US3876421A - Process for desulfurization of molten pig iron - Google Patents
Process for desulfurization of molten pig iron Download PDFInfo
- Publication number
- US3876421A US3876421A US412766A US41276673A US3876421A US 3876421 A US3876421 A US 3876421A US 412766 A US412766 A US 412766A US 41276673 A US41276673 A US 41276673A US 3876421 A US3876421 A US 3876421A
- Authority
- US
- United States
- Prior art keywords
- pig iron
- molten pig
- gas
- desulfurization
- carrier gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C1/00—Refining of pig-iron; Cast iron
- C21C1/02—Dephosphorising or desulfurising
Definitions
- PATENTEUAFR 819 73 sum 2 or g AONEIIOIi-El NOLLVZIHFH'IDSHU PROCESS FOR DESULFURIZATION OF MOLTEN PIG IRON
- the present invention relates to a process for desulfurization of molten pig iron.
- the desulfurization shows a reaction efficiency of to percent when it is added through a carrier gas and of to percent when it is mechanically agitated for desulfurization, for example, by an impeller.
- the reaction efficiency is particularly low with carrier gas.
- the present invention provides an excellent method to improve the efficiency when a carrier gas is used and is characterized by (l) a process for desulfurization of molten pig iron in which calcium carbide having a particle size of of about 10 mm or less is mixed with a gas generating substance and added to the molten pig iron through a carrier gas; (2) a process for desulfurization of molten pig iron, in which carbide is mixed with a gas generating substance and added to the molten pig iron through a carrier gas, having a reducing gas therein; (3) a process for desulfurization of molten pig iron, in which a granulated desulfurizing agent, made of carbide mixed with a gas generating substance is added to the molten pig iron; (4) a process for desulfurization of molten pig iron, in which petroleum substances are added to the molten pig iron to promote the desulfurization; and (5) a desulfurizing agent for molten pig iron composed of calcium carb
- FIG. l is a diagram, showing the relation of the size of the desulfurizing agent (carbide) to the desulfurization effect;
- FIG. 2 is a diagram, showing the relation of the size of the sulfurizing agent and the ratio of mixing in the carrier gas (including the gas generating substance) to the desulfurization efficiency;
- FIG. 3 is a diagram showing the relation between the ratio of the desulfurizing agent, mixed with the carrier gas (foaming gas) and the desulfurization efficiency.
- carbide having a particle size of 0.5 to 1.1 mm shows the increase of the desulfurization efficiency, but it is not possible to improve the desulfurization efficiency when sizes different from those shown in the drawing are used.
- particle sizes of about 1.1 mm or above the surface of the desulfurizingagent becomes small and the area to be contacted with molten pig iron becomes small, so that it is natural that the desulfurization efficiency is decreased.
- the desulfurizing agent When the desulfurizing agent is blown (added) into the molten pig iron through a carrier gas, it is desirable to introduce the agent in the bottom part of the vessel in order to increase the efficiency by elongation of the contact time with the molten pig iron.
- the time depends upon the capacity of the vessel, but it generally takes about 1.0 sec. for the foam of carrier gas to be floated from the point at which it is blown in to the surface of the molten pig iron. It is necessary that the desulfurizing agent, blown in through the carrier gas, is sufficiently contacted with the molten pig iron during this time.
- particle size range which enables the the movement of the agent toward the periphery of the foam by its own weight is 0.5 to 1.1 mm. If the size is about 0.5 mm or below, the agent floats in the foam and comes to the surface of the molten pig iron without contacting the molten pig iron. Consequently, the desulfurization efficiency can be significantly increased if the floating foam is broken and the desulfurizing agent in the foam is fully contacted with the molten pig iron.
- the desulfurizing agent is mixed with a foam breaking substance.
- a reducing agent for example, petroleum substances, such as heavy oil, tar or the like, cokes, Al powders or polyester, are mixed in a C0 gas generating substance, such as, limestone or MgCO to convert CO to CO (a reducing gas).
- the quantity to be added in the desulfurizing agent is 7 to 20 percent.
