US3871337A - Rotating cylinder internal combustion engine - Google Patents
Rotating cylinder internal combustion engine Download PDFInfo
- Publication number
- US3871337A US3871337A US286294A US28629472A US3871337A US 3871337 A US3871337 A US 3871337A US 286294 A US286294 A US 286294A US 28629472 A US28629472 A US 28629472A US 3871337 A US3871337 A US 3871337A
- Authority
- US
- United States
- Prior art keywords
- engine body
- rotary
- combustion chamber
- shaft
- stationary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 162
- 230000033001 locomotion Effects 0.000 claims abstract description 47
- 230000003534 oscillatory effect Effects 0.000 claims abstract description 19
- 239000000446 fuel Substances 0.000 claims description 28
- 239000000203 mixture Substances 0.000 abstract description 21
- 239000003921 oil Substances 0.000 description 28
- 239000000567 combustion gas Substances 0.000 description 13
- 239000007789 gas Substances 0.000 description 13
- 230000008901 benefit Effects 0.000 description 7
- 230000006835 compression Effects 0.000 description 7
- 238000007906 compression Methods 0.000 description 7
- 238000001816 cooling Methods 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 6
- 239000010687 lubricating oil Substances 0.000 description 6
- 238000007789 sealing Methods 0.000 description 5
- 238000003915 air pollution Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000003502 gasoline Substances 0.000 description 2
- 230000001050 lubricating effect Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- DFCAFRGABIXSDS-UHFFFAOYSA-N Cycloate Chemical compound CCSC(=O)N(CC)C1CCCCC1 DFCAFRGABIXSDS-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical class [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 210000004907 gland Anatomy 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000010525 oxidative degradation reaction Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C1/00—Rotary-piston machines or engines
- F01C1/30—Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
- F01C1/40—Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and having a hinged member
- F01C1/44—Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and having a hinged member with vanes hinged to the inner member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B75/00—Other engines
- F02B75/02—Engines characterised by their cycles, e.g. six-stroke
- F02B2075/022—Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
- F02B2075/027—Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle four
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B2730/00—Internal-combustion engines with pistons rotating or oscillating with relation to the housing
- F02B2730/03—Internal-combustion engines with pistons rotating or oscillating with relation to the housing with piston oscillating in a housing or in a space in the form of an annular sector
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B53/00—Internal-combustion aspects of rotary-piston or oscillating-piston engines
Definitions
- ABSTRACT A rotary internal combustion engine comprising an oscillating rectangular piston plate and related fixed and moving parts, a rotary engine body and a stationary engine body.
- the rotary engine body contains therein the rectangular piston plate carried on a rotatable piston carrier.
- This piston plate is hinged at one end to a shaft and adapted for inward and outward movement relative to the central axis of the engine.
- the engine contains a combustion chamber the sides of which are formed by the inner wall of the rotary piston carrier and the surface of the rotary engine body adjacent thereto, the inner disc wall of the stationary engine body, the inner surface of the piston plate and inner surface of the curved member in contact with the outer edge of the piston plate.
- the rectangular piston plate is fixedly connected to the shaft, which shaft is in turn fixedly connected to a first linking means.
- the piston plate, shaft and first linking means are movably connected to a second linking means, a throw and a driving gear.
- the fixed relationship between the piston plate, shaft and first linking means and their movable relationship with the second linking means, throw and driving gear are such that during the combustion-power cycle, when a compressed fuel-air mixture is burned in the combustion chamber and the piston plate is made to oscillate outwardly, the oscillatory motion of the piston plate is changed to rotary motion of the driving gear.
- the driving gear drives against a stationary main gear fixedly connected to the stationary engine body causing rotation of the driving gear, the rotary piston carrier and the rotary engine body around the stationary main gear and relative to the stationary engine body.
- the rectangular piston plate is closely dimensioned with respect to the inner wall of the rotary piston carrier, the .inner wall of the stationary engine body and inner surface of the curved wall member.
- the invention more particularly relates to a novel four cycle rotary internal combustion engine comprising oscillating piston plates in which the oscillatory motion of the piston plates outwardly and inwardly caused by the combustion of a compressed fuel-air mixture in the combustion chamber is effectively and efficiently changed into useful rotary motion.
