US3876474A - Aluminium base alloys - Google Patents
Aluminium base alloys Download PDFInfo
- Publication number
- US3876474A US3876474A US273639A US27363972A US3876474A US 3876474 A US3876474 A US 3876474A US 273639 A US273639 A US 273639A US 27363972 A US27363972 A US 27363972A US 3876474 A US3876474 A US 3876474A
- Authority
- US
- United States
- Prior art keywords
- aluminium
- heat
- base alloy
- treatable
- superplastic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 147
- 239000000956 alloy Substances 0.000 title claims abstract description 147
- 229910052782 aluminium Inorganic materials 0.000 title claims description 37
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims description 37
- 239000004411 aluminium Substances 0.000 title claims description 35
- 239000012535 impurity Substances 0.000 claims abstract description 8
- 239000006104 solid solution Substances 0.000 claims abstract description 8
- 239000000203 mixture Substances 0.000 claims description 19
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 16
- 229910052710 silicon Inorganic materials 0.000 claims description 9
- 229910052742 iron Inorganic materials 0.000 claims description 8
- 229910000838 Al alloy Inorganic materials 0.000 claims description 7
- 239000010703 silicon Substances 0.000 claims description 7
- 229910052726 zirconium Inorganic materials 0.000 abstract description 38
- 239000010949 copper Substances 0.000 abstract description 29
- 229910052802 copper Inorganic materials 0.000 abstract description 19
- 229910052749 magnesium Inorganic materials 0.000 abstract description 15
- 229910052725 zinc Inorganic materials 0.000 abstract description 11
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 abstract description 10
- 229910052715 tantalum Inorganic materials 0.000 abstract description 10
- 229910052758 niobium Inorganic materials 0.000 abstract description 9
- 229910052759 nickel Inorganic materials 0.000 abstract description 8
- 229910052748 manganese Inorganic materials 0.000 abstract description 6
- 230000007797 corrosion Effects 0.000 abstract description 4
- 238000005260 corrosion Methods 0.000 abstract description 4
- WPPDFTBPZNZZRP-UHFFFAOYSA-N aluminum copper Chemical compound [Al].[Cu] WPPDFTBPZNZZRP-UHFFFAOYSA-N 0.000 abstract description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 26
- 239000011777 magnesium Substances 0.000 description 24
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 10
- 239000010955 niobium Substances 0.000 description 9
- 239000011572 manganese Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 238000005266 casting Methods 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 238000007792 addition Methods 0.000 description 5
- 210000004027 cell Anatomy 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- 229910018182 Al—Cu Inorganic materials 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 238000002791 soaking Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- 229910018134 Al-Mg Inorganic materials 0.000 description 2
- 229910018137 Al-Zn Inorganic materials 0.000 description 2
- 229910018467 Al—Mg Inorganic materials 0.000 description 2
- 229910018573 Al—Zn Inorganic materials 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 238000007743 anodising Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 210000001787 dendrite Anatomy 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000004881 precipitation hardening Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910018131 Al-Mn Inorganic materials 0.000 description 1
- 229910018464 Al—Mg—Si Inorganic materials 0.000 description 1
- 229910018461 Al—Mn Inorganic materials 0.000 description 1
- 102000003916 Arrestin Human genes 0.000 description 1
- 108090000328 Arrestin Proteins 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910017818 Cu—Mg Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 229910000914 Mn alloy Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910009369 Zn Mg Inorganic materials 0.000 description 1
- 229910007573 Zn-Mg Inorganic materials 0.000 description 1
- 229910007880 ZrAl Inorganic materials 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- -1 aluminum-manganese Chemical compound 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 238000000399 optical microscopy Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 238000007712 rapid solidification Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007782 splat cooling Methods 0.000 description 1
- 238000009718 spray deposition Methods 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 150000003754 zirconium Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/057—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S420/00—Alloys or metallic compositions
- Y10S420/902—Superplastic
Definitions
- aluminium-base alloys consisting of the elements normally present in either non-heat treatable aluminium-base alloys containing at least 5%Mg or at least 1%Zn or heat-treatable aluminium-base alloys containing one or more of the elements Cu, Mg, Zn, Si, Li and Mn in known combinations, and at least one of the elements Zr, Nb, Ta and Ni in a total amount of at least 0.30% substantially all of which is present in solid solution, are superplastically deformable.