- a mixing ratio with the carrier gas as explained below is used. The mixture of the desulfurizing agent and the gas generating substance can sufficiently break the foam in the molten pig iron when the mixing ratio with the carrier gas, i.e.:
- the desulfurization efficiency can be increased as shown in FIG. 2, when the mixing ratio with the carrier gas is about percent or above.
- the desulfurization can be efficiently performed by adding the desulfurizing agent through the carrier gas. Such excellent desulfurization effects can be brought about easily and simply.
- a reducing gas such as, H CH C l-L, or CQHB is contained in the carrier gas and the carbide, mixed with the beforementioned gas generating substance is carried in the molten pig iron, CO generated in the molten pig iron is reduced in the reaction of CO reducing gas CO.
- the carbide can be prevented from the surface oxidization of CO gas.
- the surface of carbide, dispersed in the molten pig iron by the breaking of the foam, can be contacted with the molten pig iron in the active condition, so that the desulfurization reaction may be significantly improved.
- the reaction of CO reduction CO is instantaneously carried out as compared with the case of a solid substance, such as C, used as the reducing agent. Therefore, carbide is almost not oxidized and the desulfurization effect can be largely improved.
- the present inventors have found that when calcium carbide, a desulfurizing agent, is granulated after mixing with a gas generating substance and added to the molten pig iron, gas is generated by the heat of the molten pig iron to pulverize or explode the desulfurizing agent in the molten pig iron, whereby the area of the desulfurizing agent, contacted with the molten pig iron is increased, so that the desulfurization efficiency can be improved.
- the present inventors have learned that when carbide is added through the carrier gas, the carbide, blown in the molten pig iron, is confined in the bubble of the carrier gas and often comes to the surface of the molten pig iron without taking part in the desulfurization reaction, so that the yield ofthe desulfurizing agent is sometimes decreased.
- any such substance in the form of a gas, liquid and solids will do.
- Gases such as, propane, butane liquids, such as, heavy oil, tar, kerosene, naphtha, solids, and such as, polyethylene, and vinyl chloride may be used.
- the carbide is covered with the cracked gas (H to interrupt the reaction of N 0 and carbide, so that the change of CaC C210 and CaCN does not occur. Further, when it is added in the molten pig iron through the carrier gas, the foam is broken by the cracked gas (H of the petroleum substance and the carbide, contained in the foam, is contacted with the molten pig iron to react, whereby the desulfurization effect can be improved.
- the quantity of petroleum substance to be added may be so determined as to be 0.04 to 1.0 percent, computed on the basis of the quantity ,of H gas to be generated Quantity of H generated from the petroleum substance Kg Quantity of carbide Kg whereby the desulfurization efficiency can be advantageously increased.
- Quantitv of CO gas generated from the gas generating substance/min.
- the molten pig iron of [200C was filled in a ladle and blown in umder the surface of molten pig iron.
- the molten pig iron of l250C was filled in a ladle (250 t) and added with the above mentioned desulfurizing agent as the molten pig iron being agitated by an impeller at 80 r.p.m. Note 2:
- the desulfurizing agent was added at the almost uniform rate of addition for 10 minutes. In all cases. the molten pig iron was agitated by an impeller for l6 minutes l 5 after the beginning of the addition.
- the molten pig iron of I200C was filled in a ladle (250 t) and the desulfurizing agent was blown in under the surface of the molten pig iron.
- N was used for the carrier gas (foaaming gas).
- the addition with carrier gas shown in the column desulfurization method. means that a desulfurizing agent (calcium carbide) was carried with N2 gas. the carrier gas. to be added into the molten pig iron.
- the agitation shows that the molten pig iron is mechanically agitated by an impeller and added with a desulfurizing agent to further the contact with the molten pig iron.
- the petroleum substances and the desulturizing agent were added.
- the petroleum substance in the example 23 was pulverized an average of 0.1 mm and mixed with carbide to be added.
- the molten pig iron was dusull'urilctl at 11201..
- a process for desulfurizing molten pig iron com- 25 3.