- a second type of rotary engine which utilizes oscillating piston plates similar to the type described herein have generally been ineffective in changing the oscillatory motion of the piston plate to useful rotary motion.
- Another object of the invention is to provide a rotary engine which has a new and efficient means of transmitting the oscillatory motion of the rectangular piston plate to rotary motion of the rotary engine body.
- a further object of the invention is to provide an engine of the type described herein which is capable of having the oscillatory motion of the piston plates, in sequence, accomplish the functions of intake, compression, combustion-power and exhaust.
- Another object of the invention is to provide a rotary engine which is easy to maintain and which can use conventional carburation and ignition.
- the engine can be broadly broken down into three principle parts. i
- a rotary engine body having a rotary piston carrier on which is carried the rectangular piston plate and related parts of Part I.
- III A stationary. engine body.
- FIG. 1 is a cross-section of a preferred embodiment taken along a vertical line generally through the central axis. For purposes of clarity the teeth of the driving and stationary gears are shown in elevation.
- FIG. 2 is an isometric drawing of the rectangular piston plate and the related fixed and moving parts.
- FIG. 3 is a vertical section taken through the center line of shaft 2 as it passes through the rotary piston plate carrier.
- FIG. 4 is an isometric drawing of the connecting links, throws and driving gear.
- FIG. 5 is a cross-section taken generally along line A-A of FIG. 1 looking in the direction indicated by the arrows showing the relationship between the connecting links, throw, drive gear and stationary main gear.
- FIG. 5A is a schematic view of the arrangement of the rectangular piston plate, the first and second linking means, the throw and drive gear.
- FIG. 6 is a vertical section taken generally along line BB of FIG. ll looking in the direction indicated by the arrows showing four combustion chambers in the various cycles of fuel intake, compression, combustionpower and exhaust.
- FIG. 7 is an end view taken generally along line C-C of FIG. 1 looking in the direction indicated by the arrows showing the ignition means, fuel inlet and exhaust means and the oil inlet and outlet means.
- the rotary internal combustion engine of the present invention comprises a rotary engine body including a housing, an end disc and a rotary piston carrier operably connected thereto, and a stationary'engine body including a stationary end disc and a stationary main driven gear connected thereto.
- An embodiment of the engine of the present inven tion comprises a four cycle engine.
- an engine having four combustion chambers spaced apart is described.
- the combustion chambers rotate with the rotary engine body and in each complete 360 revolution to go through all four cycles of intake, compression, ignition (combinationpower) and exhaust.
- the combustion chambers are in a sense connected to the rotary piston plate carrier and rotate with the carrier and relative to the stationary disc of the stationary engine body.
- the stationary disc contains and/or has located thereon a fuel-air intake port, an ignition means and an exhaust port. Each combustion chamber during rotation in turn comes into contact with and passes each of the fuel intake port, ignition means and exhaust port.
- Each rectangular piston plate in each combustion chamber oscillates twice, inwardly and outwardly, for each revolution of the rotary piston carrier.
- the rotation of the combustion chambers past the intake port, the ignition means and the exhaust port is coordinated with the inward and outward oscillation of the rectangular piston plates such that each combustion chamber in turn goes through the four engine cycles.
- the rectangular piston plate will move away from the central axis of the engine to draw the fuel-air mixture into the combustion chamber.
- the plate will then oscillate inwardly to compress the air-fuel mixture and at the proper time come into contact with the ignition means which ignites the mixture and starts the combustion-power cycle causing the piston plate to oscillate outwardly away form the central axis of the engine.
- the piston plate begins to oscillate inwardly as the combustion chamber approaches and comes into contact with the exhaust port such that the spent combustion gases are expelled through the exhaust port.
- Combustion chamber 25 in position A is in the full fuelair mixture intake position having received the said mixture through the fuel inlet port 70 during the time the combustion chamber 25 passed over inlet 70 in going from the full exhaust position D to full intake position A.
- the rotary piston plate carrier 21 of the engine as shown in FIG. 6 rotates counter-clockwise.
- the fuel-air mixture in combustion chamber 25 is fully compressed at position B.
- the combustion chamber 25 at the'completion of combustion power cycle is at position C.
- the combustion chamber 25 is at about its maximum volume and contains the spent or burnt combustion gases.
