight 2 which can be displaced along a percentage scale 3 secured thereon.
  • Also arranged on auxiliary beam 1 is a supporting edge 4 which can be finely adjusted longitudinally of auxiliary beam 1 by a threaded spindle or guide screw 5 disposed below the sliding path of adjustable weight 2 and parallel thereto. Supporting edge 4 bears on that lever arm of the balance beam 6 which is not subjected to loading by the outflow of product.
  • This lever arm is provided with an adjustable counterweight 61, and its end remote from the load is formed as a baffle surface in front of the mouth 93 of a control nozzle 9 mounted below the lever arm on the fixed frame.
  • Nozzle 9 comprises a connection 10 from a pressure medium source (not shown) for the supply, in this case, of pressure fiuid in the form of compressed air, and the nozzle also has a connection for an outgoing pressure conduit 11.
  • control nozzle 9 greatly influences the control precision of the flow controller.
  • FIG. 3 shows the nozzle in cross-section.
  • the nozzle entrance 91 is followed by a throttle portion 92 followed by a sudden widening 94 extending to nozzle mouth 93.
  • a ratio of l:4 has been found suitable as the ratio between the cross-sectional area of throttle portion 92 and that of widening 94.
  • pressure conduit 11 advantageously is connected directly to widened section 94.
  • an impact plate 14 is shown secured to the lever arm of the balance beam 6 at the load side.
  • the shaping and the surface quality of impact plate 14 contribute to achieving the desired precision in control.
  • the nonlinearity which occurs when there are load variations owing to different heights of fall for the individual product flow streams, can be eliminated, and the friction during impact can be coped with by suitable surface formation.
  • the angle of inclination a of impact plate 14 relative to the horizontal is advantageously between 50 and 70, whereas the discharge portion 141 of that plate is inclined at an angle [3 45 relatively to the plane of the plate.
  • An anti-friction coating 16 of polytetrafluoroethylene applied to the stainless steel plate largely overcomes disturbance due to friction. This combination results in a constant coefficient of friction both during and after the wearing down of the covering.
  • a closure member 13 is arranged on the fixed frame, spaced above impact plate 14, with an axis of rotation 133 extending in the same direction as balance beam 6. It comprises an outlet whose through-flow aperture 131 is situated on the generated surface of an imaginary cylinder described about axis of rotation 133, and narrows trapezoidally towards the impact plate 14, and a cylindrical rotary valve member 132 which passes below the through-flow aperture 131 by rotation about axis 133.
  • the orientation of axis of rotation 133 because it is substantially parallel to the balance beam 6, results in leverage for the impact or impulse force which is constant with any loading.
  • FIG. 2 shows a cylinder-diaphragm system, of comparatively large volume, as a regulating drive 12 mounted on the fixed frame and having a large-surface diaphragm 121, with a return spring 122 secured to it and to the cylinder housing, and having a connecting rod 123 by means of which regulating drive 12 is coupled with closure member 13.
  • Pressure conduit 11 leads from control nozzle 9 to regulating drive 12 by way of a hand-operated emergency closing valve 15 (see FIG. 1).
  • the apparatus described above operates as follows. Before starting operation, a single initial calibration is carried out, since the desired value of the product outflow is expressed as a percentage and is set by adjusting adjustable weight 2 along scale 3 on auxiliary beam 1. For a desired quantity (within the output range of the flow controller) expressed in terms of weight per unit of time, adjustable weight 2 is set to the percent mark. The counter-loading to the product outflow, which is thus obtained, is then balanced by adjusting the position of supporting edge 4 by means of guide screw 5 until the required weight quantity per unit of time is reached as measured on a calibrating balance arranged downstream of the apparatus.
  • adjustable weight 2 is displaced to the appropriate mark on the percentage scale 3.
  • each unit is calibrated in the manner described above for the 100 percent discharge quantity.
  • Each unit then can be set to deliver the desired percentage of the mixture component controlled 6 by it, simply by displacement of its respective adjustable weight 2.
  • this apparatus permits extending the adjustment range, with small throughput quantities, by a factor of 10, thus achieving a substantially higher control precision.
  • Calibration of the apparatus eliminates the effect of variations in manufacture of the components of the controller, due to unavoidable tolerances, so that the production thereof is simplified and made less expen sive.
  • Means are also provided for ensuring substantially friction-free cooperation of the relevant parts, that is to say, hysteresis-free operation of the flow controller.
  • a first means is the arrangement of the supporting edge 4 in the horizontal plane through the respective pivots 7 and 8 of the balance beam 6 and auxiliary beam 1.
  • a second such means is constituted by the constructional arrangement of the control nozzle 9.