- the process of claim 2 wherein the ratio of amount prising introducing a mixture of calcium carbide and a of carbon dioxide generated to carrier gas is from 10 to solid material selected from the group consisting of 50 percent polyethylene, vinyl chloride, and polyester, in a carrier 4.
- a process according to l i 1, i whi h the partig to the molten P g irOncle size of the calcium carbide is from 0.5 to 1.1 mm.
- a substance which 5 A process according to claim 1, in which H CH generates carbon dioxide selected from the group con- C l-l or C l-l is contained in the carrier gas.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11163672A JPS4970813A (it) | 1972-11-09 | 1972-11-09 | |
JP2186673A JPS5243170B2 (it) | 1973-02-23 | 1973-02-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3876421A true US3876421A (en) | 1975-04-08 |
Family
ID=26358994
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US412766A Expired - Lifetime US3876421A (en) | 1972-11-09 | 1973-11-05 | Process for desulfurization of molten pig iron |
Country Status (5)
Country | Link |
---|---|
US (1) | US3876421A (it) |
BR (1) | BR7308802D0 (it) |
DE (1) | DE2355736B2 (it) |
IT (1) | IT1001677B (it) |
NL (1) | NL7315376A (it) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3992195A (en) * | 1974-04-20 | 1976-11-16 | Thyssen Niederrhein Ag Hutten- Und Walzwerke | Process for the production of steel with increased ductility |
US4067730A (en) * | 1974-04-20 | 1978-01-10 | Thyssen Niederrhein Ag Hutten-Und Walzwerke | Process for the production of steel with increased ductility |
US4089677A (en) * | 1976-05-28 | 1978-05-16 | British Steel Corporation | Metal refining method and apparatus |
US4169724A (en) * | 1977-02-26 | 1979-10-02 | Skw Trostberg Aktiengesellschaft | Desulfurization of iron melts |
US4198229A (en) * | 1976-06-28 | 1980-04-15 | Nippon Steel Corporation | Method of dephosphorization of metal or alloy |
US4242126A (en) * | 1979-07-11 | 1980-12-30 | Skw Trostberg Aktiengesellschaft | Process for the treatment of iron melts and for increasing the scrap portion in the converter |
US4315773A (en) * | 1979-11-27 | 1982-02-16 | Skw Trostberg Aktiengesellschaft | Desulfurization mixture and process for desulfurizing pig iron |
US4409028A (en) * | 1979-10-24 | 1983-10-11 | Moore William H | Process for producing cast iron |
USRE31676E (en) | 1982-09-29 | 1984-09-18 | Thyssen Aktiengesellschaft vorm August Thyssen-Hutte AG | Method and apparatus for dispensing a fluidizable solid from a pressure vessel |
US4539042A (en) * | 1983-02-23 | 1985-09-03 | Mannesmann Ag | Preventing an increase of the nitrogen content in molten steel |
US5358550A (en) * | 1992-10-26 | 1994-10-25 | Rossborough Manufacturing Company | Desulfurization agent |
US5772727A (en) * | 1993-12-21 | 1998-06-30 | Stahlwerke Bremen Gmbh | Process for the production of metal from metal ores |
US5873924A (en) * | 1997-04-07 | 1999-02-23 | Reactive Metals & Alloys Corporation | Desulfurizing mix and method for desulfurizing molten iron |
EP1067202A2 (en) * | 1999-07-05 | 2001-01-10 | Kawasaki Steel Corporation | Method of desulfurizing molten iron alloy |
US6352570B1 (en) | 2000-04-10 | 2002-03-05 | Rossborough Manufacturing Co., Lp | Magnesium desulfurization agent |
US6395058B2 (en) | 2000-04-10 | 2002-05-28 | Rossborough Manufacturing Co. L.P. | Method of alloying ferrous material with magnesium injection agent |