- the combustion chamber 25 continues its rotation and passes from position C, full power cycle, to position D, full exhaust cycle. In doing so, as the combustion chamber comes up to and over exhaust port 72 the rectangular piston plate closes expelling the burnt combustion gases out through exhaust outlet line 71.
- two diametrically opposed piston plates oscillate towards the center of the engine while the other two diametrically opposed piston plates oscillate away from the center of the engine.
- each of the four piston plates reach the end of their travel, they reverse themselves and then travel in the opposite direction. This occurs twice for each piston plate per revolution of the rotary piston carrier.
- the engine of the present invention provides substantial advantages and engineering, manufacturing and design improvements over conventional engines of comparable size including: more horsepower per pound, more mileage per gallon, fewer total parts, fewer moving parts, simplified ignition and fuel intake system, smooth continuous combustion-power output, very light and compact per CC of displacement and horsepower, ease and simplicity of manufacture, assembly and maintenance, capability of operation on all types and grades of fuels, obtains substantially complete combustion of fuel such that exhaust pollution is minimized, and high degree of reliability and useful life.
- Another advantage is that the engine performs all the functions of an internal combustion engine without the use of intake and exhaust valves and all the complex mechanism normally required for the timing and operation of such valves.
- Another advantage of the construction of the engine is that it provides a simplified means of ignition. Once started the engine can have automatic self-ignition. This involves the use of an ignition combustion gas bypass means whereby a small portion of the combustion gases from the previously fired combustion chamber is by-passed into the next to be fired combustion chamber containing compressed fuel-air mixture.
- A-further advantage of the present invention is that the lubricating oil means for lubricating and cooling the engine operates as a sealed unit.
- the lubricating oil is not exposed to the atmosphere and can thus not volatilize.
- the lubricating oil is not directly exposed to the combustion chambers and thus is not subjected to oxydative degradation. Both of these features act to further minimize any air pollution that may result from operation of the engine.
- a still further advantage is that in one embodiment of the present invention separate sealing means around at least the side edges of the rectangular piston plate may be omitted.
- a specific advantage of the present invention as compared to a conventional reciprocating internal combustion engine is that the engine of the present invention provides one power stroke per combustion chamber for each complete revolution of the engine, e.g. drive shaft, whereas the convention engine provides only one power stroke per two complete revolutions of the drive shaft.
- the engine of the present invention is thus capable of producing about twice the power of a conventional engine of the same number of combustion chambers and displacement.
- Part I of the engine comprises the oscillating rectangular piston plate 1 fixedly connected and hinged to shaft 2, which shaft is in turn fixedly connected to a first linking means 3, see FIG. 2.
- the piston plate 1, shaft 2 and first linking means 3 are movably connected to a second linking means 4, throw 5 and driving gear 6 whereby the oscillating motion of the piston plate is changed into a rotary motion of the planetary or driving gear 6, see FIGS. 4 and 5.
- shaft 8 is shown supported in the rotary engine body and is connected by suitable bearing means to planetary or drive gear 6.
- Bearing means 9 movably connects linking means 3 to linking means 4 and bearing means 10 movably connects linking means 4 to throw 5, see FIGS. 2 and 4.
- Piston plate 1 can have recesses, see FIG. 2, on its side edges and outer edge in which recesses sealing and bearing means 11 can be placed.
- the sealing and bearplate see FIG. 1 and FIG. 6.
- ing means can be pressed outwardly by suitable spring means not shown.
- the rotary engine body comprises rotary piston carrier plate or disc 21 on which is movably connected shaft 2 and the rectangular piston plate 1 of Part I.
- the connecting links 3 and 4 and throw 5 are movably connected to each other by suitable bearing means.
- Throw 5 and gear 6 of Part I are fixedly connected to eachother and rotate around shaft 8.
- Disc 21 is an integral part of the rotary engine body and is fixedly connected to outer wall cover of housing 22 and housing cover 23, both of whichrotate therewith.
- the sides or walls of the combustion chamber 25 are formed by the inner wall surface 21a of the rotary piston carrier and the surface 24 of the rotary engine body adjacent thereto, the inner disc wall surface 51a of the stationary engine body (Part III), the inner surface of piston plate 1 and the inner surface 41a of the curved member 41 in contact with the outer edge of piston
- a suitable gas seal and bearing means, e.g., carbon seal 26 is inserted into a recess in the outer edge of curved wall 22 and rotates therewith and provides gas sealing means and bearing means.