  • the large-surface diaphragm 121 operates without friction as regulating drive 12. With its great volume, drive 12 also acts as a digital-analog converter, so that closure member 13 exhibits an analog control behavior when acting as a regulating unit.
  • Emergency closing valve 15, arranged in pressure conduit 11 between control nozzle 9 and regulating drive 12, is provided for immediate stopping of the control apparatus in the event of a fault. If an emergency closing operation is initiated, pressure conduit ll is blocked, but the pressure in regulating drive 12 is vented to atmosphere and closure member 13 closed by return spring 122. Since the product output thus falls off, the counter-loading due to adjustable weight 2 closes control nozzle 9.
  • the pressure signal which builds up in pressure conduit 11 acts as an opening command at regulating drive 12 until balance beam 6 tilts under the impact of the rapidly increasing product output, and the movement about the position of equilibrium is once again resumed.
  • closure system 13 with its cylindrical rotary valve 132 and cylindrical-trapezoidal through flow aperture 13] disposed about the axis of rotation 133 which is substantially parallel to balance beam 6, insures that the distance of the linear center of gravity of all the product flow streams from pivot 7, and also the distance of the line of action of the impulse force resulting from the impact, both remain constant for any desired load setting.
  • FIG. 2 shows that the path lengths, along which the flow streams of falling product are again acceierated between the first and second impacts, decrease with increasing throughput. The differences in the height of fall of the flow streams are thereby compensated.
  • antifriction coating 16 of plastics material which reduces friction.
  • FIGS. 4 and show two constructional forms for such applications. Regulating drive 12, closure member 13, impact plate 14 and pressure conduit 11 with emer' gency closing valve have been omitted here.
  • the same reference numerals designate components identical or equivalent to those described with reference to FIG. 1 to FIG. 3.
  • adjustable weight 2 is either reinforced, reduced, or completely replaced by a diaphragm drive arranged on the fixed frame. In the case of complete replacement, adjustable weight 2 must be set to a zero position.
  • the remote-controlled pressure force which can act on diaphragm 20 both in a positive sense and in a negative sense, is transmitted by means of a pivot 21 to an additional lever 22 of auxiliary beam 1.
  • FIG. 5 shows a construction involving an advanced degree of automation.
  • the diaphragm 200 pro vided in place of adjustable weight 2, is supported by a guide bar 17 mounted on the fixed frame and extending substantially parallel to auxiliary beam 1 above percentage scale 3.
  • its adjustment along scale 3 is effected by means of a spindle 18 and a remote-controlled electric motor 19 both of which are also arranged on the fixed frame.
  • an emergency closing valve 150 (see FIG. 1) with remote operation is provided.
  • FIG. 6 shows the operating diagram of the two principal parts of an arrangement for the remote control of a multiproduct mixing battery with flow controllers according to FIG. 4.
  • These are two control devices 40, 40, which are arranged in a central control station LS and which have similar features as regards their apparatus layout.
  • the first control device 40 allocated to one of the flow controllers, is itself controlled, together with those of the other flow controllers of the mixing battery, by the control device 40' for determining the currently desired adjusted total output of the installation.
  • the other identical control devices 40 associated with the other flow controllers have not been illustrated.
  • a control nozzle 24 Connected to the compressed-air conduit 23 in FIG. 6 is a control nozzle 24 which is constructed as shown in FIG. 3 and is incorporated in central control station LS.
  • the control output 25 of nozzle 24 communicates by way of a conduit 26 with a force-producing device which is constructed as a diaphragm 27 and is incorporated in central control station LS.
  • a lever 28, which is pivotally connected thereto and which is associated as a baffle plate with control nozzle 24, is coupled with diaphragm 27.
  • a diaphragm 33 arranged on supporting plate 31 as a forceproducing device, presses on lever 30.
  • Supporting plate 31 is mounted on a guide screw 34 by way of a spring loaded split nut 35, so that it can be displaced axially in either direction without play by rotating the guide screw 34.
  • Guide screw 34 is carried by two bearings 36 mounted on central control station LS and is rotatable by a hand wheel 37. Also forming part of central control station L5 is a scale 38, with a percentage graduation from 0 to lOO percent, along which a pointer 32 carried by supporting plate 31 can move.
  • Apparatus elements 23 to 28 form a pneumatic regulator with proportional behavior and elements 30 to 38 provide a desired value setting means.
  • the combination of this pneumatic regulator with such desired value setting means provides control device 40 which is operativcly connected, by way of a control line 29 starting from conduit 26 and from diaphragm 27, with the force'producing device constituted by diaphragm drive 20 of the associated flow controller according to FIG. 4.