US20040074339A1 (en) * | 2002-10-18 | 2004-04-22 | Rossborough Manufacturing Company, A Delaware Corporation | Process for magnesium granules |
US20040083851A1 (en) * | 2002-10-30 | 2004-05-06 | Rossborough Manufacturing Company, A Delaware Corporation | Reclaimed magnesium desulfurization agent |
US20070221012A1 (en) * | 2006-03-27 | 2007-09-27 | Magnesium Technologies Corporation | Scrap bale for steel making process |
US20080196548A1 (en) * | 2007-02-16 | 2008-08-21 | Magnesium Technologies Corporation | Desulfurization puck |
US9187792B2 (en) | 2011-01-15 | 2015-11-17 | Alamamet GmbH | Agent for treating molten metals, method for the production and use thereof |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2432550A1 (fr) * | 1978-08-04 | 1980-02-29 | Sueddeutsche Kalkstickstoff | Procede pour la fabrication d'un melange de desulfuration pulverulent facilement fluidifiable |
DE2934193A1 (de) * | 1979-08-23 | 1981-03-26 | Denki Kagaku Kogyo K.K., Tokio/Tokyo | Mittel zur entschwefelung von geschmolzenem eisen. |
FR2473061A1 (fr) * | 1980-01-07 | 1981-07-10 | Sueddeutsche Kalkstickstoff | Procede pour reduire le degagement de poussieres et de flammes lors de la manipulation des scories apres desulfuration de la fonte, et melange de desulfuration approprie |
CA1240842A (en) * | 1984-05-16 | 1988-08-23 | Heinrich Rellermeyer | Method, process and composition for desulfurizing pig-iron melts |
DE102011008691A1 (de) * | 2011-01-15 | 2012-07-19 | Mechthilde Döring-Freißmuth | Mittel zur Behandlung von Metallschmelzen, Verfahren zur Herstellung und Verwendung desselben |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2577764A (en) * | 1949-11-04 | 1951-12-11 | Air Reduction | Desulfurization of ferrous metals |
US2863755A (en) * | 1957-04-22 | 1958-12-09 | Union Carbide Corp | Oil-treated calcium carbide for desulfurization of iron |
US2870004A (en) * | 1955-02-07 | 1959-01-20 | Air Reduction | Method of producing nodular cast iron |
US2979393A (en) * | 1958-10-02 | 1961-04-11 | Jr Russell Pearce Heuer | Process of desulfurizing pig iron |
US3158913A (en) * | 1961-07-17 | 1964-12-01 | American Metallurg Products Co | Method of treating steel |
US3350196A (en) * | 1964-07-20 | 1967-10-31 | Bot Brassert Oxygen Technik A | Basic steelmaking |
US3473917A (en) * | 1966-08-25 | 1969-10-21 | Bot Brassert Oxygen Technik Ag | Basic steelmaking process |
US3556773A (en) * | 1966-09-26 | 1971-01-19 | Steel Co Of Wales Ltd | Refining of metals |
US3622302A (en) * | 1968-02-15 | 1971-11-23 | Kobe Steel Ltd | Method for removing arsenic from metals or alloys |
US3704230A (en) * | 1970-02-17 | 1972-11-28 | Carborundum Co | Exothermic compositions |
US3768999A (en) * | 1968-10-23 | 1973-10-30 | Nippon Kokan Kk | Coated wire feeding technique for making addition of components to molten metals |
-
1973
- 1973-11-05 US US412766A patent/US3876421A/en not_active Expired - Lifetime
- 1973-11-08 DE DE19732355736 patent/DE2355736B2/de not_active Withdrawn
- 1973-11-09 IT IT31113/73A patent/IT1001677B/it active
- 1973-11-09 BR BR8802/73A patent/BR7308802D0/pt unknown
- 1973-11-09 NL NL7315376A patent/NL7315376A/xx not_active Application Discontinuation
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2577764A (en) * | 1949-11-04 | 1951-12-11 | Air Reduction | Desulfurization of ferrous metals |