- a vent 80 can be provided in disc 51 for venting and collecting any blowby gases from the combustion chamber. The collected gases, to reduce air pollution, can be recycled to the fuel intake means and burned.
- the rectangular piston plate 1 oscillates inwardly and outwardly on shaft 2 (Part I) in the combustion chamber.
- Shaft 2 is supported by flange 27 recessed in disc 21 and is sealed by oil seal means 28.
- Shaft 2 oscillates on bearing means 29.
- Shaft 2 is supported by bearing 43 which seats in a recess formed in end disc 30. Support for shaft 2 is thus provided by flange 27 in disc 21, bearing means 29 in part 40 of the rotary engine body and bearing means 43 in disc 30.
- Disc 30 is integral with housing cover 23 and is fixedly connected to disc 21 by bolts 31a and 31b and rotates therewith.
- Clutch face 32 is fixedly connected by suitable means to disc 30 and can be used as the principal power take-off means.
- Auxiliary power takeoff means is provided by shaft 33, which is fixedly connected by suitable means to disc 30, and pulley means 34 and which is fixedly attached by key 35 to the end of shaft 33.
- Shaft 8 is supported by part 40 of the rotary engine body and the planetary or drive gear 6 (Part I) is operably connected thereto.
- shaft 33 is integrally connected to shaft support member disc 36, which disc is fixedly connected to the inner side of disc 30 by suitable bolts 37.
- Bolts 38 fixedly connect disc 30 to the portion of the rotary engine body 40, which is integral with disc 21.
- Suitable oil sealing means not shown are provided between disc 31) and part 40 of the rotary engine body.
- Thrust bearing raceway 39 and raceway 61 support thrust bearing 62. The thrust bearing prevents outward movement of the rotary engine body due to the expansionary pressure of the combustion gases in combustion chamber 25.
- Raceway 61 is integrally connected to the stationary engine body (Part III) and provides the surface and support which prevents the outward movement.
- Raceway 39 (Part II) is the part of the rotary engine body through which the outward pressure is'transmitted through bearing 62 to raceway 61.
- Raceways 39 and 61 may be made as a part of the rotary engine body 40 and stationary hollow shaft 57, re spectively, or may be made separately and welded or otherwise integrally attached to these respective parts. End bolts 75 in cooperation with end plate 66, raceway 61 and spacer 42 hold main gears 59 in position.
- Main bearing 45 can be fixedly connected to the rotary engine body and will rotate with the rotary engine body around the stationary hollow shaft 57.
- the cooling and lubricating oil filling the interior of the rotary engine body (Part II) is supplied through oil inlet port 64 and oil line 67.
- the oil is returned through port 68, the hollow portion 79 of shaft 57, and oil outlet port 65 (Part III) see FIGS. 1 and 7.
- the portion of the rotary engine body identified at provides bearing support means for shaft 8, about which gears 6 rotate, can form raceway 39 and provides support for the bearing means for shaft 2 (Part I).
- the entire inside of the rotary main engine body is filled with oil to cool and lubricate the moving parts therein.
- the cooling and lubricating oil is in a sealed system and is not exposed to the atmosphere or combustion gases.
- the closed system feature prevents air pollution by vaporization of lubricating oil fumes and prevents oxidative degradation of the oil.
- the stationary engine body carries and supports the rotary engine body and provides the means for connecting the engine to a suitable base or support means.
- the stationary engine body comprises disc 51, the inner portion 51a of which as discussed above, forms a part of the combustion chamber 25.
- Disc 51 is integral with cylindrical hub 52.
- the lower portion of disc 51 forms legs 53, for supporting the engine through which bolts 54 pass to secure the engine to a suitable base, e.g., an engine block 55.
- Hub 52 is fixedly connected by key 56 to hollow main shaft 57.
- Main shaft 57 is fixedly connected by'means of key 58 to stationary main gear 59. See FIGS. 1 and 5.
- Main bearing is operably connected to shaft 57 and rotates with the rotary engine body around shaft 57.