- the remainder of the superplastically deformable alloy may be the normal impurities and incidental elements known to be incorporated in heat-treatable and non-heat treatable aluminium-base alloys.
- the alloy contains at least 0.30%Zr and preferably at least 0.40%Zr.
- the alloys of the invention may in some cases be deformed superplastically under isothermal conditions but it has been found advantageous to heat the alloy quickly to the super-plastic forming temperature and- /or allow the temperature to rise whilst the deformation is in progress.
- a superplastic material will show a strain rate sensitivity (nz-value) of at least 0.3 and a uniaxial tensile elongation at temperature of at least 200%, m-value being defined by the relationship a n 6''" where represents flow stress, 1 a constant, e strain rate and m strain rate sensitivity index.
- No known aluminium-base alloy can be superplastically deformed other than the Al-Cu entectic composition which contains 33% copper and has neither the low density nor the good corrosion resistance characteristic of aluminium alloys.
- a superplastically deformable aluminium-base alloy consists of an aluminium-base alloy selected from non'heat treatable aluminium-base alloys containing at least 5%Mg or at least 1%Zn and heat-treatable aluminiumbase alloys containing one or more of the elements Cu, Mg, Zn, Si, Li and Mn in known combinations and quantities, and at least one of the elements Zr, Nb, Ta and Ni in a total amount of at least 0.30% substantially all of which is present in solid solution, the remainder being normal impurities and incidental elements known to be incorporated in the said aluminium-base alloys.
- a method of making a superplastically deformable aluminium-base alloy semi-fabricated product comprises casting a liquid alloy having a composition according to the immediately preceding paragraph at a temperature of at least 775C to produce a cell size in the cast alloy not exceeding /.LM and subjecting the cast alloy to plastic working at a temperature not substantially in excess of 550C.
- cell size is meant secondary dendrite arm spacing.
- the invention also extends to an aricle shaped by the plastic forming of an alloy according to the said one aspect of the invention.
- heat-treatable alloys are meant those classes of alloys in which the mechanical properties can be improved by precipitation hardening treatments, for example alloys of the Al-Cu, Al-Cu-Mg, Al-Mg-Si and A]- Zn-Mg systems.
- non-heat-treatable alloys are meant those classes of alloys in which the mechanical properties cannot be significantly improved by precipitation hardening treatments, for example alloys of the Al-Mn, Al-Mg and Al-Zn systems.
- zirconium (Zr) in the alloy according to the invention as niobium (Nb), tantalum (Ta) and nickel (Ni) have been found to be less effective than zirconium in inducing superplastic behaviour in the alloy. These four elements have low solubility, high temperature coefficient of solubility and diffuse only very slowly in aluminium even at temperatures as high as 500C. When zirconium only is used in the alloy it is used in a quantity of at least 0.30% and preferably of at least 0.40%.
- the alloys according to the invention owe their superplastic properties to the presence of a supersaturated solid solution of one or more of the elements Zr, Nb, Ta and Ni in a sufficient quatity physically to restrict aluminium grain growth by giving rise at the temperatures employed for hot forming to a fine sub-optical precipitate capable of restricting grain boundary movements.
- the formation of such a fine sub-optical precipitate has been verified in alloys containing each ofthe elements Zr, Nb, Ta or Ni, but it was not found with Cr. or Mn.
- Zirconium is already known to confer on certain aluminium-base alloys both grain refinement of the cast alloys and to restrict grain coarsening of the worked alloys.
- the maximum liquid solubility of zirconium in aluminium at the peritectic temperature is approximately 0.11% and additions of zirconium to aluminium alloys do not normally exceed 0.20%.