  • Control device 40 is of a construction which corresponds to that of control device 40 already described, apart from the following features which will be described.
  • a tension spring 33" is additionally provided.
  • This tension spring 33" is secured at one end to central control station LS and its other end is operatively connected to lever 28'.
  • another spring 33 is anchored, which acts as a pressure device and bears on lever 30'.
  • Scale 38' of the desired value setting means 30' to 38' has a percentage graduation 2': 25 percent.
  • control device 40' and control devices 40 are constituted by control lines 29', 29, 29" which start from line 26' and from diaphragm 27' of the proportional controller 23' to 28' and extend to the respective diaphragms 33 of desiredvalue setting means 30 to 38 of the respective control devices 40.
  • the arrangement described operates as follows.
  • the pressure signal acting by way of the associated control line 29 on the force-producing device constituted by diaphragm membrane 20 of a flow controller of the type shown in FIG. 4, is the basis for the desired value of a specific weight quantity per unit of time to be delivered by the flow controller.
  • This pressure signal is formed by proportional controller 23 to 28 from the two active components, namely, pressure force and leverage.
  • the pressure force is produced by diaphragm 33 in accordance with a pressure signal of proportional controller 23' to 28' supplied by way of the associated control line 29.
  • the leverage of the particular pressure force which lever 30 of desired value setting means 30 to 38 transmits to lever 28 of proportional controller 23 to 28 at the point of action of the two levers 28, 30, can be determined by displacement of the point of action on lever 28.
  • the displacement of the point of action is effected by positioning of supporting plate 31, together with lever 30 and diaphragm 33, by rotating guide screw 34 along scale 38 so that pointer 32 of supporting plate 31 is set to the percentage mark corresponding to the desired value.
  • the analog pressure signal of proportional controller 23' to 28' of the overriding control device 40' for diaphragms 33 is produced in a similar manner to that for the diaphragm drives 20 of the associated flow controllers in the respective proportional controllers 23 to 28.
  • the force component for the purpose is suplied by the two springs 33' and 33".
  • lever 28 of proportional controller 23' to 28' is preloaded by spring 33".
  • the additional loading of lever 28', caused by the constant pressure force of spring 33', can be varied by displacement of supporting plate 31 together with lever 30' and spring 33', by rotating guide screw 34 corresponding to a variation of from to 50 percent of the calibrated total output.
  • Pointer 32' of supporting plate 31' passes along scale 38' from 25 percent through 100 percent to 25 percent.
  • said adjustable force-producing device is an adjustable weight displaceable longitudinally of said auxiliary beam; and a linear percentage scale extending longitudinally of said auxiliary beam and cooperable with said adjustable weight.
  • the improvement claimed in claim 2 including a threaded spindle rotatably mounted on said auxiliary beam and extending parallel to said scale; said threaded spindle being threadedly engaged with said supporting edge to adjust said supporting edge longitudinally of said auxiliary beam.
  • said adjustable force-producing device includes a fluid pressure device for transmitting a remote-controlled fluid pressure force.
  • the improvement claimed in claim 5 including a support secured to said fixed frame and extending substantially parallel to said auxiliary beam; said fluid pressure device being mounted on said support for adjustment therealong; a linear percentage scale extending longitudinally of said auxiliary beam and cooperable with said fluid pressure device; a threaded spindle rotatably mounted on said support and threadedly engaged with said fluid pressure device; and a motor connected to said spindle to rotate said spindle to adjust said fluid pressure device longitudinally of said support with respect to said percentage scale.
  • a flow controller the improvement claimed in claim 5, in which a plurality of said flow controllers, each controlling flow of a respective product, are arranged in parallel to provide a product mixture; a central control station for remote control of said flow controllers; respective first control devices for said flow controllers at said central control station; each first control device including a pressure medium operated proportional controller operatively connected, at an output side, through a respective control line with the adjustable force-producing device of a respective flow controller; a respective desired value setting means controlling each proportional controller; each desired value setting means including a subsidiary forceproducing device for converting a predetermined variable pressure into a force, and including elements to which such force is applied and arranged for displacement along a scale provided with a percentage graduation; each subsidiary force-producing device loading a lever of the associated proportional controller at a point of action along said last-named lever determined by such displacement; a second control device at said central control station for determining the total product output of all of said flow controllers; respective control lines connecting said second control device with respective subsidiary force-producing