- stationary main gear 59, hollow main shaft 57, hub 52, disc 51 secure legs 53 are stationary and secured to a suitable base by bolts 54 while the rotary engine body (Part II) rotates with main bearing 45 on shaft 57 and around the central axis of shaft 57.
- Thrust bearing raceways 39 and 61 and thrust bearing 62 prevent the outward movement of the rotary piston carrier 21 due to the pressure of the expanding gases in the combustion chamber 25 of the rotary main engine body.
- End plate 63 on the right end of hollow shaft 57 (FIG. 1) has passing therethrough oil inlet port 64 and inlet line 67, oil outlet port 65 and auxiliary power take-off shaft 33 (Part II).
- shaft 57 has passing therethrough shaft 33, oil inlet line 67 and oil return port 68. Shaft'33 rotates on bearing 77 which is sealed by oil seal 76.
- Disc 51 has passing therethrough fuel inlet line 69 through port 70, and exahust outlet line 71 through port 72 and ignition means 73.
- the outer wall of disc 51 contains thereon air cooling fins 78 which radiate outwardly from the center of disc 51, see FIG. 7. End bolts 74 secured end plate 63 to hub 52 and end bolts 75 secure end plate 66 to hollow shaft 57.
- FIG. 1 is an expanded side view taken through a vertical section along the central axis of the engine.
- FIG. 1 shows Part I comprising the rectangular piston plate 1 and related parts, rotary engine body Part II and stationary engine body Part III each part of which was discussed above.
- a mixture of fuel and air in vapor phase is fed through fuel inlet line 69 through fuel inlet port 70 (FIG. 7) into combustion chamber 25, see position A, (FIG. 6).
- the fuelair mixture is drawn into the combustion chamber 25 as the rectangular piston plate 1 oscillates outwardly and while at the same time the rotary piston plate carrier 21 rotates in a counterclockwise direction and moves from position D to position A, comes up to, over and passes the fuel inlet port 70.
- the fuel intake cycle is complete.
- FIGS. 2 to 4 The rectangular piston plate 1 has slots 7 in its upper surface which reduce its overall weight.
- the piston plate is fixedly connected to shaft 2, by key 12 of shaft 2.
- Shaft 2 has thereon flange 27 and packing and oil seal gland or gasket 28 both of which set in the wall of disc 21. Gasket 28 prevents oil seepage from the interior of the rotary engine body (Part II) into the combustion chamber 25.
- Shaft 2 oscillates with piston plate 1 on bearing means 29 first in one direction then in the other. Bearing 29 is supported in part 40 of the rotary engine body and forms a thrust face 46 which is operably connected to link 3, see FIG. 3.
- Shaft 2 is fixedly connected to link 3 by key 15. There are two parts to link 3.
- Shaft 17 passes through the two parts of link 3 and through link 4, operably connecting link 3 to link 4.
- Shaft 17 is fixedly connected to link 3 by key 18.
- Bearing means 9 provide a movable connecting means between link 3 and link 4.
- Shaft 2 continues through both portions of link 3 and is supported by bearing means 43 recessed in end disc 30.
- Shaft 19 passes through both parts of throw and through link 4.
- Link 4 is moveably connected by bearing means to shaft 19 and throw 5.
- Shaft 19 is fixedly connected by key 20 to throw 5.
- Throw 5 is fixedly connected or pinned to drive gear 6, by means not shown.
- Shaft 8 passes through the center of planetary or drive gear 6.
- Gear 6 is comprised of two parts and is movably connected to shaft 8 by suitable bearing means 16.
- FIG. 5 is a cross-section taken generally along line AA of FIG. 1 looking in the direction indicated by the arrows showing the relationship between the connecting links 3 and 4, throw 5, drive gear 6 and stationary main gear 59.
- the outer surface 21b of the rotary piston plate 21 can be seen in the background.
- Shaft 8 is stationary and gear 6 is rotatably connected thereto and rotates thereon using suitable conventional, bearing means 16.
- the shaft 8 as previously mentioned is fixedly connected to rotary engine body part 40 (Part II).
- the rotary engine body 40 carries and supports shaft 8, throw 5 and gear 6.
- Gear 6 rotates around shaft 8 in a clockwise direction, causing planetary rotation of gear 6 around main gear 59 also in a clockwise direction.