- These additional elements include Cu, Mg, Zn, Li and Si in such combinations and in such quantitites as are commonly used in heat treatable aluminium alloys and Mg and Cu in such combinations and quantities as may be used to produce non-heat treatable alloys of Al-Mg or Al-Zn systems containing at least 5% Mg or at least 1% Zn respectively.
- the alloys according to the invention may in some h yet f H W cases be deformed superplastically under isothermal 0 8 pie l0 conditions following prolonged soaking at superplastic C to .5 forming temperaure but it has been found advantao 8 (Z prefcmbii geous to heat the alloy quickly to the superplastic forming temperature and/or allow the temperature to rise whilst the deformation is in progress.
- Alloys containing the additional ferences i h lt bt i ed by the two forming elements lz may need a higher forming temperature techniques on four other alloy compositions together range for best results e.g. up to 550C. with isothermal data on two further compositions.
- the alloy according to the invention may contain the impurities normally to be found in heat treatable and non-heat-treatable aluminum-base alloys and one or more of the incidental elements known to be added to such aluminium-base alloys. These incidental elements include in percentages by weight:
- the alloy of the present invention is cast by temperatures in the range 775C to 925C and preferaably above 800C. For best results a casting temperature in the range 825C to 900C is preferred.
- the solidification rates of the alloys according to the invention are designed to be such that the average cell size does not exceed 30 uM, and preferably does not exceed 25 uM. In this way the miniumum dissolved zirconium content required, believed to be 0.25% represents 0.2% in excess of the equilib rium solubility of zirconium at 500C.
- the approximate proportion of dissolved zirconium in an alloy of known total zirconium content can be determined by microprobe analysis; alernatively optical microscopy can be used to provide a rapid check as to whether or not there is a substantial proportion of the zirconium not in solution, the phase ZrAl being easily recoognisable.
- the alloy conains Nb or Ta in place of Zr, a high casting temperature and fine cell size are required; with Ni in place of Zr a high casting temperature is not essential.
- the alloys of the present invention may be prepared by splat cooling or spray casting in known manner or by compacting blown powder.
- aluminium-base alloys containing copper as an essential alloying element are now described by way of example.
- the copper content is in the range 2.5% to 7% and particularly in the range 3.5% to 6.5%.
- a copper content of 5.75% to 6.25% may be used.
- a substantially higher copper content than 7% can be tolerated where the alloy is to be extruded rather than rolled or can be pre-extruded prior to rolling, for example up to 10%.
- Magnesium may be added in amounts up to about 0.5%; manganese and cadmium may each be added in amounts preferably not exceeding 0.25%, whilst small amounts ranging from 0 to 0.2% of one or more grain refining elements Ti, Ta and Sc may be added to assist in obtaining a fine grained cast structure.
- Germanium may also be added in quantities up to 0.5% to control ageing behaviour.
- the alloy when cast it appears to be necessary for the alloy when cast to contain a minimum level of zirconium in supersaturated solid solution so that the zirconium is then available to precipitate in such a manner during the hot forming operation as will assist in the production or maintenance of a very fine grained structure of average grain size below uM similar to that observed in other superplastic materials.
- This minimum content of dissolved zirconium will not be achieved unless the total zirconium content of the metal is at least 0.30%, and preferably at least 0.40%.
- the copper content should desirably exceed the solid solubility level at the hot forming temperature.
- the miniumum copper content is desirably about 2%.
- Hot forming will generally be carried out in the temperature range 300500C and preferentially in the range 350-475C.
- the slow diffusion rate of zirconium in aluminium allows the cast alloy to be hot worked by rolling or extrusion to a considerable degree without excessive precipitation from the alloy of the zirconium in excess of saturation (it being on the presence of excess zirconium that the capability for subsequent superplastic forming depends) it is clearly desirable to avoid excessivee pre-heating of the alloy prior to hot working and to carry out the working operations at tempera tures below those at which the precipitation of zirconium is rapid, e.g. in the range 300C to 500C. If desired the cast metal may be held for some time at temperatures in the range 300C to 400C prior to hot working without detriment and sometimes with benefit to the final superplastic forming properties.