  • said impact plate has a baffle surface which is substantially parallel to said balance beam and having a lower discharge portion extending at an angle toward the path of product flow along said baffle surface.
  • a regulating drive for regulating the through-flow cross-section an inclined impact plate secured on a first lever arm of a balance beam in downwardly spaced relation to the closure member so that the impact force on the plate, due to deflection thereby of the product falling through a given distance, is proportional to the actual value of the fiow rate of the product, expressed as quantity by weight per unit of time, the balance beam being pivotally connected intermediate its ends to a fixed frame and having at least one counterweight on a second lever arm remote from the impact plate, and an adjust able force-producing device acting on the balance beam in opposition to the impact force to regulate the through-flow cross-section with the deviation between desired value and actual value of flow rate of the product, resulting from the interaction between the impact force and the force-producing device being converted into a corresponding positive or negative pressure signal serving as a regulating signal for
  • said regulating drive comprises a large volume cylinder having one end closed by a flexible diaphragm and having its opposite end formed with an inlet communicating with said pressure conduit; means biasing said diaphragm inwardly against the pressure exerted thereon from said pressure conduit; and a transmission rod connecting said diaphragm to said closure member.
  • the improvement claimed in claim 12 including a manually controlled closing valve interposed in said pressure conduit between said control nozzle and said regulating drive; whereby, when said closing valve is closed, the supply of pressure fluid to said regulating drive is interrupted and said biasing force, acting on said diaphragm, effects closure of said closure member.
  • said closure member includes a valve member in the form of a segment of a cylindrical casing and arranged to regulate an outlet flow aperture located on the generated surface of an imaginary cylinder concentric with said valve member and narrowing trapezoidally toward said impact plate.
  • valve member in which said valve member is mounted for angular displacement about anaxis of rotation extending substantially parallel to said balance beam.
  • said impact plate is formed of stainless steel and has, on its baffle surface, an anti-friction coating of polytetrafluoroethylene.
  • each desired value setting means comprises a diaphragm device 19.
  • the elements provided for receiving and displacement of said force-producing devices of the respective desired value setting means comprise, for each element, a supporting plate having a pointer mounting the associated force-producing device, in the form of a diaphragm device, a lever pivotally connected to the diaphragm device and bearing on the lever of the respective proportional controller; and a respective threaded spindle rotatably mounted at said central control station and threadedly engaged with the associated supporting plate to displace the associated supporting plate, without play, longitudinally of the associated percentage scale.
  • each desired value setting means has a percentage graduation from to 100 percent; the displacement of the point of action of each diaphragm device on the associated lever of the respective proportional controller being limited by two end settings corresponding, respectively, to the 0 and the 100 percent graduations.
  • said second control device for determining the total product output of the plurality of flow controllers includes a proportional controller and a desired value setting means identical to the corresponding elements of said first control devices.
  • the desired value setting means of said second control device includes biasing means operative between its supporting plate and its movable lever for producing a constant pressure on its movable lever.
  • the balance beam being pivotally connected intermediate its ends to a fixed frame and having at least one counterweight on a second lever arm remote from the impact plate, and an adjustable force'producing device acting on the balance beam in opposition to the impact force to regulate the through-flow cross-section with the deviation between desired value and actual value of flow rate of the product, resulting from the interaction between the impact force and the force-producing device being converted into a corresponding positive or negative pressure signal serving as a frgulating signal for the regulating drive: the improvement comprising, in combination, an auxiliary beam pivotally connected separately to said fixed frame: the adjustable force-producing device loading said auxiliary beam; a supporting edge mounted on said auxiliary beam for adjustment longitudinally thereof, and engaging said second lever arm of said balance beam to transmit, to said second lever are, a precisely balanced proportion of the load produced by said adjustable force-producing means, indicative of the desired value of flow rate of the