- main gear 59 is stationary, it causes the rotary piston carrier disc 21 to rotate in a clockwise direction around main gear 59.
- FIG. 5A is a detailed view of the arrangement of the rectangular piston plate 1, the first linking means 3, the second linking means 4, throw 5 and drive gear 6. This figure also shows the relationship of shaft 17, key 18 and bearing means 9 to linking means 3 and 4; and the relationship of shaft 19, key 20 and bearing means 10 to linking means 4 and throw 5.
- FIG. 6 is a vertical section taken generally along line BB of FIG. 1 looking in the direction indicated by the arrows showing four combustion chambers 25 in the various cycles of fuel intake (position A), compression (position B), combustion-power (position C) and exhaust (position D).
- the inner wall 21a of rotary piston plate carrier 21 can be seen in the background.
- position A on the right-hand side of the drawing shows combustion chamber 25 after completion of the full intake cycle.
- FIG. 6 shows the inner surface 41a of curved member 41 and the surface 24 of the rotary engine body, both of which form walls of combustion chamber 25.
- the drawing also shows in cross-section a view of the rectangular piston plate 1,-shaft 2, main bearing 45, hollow main shaft 57 and oil inlet line 67.
- the lubricating and cooling oil flows into the engine through line 67 in a direction away from the viewer and out of the engine through the hollow portion 79 of the main shaft 57 in a direction towards the viewer.
- the auxiliary power takeoff means shaft 33 is also shown.
- the lightening slots of rectangular piston plate 1 are shown at 7.
- combustion chamber 25 After the intake cycle at position A is completed, the next cycle is compression of the fuel-air mixture in combustion chamber 25 which takes place and is shown at position B.
- the rotary engine body rotates counter-clockwise and combustion chamber 25 passes from position B to position C during which time the fully compressed fuel-air mixture comes up to and into contact with ignition means 73, see FIG. 7. Ignition means 73, when the fuel-air mixture is at optimum compression ignites the mixture and causes combustion thereof.
- the combustion chamber 25 at the completion of the combustion power cycle is at position C.
- the rotary piston plate 21 continues its counter-clockwise rotation and combustion chamber 25 rotates from position C up to and past exhaust port 72 to position D.
- FIG. 7 is an end view taken generally along line CC of FIG. 1 looking in the direction indicated by the arrows showing the ignition means 73 and in dotted lines an alternate ignition means 81, fuel inlet port 72 and exhaust port 70 and the oil inlet port 64 and oil outlet port 65.
- This view of the drawing also shows end plate 63, fuel inlet line 711, exhaust line 69 and auxiliary power take-off shaft 33.
- the outer wall 51b of disc 51 and cooling fins 78 radiating outwardly from the center thereof.
- Supporting legs 53 carry and support the engine on the engine block 55 and are secured thereto by bolts 54.
- the alternate ignition means 81 provides an embodiment in which the engine, once started, for example by conventional means, can have automatic self-ignition. This involves the use of an ignition combustion gas bypass shown by dotted lines 81.
- the gas by-pass can be formed by making a small recess in the inner wall sur face 510 which recess for a short period of time connects the two combustion chambers 25 that are in positions C and B (see FIG. 6). In this manner during operation of the engine a small portion of the still burning combustion gases from the previously fired combustion chamber (position C) is by-passed into the next to fire combustion containing compressed fuel-air mixture (position B). The by-pass still burning combustion gases ignite the compressed fuel-air mixture. Thus, the operation of the engine once started will be selfsustaining.
- the rectangular piston plates can be very closely dimensioned with respect to the inner wall of rotary piston carrier, inner disc wall of the stationary engine body and the inner wall of the curved member such that the engine can be operated without separate gas seal or bearing means at the sides and/or outer edge of the piston plate.
- the sizing of the rectangular piston plate with respect to the inner wall surfaces of combustion chamber is very closely controlled. The clearance between each' side edge and the outer edge of the piston plate and surface of the combustion chamber is maintained and controlled at a minimum. Because of the very rapid oscillatory motion of the piston plate in the combustion chamber and the very close tolerances, the intake, compression, combustion-power and exhaust cycles can be carried out without substantial loss of gas pressure into or out of the combustion chamber.