- the hot formed objects may be heat treated to develop maximum tensile properties, e.g. the components may be solution heat treated for 40 min at 535C, rapidly cooled and then artificially aged (precipitation heat treated) for 6 hr at C. Alternatively, though at some sacrifice in their final properties, the objects may be rapidly cooled after hot forming and then artificially aged.
- the alloys are fusion weldable provided they have a magnesium content not materially exceeding about 0.25%.
- the alloys may be chemically brightened and anodised or subjected to other forms of decorative anodising treatment.
- the copper content may usefully be about 2.5%, and the combined content of iron and silicon should not exceed 0.2%.
- the alloys may be clad, e.g. with pure aluminium, to improve their corrosion resistance.
- the alloys may be formed into complex shapes with sharp angles by applying air pressure for a few minutes to the alloy heated to a temperature in the range 300C to 500C.
- an alloy of the present invention is capable of being superplastically deformed and subsequently heat treated to give very attractive tensile properties.
- By modification of the ageing cycle LII even higher tensile properties can be obtained at some sacrifice of elongation.
- the alloy moreover has high resistance to both creep and fatigue.
- a superplastically deformable wrought aluminumbase alloy consisting of 1. an aluminium-base alloy selected from the group consisting of (l-a) non-heat-treatable aluminium-base alloys of aluminium and one of the elements selected from the group consisting of Mg and Zn, the quantity of Mg being from 5% to 10% with zero to 0.5% Cu, and the quantity of Zn being from 1% to 15% with zero to 0.5% Mg and zero to 0.5% Cu, and
- a superplastic aluminium-base alloy according to claim 1 containing at least one of the following incidental elements, in a total amount not exceeding 1.25
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Forging (AREA)
- Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US05/509,406 US3984260A (en) | 1971-07-20 | 1974-09-26 | Aluminium base alloys |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB3392271A GB1387586A (en) | 1971-07-20 | 1971-07-20 | Aluminium based alloys |
GB3392272 | 1972-06-27 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US05/509,406 Division US3984260A (en) | 1971-07-20 | 1974-09-26 | Aluminium base alloys |
Publications (1)
Publication Number | Publication Date |
---|---|
US3876474A true US3876474A (en) | 1975-04-08 |
Family
ID=26262086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US273639A Expired - Lifetime US3876474A (en) | 1971-07-20 | 1972-07-20 | Aluminium base alloys |
Country Status (5)
Country | Link |
---|---|
US (1) | US3876474A (enrdf_load_stackoverflow) |
JP (1) | JPS5630392B2 (enrdf_load_stackoverflow) |
CA (1) | CA1006014A (enrdf_load_stackoverflow) |
IT (1) | IT962986B (enrdf_load_stackoverflow) |
SE (1) | SE398130B (enrdf_load_stackoverflow) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4063936A (en) * | 1974-01-14 | 1977-12-20 | Alloy Trading Co., Ltd. | Aluminum alloy having high mechanical strength and elongation and resistant to stress corrosion crack |
US4130500A (en) * | 1977-12-14 | 1978-12-19 | The United States Of America As Represented By The United States Department Of Energy | Lithium-aluminum-magnesium electrode composition |