US2870004A (en) * | 1955-02-07 | 1959-01-20 | Air Reduction | Method of producing nodular cast iron |
US2863755A (en) * | 1957-04-22 | 1958-12-09 | Union Carbide Corp | Oil-treated calcium carbide for desulfurization of iron |
US2979393A (en) * | 1958-10-02 | 1961-04-11 | Jr Russell Pearce Heuer | Process of desulfurizing pig iron |
US3158913A (en) * | 1961-07-17 | 1964-12-01 | American Metallurg Products Co | Method of treating steel |
US3350196A (en) * | 1964-07-20 | 1967-10-31 | Bot Brassert Oxygen Technik A | Basic steelmaking |
US3473917A (en) * | 1966-08-25 | 1969-10-21 | Bot Brassert Oxygen Technik Ag | Basic steelmaking process |
US3556773A (en) * | 1966-09-26 | 1971-01-19 | Steel Co Of Wales Ltd | Refining of metals |
US3622302A (en) * | 1968-02-15 | 1971-11-23 | Kobe Steel Ltd | Method for removing arsenic from metals or alloys |
US3768999A (en) * | 1968-10-23 | 1973-10-30 | Nippon Kokan Kk | Coated wire feeding technique for making addition of components to molten metals |
US3704230A (en) * | 1970-02-17 | 1972-11-28 | Carborundum Co | Exothermic compositions |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4067730A (en) * | 1974-04-20 | 1978-01-10 | Thyssen Niederrhein Ag Hutten-Und Walzwerke | Process for the production of steel with increased ductility |
US3992195A (en) * | 1974-04-20 | 1976-11-16 | Thyssen Niederrhein Ag Hutten- Und Walzwerke | Process for the production of steel with increased ductility |
US4089677A (en) * | 1976-05-28 | 1978-05-16 | British Steel Corporation | Metal refining method and apparatus |
US4198229A (en) * | 1976-06-28 | 1980-04-15 | Nippon Steel Corporation | Method of dephosphorization of metal or alloy |
US4169724A (en) * | 1977-02-26 | 1979-10-02 | Skw Trostberg Aktiengesellschaft | Desulfurization of iron melts |
US4242126A (en) * | 1979-07-11 | 1980-12-30 | Skw Trostberg Aktiengesellschaft | Process for the treatment of iron melts and for increasing the scrap portion in the converter |
US4409028A (en) * | 1979-10-24 | 1983-10-11 | Moore William H | Process for producing cast iron |
US4315773A (en) * | 1979-11-27 | 1982-02-16 | Skw Trostberg Aktiengesellschaft | Desulfurization mixture and process for desulfurizing pig iron |
USRE31676E (en) | 1982-09-29 | 1984-09-18 | Thyssen Aktiengesellschaft vorm August Thyssen-Hutte AG | Method and apparatus for dispensing a fluidizable solid from a pressure vessel |
US4539042A (en) * | 1983-02-23 | 1985-09-03 | Mannesmann Ag | Preventing an increase of the nitrogen content in molten steel |
US5358550A (en) * | 1992-10-26 | 1994-10-25 | Rossborough Manufacturing Company | Desulfurization agent |
US5368631A (en) * | 1992-10-26 | 1994-11-29 | Rossborough Manufacturing Company | Desulfurization agent |
US5772727A (en) * | 1993-12-21 | 1998-06-30 | Stahlwerke Bremen Gmbh | Process for the production of metal from metal ores |
US5972072A (en) * | 1997-04-07 | 1999-10-26 | Reactive Metals & Alloys Corporation | Desulfurizing mix |
US5873924A (en) * | 1997-04-07 | 1999-02-23 | Reactive Metals & Alloys Corporation | Desulfurizing mix and method for desulfurizing molten iron |
KR100600237B1 (ko) * | 1999-07-05 | 2006-07-13 | 제이에프이 스틸 가부시키가이샤 | 용융철합금의 탈황방법 |
EP1067202A2 (en) * | 1999-07-05 | 2001-01-10 | Kawasaki Steel Corporation | Method of desulfurizing molten iron alloy |