- the edges of the piston plate and/or the said inner wall surfaces of the combustion chamber can be treated to improve the gas seal and contact between the surfaces.
- At least a portion of the inner surface of the piston plate and the opposing surface of the rotary engine body can be made flat, concaved or convexed and/or combinations thereof. Further, a portion of the inner surface of either the piston plate and/or the opposing surface of the rotary engine body can be recessed to provide additional engine displacement.
- the rotary engines of the present invention can be built throughout the same horsepower and displacement range as conventional lawn mower, motorcycle, automobile, truck, marine and aircraft engines with the important difference that the engines of this invention will be approximately 40 to percent lighter in weight and one third to one fourth the size for the same displacement and horsepower engine.
- Engines having two combustion chambers are particularly applicable for lawn mowers, and motorcycles and small cars.
- Four, six and eight or more combustion chamber engines are particularly applicable for use in automobiles and trucks and marine and aircraft uses.
- the main power can be taken off through a suitable clutch plate, automatic transmission, pulley and/or gear means.
- the auxiliary power take-off shaft means can be connected to a pul- Icy or other suitable means and used to drive auxiliary equipment such as a generator, oil pump, gasoline pumps, etc.
- the engines can be placed vertically, horizontally or any angle so long as they are securely mounted on a suitable base.
- the engine ignition can be provided by a conventional glow plug and coil or by a conventional diesel type engine firing.
- an automatic selfignition means may be used such that once started the engine can have automatic self-ignition. This embodiment involves the use of the combustion gas by-pass means as discussed above.
- the engine is engineered and designed to operate on a wide range of fuels from low octane to high octane gasoline, diesel fuel, kerosene, alcohol, and liquified gases such as propane, butane, natural gas, etc.
- a medium octane fuel is used, it can bemixed with air in a conventional carburator and throttled to the fuel intake line.
- the fuel and air can be fed to the engine by a conventional fuel injection means using conventional automotive equipment.
- the engine is both lubricated and cooled by means of oil.
- the oil fills the interior portion of the rotary engine body. Because of the rotary motion, the oil will be forced outward by centrifugal force to cool and lubricate all the parts in the rotary engine body.
- the warm oil is cycled to an air or water cooled radiator means or other suitable heat exchange means and cooled prior to return to the engine.
- the various engine parts such as the casing and housing of the rotary engine body can be bolted, welded and/or otherwise fastened together.
- the stationary enllll gine body parts can be bolted, welded and/or otherwise fastened together.
- the engine parts are easily made by forging, casting and machining.
- the engine parts can be made of cast or forged iron, steel or aluminum.
- the engine can easily be assembled by moderately skilled labor. Repair and maintenance of the engine is equally simple.
- the piston plate edges and the surfaces of the walls of the combustion chamber can be suitably treated and/or lined to improve the gas seal and to minimize wear and promote smooth relatively frictionless bearing surfaces.
- a rotary internal combustion engine comprising, a stationary engine body having a fixed end wall, a rotary engine body supported by the stationary engine body and including an inner wall surface, at least one combustion chamber within one of the engine bodies, the inner wall surface of the rotary engine body and the fixed end wall of the stationary engine body defining walls of the combustion chamber, oscillating means movable in said combustion chamber, a shaft fixedly connected to said oscillating means and operably connected to said rotary engine body, planetary gear means, and linking means interconnecting said planetary gear means and said shaft to transmit through said shaft, during the combustion power cycle, the oscillatory motion of said oscillating means and to convert said oscillatory motion to rotary motion of the planetary gear means, both the planetary gear means and the linking means being disposed adjacent only one side of the combustion chamber.
- the rotary internal combustion engine of claim 1 which further comprises (includes a) fuel intake means, exhaust outlet means and ignition means all contained in the wall of the stationary engine body.
- the rotary internal combustion engine of claim 1 which includes at least two combustion chambers within the rotary engine body.
- the rotary internal combustion engine of claim 1 which (includes an) further comprises automatic selfignition gas by-pass ignition means in the wall of the stationary engine body.