US4172181A (en) * | 1977-05-10 | 1979-10-23 | Furukawa Aluminum Co., Ltd. | Composite material for vacuum brazing |
US4571272A (en) * | 1982-08-27 | 1986-02-18 | Alcan International Limited | Light metal alloys, product and method of fabrication |
US4603029A (en) * | 1983-12-30 | 1986-07-29 | The Boeing Company | Aluminum-lithium alloy |
US4629505A (en) * | 1985-04-02 | 1986-12-16 | Aluminum Company Of America | Aluminum base alloy powder metallurgy process and product |
US4787943A (en) * | 1987-04-30 | 1988-11-29 | The United States Of America As Represented By The Secretary Of The Air Force | Dispersion strengthened aluminum-base alloy |
US4874440A (en) * | 1986-03-20 | 1989-10-17 | Aluminum Company Of America | Superplastic aluminum products and alloys |
US5032359A (en) * | 1987-08-10 | 1991-07-16 | Martin Marietta Corporation | Ultra high strength weldable aluminum-lithium alloys |
US5055257A (en) * | 1986-03-20 | 1991-10-08 | Aluminum Company Of America | Superplastic aluminum products and alloys |
US5085830A (en) * | 1989-03-24 | 1992-02-04 | Comalco Aluminum Limited | Process for making aluminum-lithium alloys of high toughness |
US5122339A (en) * | 1987-08-10 | 1992-06-16 | Martin Marietta Corporation | Aluminum-lithium welding alloys |
US5133931A (en) * | 1990-08-28 | 1992-07-28 | Reynolds Metals Company | Lithium aluminum alloy system |
US5198045A (en) * | 1991-05-14 | 1993-03-30 | Reynolds Metals Company | Low density high strength al-li alloy |
US5211910A (en) * | 1990-01-26 | 1993-05-18 | Martin Marietta Corporation | Ultra high strength aluminum-base alloys |
US6056835A (en) * | 1993-01-27 | 2000-05-02 | Toyota Jidosha Kabushiki Kaisha | Superplastic aluminum alloy and process for producing same |
US6322646B1 (en) | 1997-08-28 | 2001-11-27 | Alcoa Inc. | Method for making a superplastically-formable AL-Mg product |
US20090142222A1 (en) * | 2007-12-04 | 2009-06-04 | Alcoa Inc. | Aluminum-copper-lithium alloys |
RU2491365C2 (ru) * | 2011-08-09 | 2013-08-27 | Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" | Сверхпластичный сплав на основе алюминия |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5030984B1 (enrdf_load_stackoverflow) * | 1970-01-29 | 1975-10-06 | ||
BE786507A (fr) * | 1971-07-20 | 1973-01-22 | British Aluminium Co Ltd | Alliage superplastique |
JPS5910987B2 (ja) * | 1975-07-02 | 1984-03-13 | 株式会社神戸製鋼所 | 成形性にすぐれたアルミニウム合金およびその薄板製造方法 |
JPS5943538B2 (ja) * | 1975-09-08 | 1984-10-23 | 株式会社神戸製鋼所 | 成形性にすぐれたアルミニウム合金およびその薄板製造法 |
JPS5294376U (enrdf_load_stackoverflow) * | 1976-01-08 | 1977-07-14 | ||
JPS5539455A (en) * | 1978-09-13 | 1980-03-19 | Kubota Ltd | Double integration type analog-digital converter |
JPS5911651B2 (ja) * | 1980-10-29 | 1984-03-16 | 三井アルミニウム工業株式会社 | 超塑性アルミニウム合金及びその製造方法 |
US4405832A (en) * | 1981-05-29 | 1983-09-20 | Peavey Electronics Corp. | Circuit for distorting an audio signal |
JPS5822363A (ja) * | 1981-07-30 | 1983-02-09 | Mitsubishi Keikinzoku Kogyo Kk | 超塑性アルミニウム合金板の製造方法 |
JPS5836009A (ja) * | 1981-08-28 | 1983-03-02 | Hitachi Ltd | 振幅制限回路 |
JPS5842749A (ja) * | 1981-09-09 | 1983-03-12 | Mitsubishi Alum Co Ltd | 成形加工後の表面性状が良好な中強度押出用Al合金 |
JPS6047900B2 (ja) * | 1981-11-10 | 1985-10-24 | 株式会社化成直江津 | 超塑性アルミニウム合金およびその製造法 |
JPS5928554A (ja) * | 1982-08-05 | 1984-02-15 | Mitsubishi Keikinzoku Kogyo Kk | 超塑性アルミニウム合金およびその製法 |
JPS59159961A (ja) * | 1983-02-28 | 1984-09-10 | Mitsubishi Alum Co Ltd | 超塑性Al合金 |