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Flow Control (AREA)
  • Weight Measurement For Supplying Or Discharging Of Specified Amounts Of Material (AREA)
US388783A 1972-08-23 1973-08-16 Flow controller for flowing products, more particularly, bulk materials Expired - Lifetime US3888389A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1249872A CH557060A (de) 1972-08-23 1972-08-23 Vorrichtung zur regelung der durchflussmenge von fliessenden produkten, insbesondere schuettguetern.
CH609273A CH575626A5 (de) 1973-04-27 1973-04-27

Publications (1)

Publication Number Publication Date
US3888389A true US3888389A (en) 1975-06-10

Family

ID=25698958

Family Applications (1)

Application Number Title Priority Date Filing Date
US388783A Expired - Lifetime US3888389A (en) 1972-08-23 1973-08-16 Flow controller for flowing products, more particularly, bulk materials

Country Status (9)

Country Link
US (1) US3888389A (de)
JP (1) JPS5317419B2 (de)
CA (1) CA994727A (de)
DE (1) DE2342668C2 (de)
ES (1) ES418109A1 (de)
FR (1) FR2197479A5 (de)
IT (1) IT991324B (de)
NL (1) NL7309880A (de)
SE (1) SE386291B (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0853234A1 (de) * 1997-01-11 1998-07-15 New Holland Belgium N.V. Verbesserungen an und in Bezug auf Oberflächen
EP0853233A1 (de) * 1997-01-11 1998-07-15 New Holland Belgium N.V. Verbesserungen an und in Bezug auf Elemente
EP0856723A2 (de) 1997-01-14 1998-08-05 New Holland Belgium N.V. Verbesserungen an oder in Bezug auf Massendurchflussmessung
CN102294104A (zh) * 2011-08-20 2011-12-28 公安部天津消防研究所 气体灭火系统喷嘴流量特性测试装置
CN104280256B (zh) * 2014-09-28 2016-10-05 山东省广安消防技术服务中心 灭火器喷射性能自动试验装置
CN109506731A (zh) * 2017-09-15 2019-03-22 迪尔公司 用于监测作物产量的监测装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2417134A1 (fr) * 1978-02-08 1979-09-07 Saint Gobain Reglage du debit de pulpes evolutives
US4597405A (en) * 1982-03-16 1986-07-01 Gebruder Buhler Ag Process and apparatus for controlling a controllable magnitude and use of the process
EP0089058B1 (de) * 1982-03-16 1987-11-04 Bühler AG Verfahren und Anordnung zur Regelung einer Regelgrösse sowie Anwendung des Verfahrens
DE3931562A1 (de) * 1989-09-22 1991-04-04 Karl Kraus Strahl-drossel