EP1067202A3 (en) * | 1999-07-05 | 2001-06-13 | Kawasaki Steel Corporation | Method of desulfurizing molten iron alloy |
US6328784B1 (en) | 1999-07-05 | 2001-12-11 | Kawasaki Corporation | Method of desulfurizing molten iron alloy |
US6352570B1 (en) | 2000-04-10 | 2002-03-05 | Rossborough Manufacturing Co., Lp | Magnesium desulfurization agent |
US6395058B2 (en) | 2000-04-10 | 2002-05-28 | Rossborough Manufacturing Co. L.P. | Method of alloying ferrous material with magnesium injection agent |
US6383249B2 (en) | 2000-04-10 | 2002-05-07 | Rossborough Manufacturing Co. Lp | Magnesium desulfurization agent |
US20040074339A1 (en) * | 2002-10-18 | 2004-04-22 | Rossborough Manufacturing Company, A Delaware Corporation | Process for magnesium granules |
US6770115B2 (en) | 2002-10-18 | 2004-08-03 | Remacor, Inc. | Process for magnesium granules |
US20040083851A1 (en) * | 2002-10-30 | 2004-05-06 | Rossborough Manufacturing Company, A Delaware Corporation | Reclaimed magnesium desulfurization agent |
US6989040B2 (en) | 2002-10-30 | 2006-01-24 | Gerald Zebrowski | Reclaimed magnesium desulfurization agent |
US20060021467A1 (en) * | 2002-10-30 | 2006-02-02 | Magnesium Technologies, Inc. | Reclaimed magnesium desulfurization agent |
US20070221012A1 (en) * | 2006-03-27 | 2007-09-27 | Magnesium Technologies Corporation | Scrap bale for steel making process |
US7731778B2 (en) | 2006-03-27 | 2010-06-08 | Magnesium Technologies Corporation | Scrap bale for steel making process |
US20080196548A1 (en) * | 2007-02-16 | 2008-08-21 | Magnesium Technologies Corporation | Desulfurization puck |
US9187792B2 (en) | 2011-01-15 | 2015-11-17 | Alamamet GmbH | Agent for treating molten metals, method for the production and use thereof |
Also Published As
Publication number | Publication date |
---|---|
IT1001677B (it) | 1976-04-30 |
DE2355736B2 (de) | 1977-10-27 |
NL7315376A (it) | 1974-05-13 |
DE2355736A1 (de) | 1974-05-22 |
BR7308802D0 (pt) | 1974-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3876421A (en) | Process for desulfurization of molten pig iron | |
CA1240842A (en) | Method, process and composition for desulfurizing pig-iron melts | |
US4430117A (en) | Production of steel | |
US4139369A (en) | Desulphurization of an iron melt | |
KR101818031B1 (ko) | 용선의 탈황 방법 및 탈황제 | |
JP4845078B2 (ja) | 溶銑の脱硫方法 | |
US2622977A (en) | Desulfurization of iron and iron alloys | |
GB1461233A (en) | Process for melting iron sponge | |
US4420333A (en) | Powdery desulfurizer composition | |
JP2010163697A (ja) | 溶銑の脱硫方法 | |
US5284504A (en) | Powdered desulfurizing reagent and process of use | |
US2781256A (en) | Process for the rapid removal of sulphur and silicon from pig iron | |
US4154606A (en) | Composition and method for the desulfurization of molten iron | |
JP3978355B2 (ja) | 溶銑の脱硫剤および脱硫方法 | |
US4340422A (en) | Powdery desulfurizer composition | |
US4738715A (en) | Desulfurizing reagent for hot metal | |
US4988387A (en) | Agent and process for desulfurizing molten metals | |
JP2001288507A (ja) | 低燐溶銑の製造方法 | |
JPH10265816A (ja) | 溶銑の脱硫方法 | |
KR880000467B1 (ko) | 용철을 취입에 의하여 탈황하는 방법 | |
US3192037A (en) | Desulfurization method | |
US2979393A (en) | Process of desulfurizing pig iron | |
JPS5916921A (ja) | 付着スラグの除去方法 | |
KR19980044909A (ko) | 고성능 슬래그 진정제 제조방법 | |
JP3852144B2 (ja) | 溶銑の予備処理方法 |