JPS60128238A (ja) * | 1983-12-15 | 1985-07-09 | Mitsubishi Chem Ind Ltd | 超塑性アルミニウム合金及びその製造法 |
US4661172A (en) * | 1984-02-29 | 1987-04-28 | Allied Corporation | Low density aluminum alloys and method |
JPS6152345A (ja) * | 1984-08-22 | 1986-03-15 | Mitsubishi Alum Co Ltd | 超塑性Al合金 |
JPS6296643A (ja) * | 1985-10-24 | 1987-05-06 | Sumitomo Light Metal Ind Ltd | 超塑性アルミニウム合金 |
US4809336A (en) * | 1987-03-23 | 1989-02-28 | Pritchard Eric K | Semiconductor amplifier with tube amplifier characteristics |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1782300A (en) * | 1928-12-18 | 1930-11-18 | Rolls Royce | Aluminum alloy |
US2245167A (en) * | 1939-08-23 | 1941-06-10 | Aluminum Co Of America | Wrought aluminum base alloy and method of producing it |
US3020154A (en) * | 1958-04-24 | 1962-02-06 | Martin Marietta Corp | Aluminum alloy |
US3236632A (en) * | 1964-12-01 | 1966-02-22 | Dow Chemical Co | High strength aluminum alloy for pellet extrusion and product |
US3666451A (en) * | 1970-08-13 | 1972-05-30 | Atomic Energy Commission | Aluminum alloy |
-
1972
- 1972-07-19 SE SE7209492A patent/SE398130B/xx unknown
- 1972-07-19 IT IT27164/72A patent/IT962986B/it active
- 1972-07-20 JP JP7215772A patent/JPS5630392B2/ja not_active Expired
- 1972-07-20 CA CA147,541A patent/CA1006014A/en not_active Expired
- 1972-07-20 US US273639A patent/US3876474A/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1782300A (en) * | 1928-12-18 | 1930-11-18 | Rolls Royce | Aluminum alloy |
US2245167A (en) * | 1939-08-23 | 1941-06-10 | Aluminum Co Of America | Wrought aluminum base alloy and method of producing it |
US3020154A (en) * | 1958-04-24 | 1962-02-06 | Martin Marietta Corp | Aluminum alloy |
US3236632A (en) * | 1964-12-01 | 1966-02-22 | Dow Chemical Co | High strength aluminum alloy for pellet extrusion and product |
US3666451A (en) * | 1970-08-13 | 1972-05-30 | Atomic Energy Commission | Aluminum alloy |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4063936A (en) * | 1974-01-14 | 1977-12-20 | Alloy Trading Co., Ltd. | Aluminum alloy having high mechanical strength and elongation and resistant to stress corrosion crack |
US4172181A (en) * | 1977-05-10 | 1979-10-23 | Furukawa Aluminum Co., Ltd. | Composite material for vacuum brazing |
US4130500A (en) * | 1977-12-14 | 1978-12-19 | The United States Of America As Represented By The United States Department Of Energy | Lithium-aluminum-magnesium electrode composition |
US4571272A (en) * | 1982-08-27 | 1986-02-18 | Alcan International Limited | Light metal alloys, product and method of fabrication |
US4603029A (en) * | 1983-12-30 | 1986-07-29 | The Boeing Company | Aluminum-lithium alloy |
US4629505A (en) * | 1985-04-02 | 1986-12-16 | Aluminum Company Of America | Aluminum base alloy powder metallurgy process and product |
US4874440A (en) * | 1986-03-20 | 1989-10-17 | Aluminum Company Of America | Superplastic aluminum products and alloys |
US5055257A (en) * | 1986-03-20 | 1991-10-08 | Aluminum Company Of America | Superplastic aluminum products and alloys |
US4787943A (en) * | 1987-04-30 | 1988-11-29 | The United States Of America As Represented By The Secretary Of The Air Force | Dispersion strengthened aluminum-base alloy |
US5122339A (en) * | 1987-08-10 | 1992-06-16 | Martin Marietta Corporation | Aluminum-lithium welding alloys |
US5032359A (en) * | 1987-08-10 | 1991-07-16 | Martin Marietta Corporation | Ultra high strength weldable aluminum-lithium alloys |