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US932944A (en) * 1909-08-31 William Baker Feed-regulator.
US1558668A (en) * 1923-11-26 1925-10-27 Carter Mayhew Mfg Company Feed regulator
US2047203A (en) * 1934-03-05 1936-07-14 Elmer L Henson Method of and apparatus for determining the weight of flowing grain
US2872073A (en) * 1956-03-26 1959-02-03 B I F Ind Inc Feed measuring and controlling apparatus
US3187944A (en) * 1962-10-09 1965-06-08 Arthur J Stock Gravimetric feeder and method of filling voids therein or in other pressure vessels
US3308898A (en) * 1965-09-22 1967-03-14 Harper Inc Allen Vibrated flow control valve and weigher
US3468457A (en) * 1967-12-18 1969-09-23 Ernest N Martin Dispenser for fertilizer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US932944A (en) * 1909-08-31 William Baker Feed-regulator.
US1558668A (en) * 1923-11-26 1925-10-27 Carter Mayhew Mfg Company Feed regulator
US2047203A (en) * 1934-03-05 1936-07-14 Elmer L Henson Method of and apparatus for determining the weight of flowing grain
US2872073A (en) * 1956-03-26 1959-02-03 B I F Ind Inc Feed measuring and controlling apparatus
US3187944A (en) * 1962-10-09 1965-06-08 Arthur J Stock Gravimetric feeder and method of filling voids therein or in other pressure vessels
US3308898A (en) * 1965-09-22 1967-03-14 Harper Inc Allen Vibrated flow control valve and weigher
US3468457A (en) * 1967-12-18 1969-09-23 Ernest N Martin Dispenser for fertilizer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0853234A1 (de) * 1997-01-11 1998-07-15 New Holland Belgium N.V. Verbesserungen an und in Bezug auf Oberflächen
EP0853233A1 (de) * 1997-01-11 1998-07-15 New Holland Belgium N.V. Verbesserungen an und in Bezug auf Elemente
EP0856723A2 (de) 1997-01-14 1998-08-05 New Holland Belgium N.V. Verbesserungen an oder in Bezug auf Massendurchflussmessung
EP0856723A3 (de) * 1997-01-14 1998-09-30 New Holland Belgium N.V. Verbesserungen an oder in Bezug auf Massendurchflussmessung
CN102294104A (zh) * 2011-08-20 2011-12-28 公安部天津消防研究所 气体灭火系统喷嘴流量特性测试装置
CN104280256B (zh) * 2014-09-28 2016-10-05 山东省广安消防技术服务中心 灭火器喷射性能自动试验装置
CN109506731A (zh) * 2017-09-15 2019-03-22 迪尔公司 用于监测作物产量的监测装置

Also Published As

Publication number Publication date
FR2197479A5 (de) 1974-03-22
NL7309880A (de) 1974-02-26
CA994727A (en) 1976-08-10
JPS4965860A (de) 1974-06-26
DE2342668A1 (de) 1974-03-07
IT991324B (it) 1975-07-30
JPS5317419B2 (de) 1978-06-08
ES418109A1 (es) 1976-03-16
DE2342668C2 (de) 1985-07-25
SE386291B (sv) 1976-08-02

Similar Documents

Publication Publication Date Title
KR850000774B1 (ko) 곡물 공급 조절기구를 갖는 제분용 롤밀의 자동 조절장치
US3888389A (en) Flow controller for flowing products, more particularly, bulk materials
US4067238A (en) Device for measuring the rate of flow of flowable products, particularly loose material
US3809314A (en) Self-powered variable volume air damper control
US5121638A (en) Method and device for recording the flow rate of a stream of bulk material
CN1128021C (zh) 辊式碾磨机的给料传感器装置和辊式碾磨机的控制方法
JPS62502422A (ja) 連続バランスによる流動性材料通過量自動測定用装置
US3232486A (en) Flow-measuring system
US3464438A (en) Control device
EP0329683A4 (en) Apparatus and method for dispensing fluid materials
US3289967A (en) Tension regulator
US2283296A (en) Valve mechanism
NL7907931A (nl) Regelinrichting met terugkoppeling, meer in het bijzonder een standregelaar.
US3090395A (en) Pneumatic governor with star-shaped arrangement of bellows
US771764A (en) Automatic feed-regulator.
CN101556183B (zh) 局部称重式螺旋铰刀计量秤
US3076337A (en) Device for regulating a fluid meter for temperature and pressure changes
US2851063A (en) Automatic weighing and filling machine
US4245793A (en) Draw off control system for a roll of material
US2698025A (en) Air operated controller
US2314178A (en) Load weighing system
US2841162A (en) stough
US3321144A (en) Metering and control devices for feeder appliances
US760435A (en) Automatic feed-regulator.
US2465891A (en) Electric motor control system