US5085830A (en) * | 1989-03-24 | 1992-02-04 | Comalco Aluminum Limited | Process for making aluminum-lithium alloys of high toughness |
US5211910A (en) * | 1990-01-26 | 1993-05-18 | Martin Marietta Corporation | Ultra high strength aluminum-base alloys |
US5133931A (en) * | 1990-08-28 | 1992-07-28 | Reynolds Metals Company | Lithium aluminum alloy system |
US5198045A (en) * | 1991-05-14 | 1993-03-30 | Reynolds Metals Company | Low density high strength al-li alloy |
US6056835A (en) * | 1993-01-27 | 2000-05-02 | Toyota Jidosha Kabushiki Kaisha | Superplastic aluminum alloy and process for producing same |
US6322646B1 (en) | 1997-08-28 | 2001-11-27 | Alcoa Inc. | Method for making a superplastically-formable AL-Mg product |
US20090142222A1 (en) * | 2007-12-04 | 2009-06-04 | Alcoa Inc. | Aluminum-copper-lithium alloys |
US8118950B2 (en) | 2007-12-04 | 2012-02-21 | Alcoa Inc. | Aluminum-copper-lithium alloys |
US9587294B2 (en) | 2007-12-04 | 2017-03-07 | Arconic Inc. | Aluminum-copper-lithium alloys |
RU2491365C2 (ru) * | 2011-08-09 | 2013-08-27 | Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" | Сверхпластичный сплав на основе алюминия |
Also Published As
Publication number | Publication date |
---|---|
JPS4828310A (enrdf_load_stackoverflow) | 1973-04-14 |
IT962986B (it) | 1973-12-31 |
CA1006014A (en) | 1977-03-01 |
JPS5630392B2 (enrdf_load_stackoverflow) | 1981-07-14 |
SE398130B (sv) | 1977-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3876474A (en) | Aluminium base alloys | |
US3984260A (en) | Aluminium base alloys | |
US6139653A (en) | Aluminum-magnesium-scandium alloys with zinc and copper | |
CA1228490A (en) | Aluminum-lithium alloys | |
Gardner et al. | Recrystallization during hot deformation of aluminium alloys | |
Parker et al. | The effect of small additions of scandium on the properties of aluminium alloys | |
CA1283565C (en) | Aluminum-lithium alloys and method of making the same | |
US3997369A (en) | Production of metallic articles | |
US3926690A (en) | Aluminium alloys | |
US4126448A (en) | Superplastic aluminum alloy products and method of preparation | |
US5389165A (en) | Low density, high strength Al-Li alloy having high toughness at elevated temperatures | |
EP0546103A1 (en) | IMPROVED LITHIUM AND ALUMINUM ALLOY SYSTEM. | |
WO2003010348A2 (en) | Weldable high strength al-mg-si alloy | |
EP0851942B2 (en) | Use of rolled aluminum alloys for structural comonents of vehicles | |
EP0188762A1 (en) | Aluminum-lithium alloys having improved corrosion resistance | |
US4629505A (en) | Aluminum base alloy powder metallurgy process and product | |
EP0273600A2 (en) | Aluminum-lithium alloys | |
US4033794A (en) | Aluminium base alloys | |
Wang | Physical metallurgy of aluminum alloys | |
US4139400A (en) | Superplastic aluminium base alloys | |
US4108691A (en) | Aluminium base alloys | |
US3146096A (en) | Weldable high strength magnesium base alloy | |
US5116428A (en) | Rolled thin sheets of aluminum alloy | |
CA1043134A (en) | Aluminium base alloys | |
JP3145904B2 (ja) | 高速超塑性成形に優れたアルミニウム合金板およびその成形方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SUPERFORM METALS LIMITED; P.O. BOX 150, WORCESTER, Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:TI (GROUPS SERVICES) LIMITED;BRITISH ALUMINIUM COMPANY PLC THE;TI GROUP PLC;REEL/FRAME:004097/0594 Effective date: 19821126 |