- a rotary internal combustion engine comprising a stationary engine body having a fixed end wall, a rotary engine body supported by the stationary engine body and including an inner wall surface, at least one combustion chamber, said combustion chamber being located between the inner wall surface of the rotary engine body and the fixed end wall of the stationary engine body, said walls defining walls of the combustion chamber, a fuel intake means and an exhaust outlet means contained in the end wall of the stationary engine body, means which oscillate inwardly and outwardly in said combustion chamber, a shaft fixedly connected to said oscillating means and hingedly connected to said rotary engine body, a first linking means fixedly connected to said shaft, a second linking means operably connected to said first linking means, a planetary gear means, and a throw operably connected to said second linking means and said planetary gear means whereby the oscillatory motion of the oscillating means is transmitted, during the combustion power cycle, through said shaft and first and second linking means and throw and is converted to rotary motion of said planetary gear means, the first and second linking means, the planetary gear means and
- a rotary internal combustion engine comprising, a stationary engine body having a fixed end wall, a rotary engine body supported by the stationary engine body and including an inner wall surface, at least one combustion chamber within one of the engine bodies, the inner wall surface of the rotary engine body and the fixed end wall of the stationary engine body defining walls of the combustion chamber, a piston plate which oscillates inwardly and outwardly in said combustion chamber, a shaft fixedly connected to the piston plate and hingedly connected to said rotary engine body, first linking means fixedly connected to said shaft, second linking means operably connected to said first linking means, a planetary gear, a main gear, in meshing engagement with the planetary gear, and a throw operably connected to the second linking means and the planetary gear whereby the oscillatory motion of the piston plate is transmitted during the combustion power cycle through said shaft and first and second linking means and throw and is converted to rotary motion of the planetary gear which drives against the main gear, the first and second linking means, the planetary gear and the throw all being disposed adjacent only one side of the
- a rotary internal combustion engine comprising, a stationary engine body having a fixed end wall surface, a rotary engine body supported by the stationary engine body and including an inner wall surface, the rotary engine body containing a rotary piston carrier, at least one combustion chamber, said combustion chamber being located between the inner wall surface of the rotary engine body and the fixed end wall of the stationary engine body, said walls defining walls of said combustion chamber, piston means carried by the rotary piston carrier and movable inwardly and outwardly in said combustion chamber, a shaft fixedly connected to said piston means and hingedly connected to said rotary engine body, a first linking means fixedly connected to said shaft, a second linking means operably connected to said first linking means, a planetary gear means, a throw operably connected to said second linking means and said planetary gear means whereby the motion of the piston means is transmitted, during the combustion power cycle, through said shaft and first and second linking means and throw and is converted to rotary motion of said planetary gear means, the first and second linking means, the planetary gear means and the
- a rotary internal combustion engine comprising, a stationary engine body having a fixed end wall surface, a rotary engine body supported by the stationary engine body and including an inner wall surface, the rotary engine body including a rotary piston carrier, at least one combustion chamber, said combustion chamber being located between the inner wall surface of the rotary engine body and the fixed wall surface of the stationary engine body, said walls defining walls of said combustion chamber, a piston plate which oscillates inwardly and outwardly in said combustion chamber, a shaft fixedly connected to the piston plate and hingedly connected to said rotary engine body, a first linking means fixedly connected to said shaft, 21 second linking means operably connected to said first linking means, a planetary gear, said stationary engine body having connected thereto a main gear in meshing engagement with the planetary gear, and a throw operably connected to said second linking means and said planetary gear whereby the oscillatory motion of the piston plate is transmitted, during the combustion-power cycle, through said shaft and first and second linking means and throw and is converted to rotary motion of said planetary gear
- a rotary internal combustion engine comprising, a stationary engine body having a fixed end wall surface; a rotary engine body supported by the stationary engine body and including a housing, an end disc and a rotary piston carrier within the housing; at least one combustion chamber, said combustion chamber being located between the end disc of the rotary engine body and the fixed end wall surface of the stationary engine body; a piston plate which oscillates inwardly and outwardly in said combustion chamber; a main gear carried by the stationary engine body; and drive means disposed adjacent only one side of said end wall for transmitting power from the piston plate to the rotary engine body, the drive means including a shaft fixedly connected to the piston plate and hingedly connected to said rotary engine body, a first linking means fixedly connected to said shaft, asecond linking means opera- 9 which (includes an) further comprises automatic selfignition gas by-pass ignition means in the inner wall surface of the stationary engine body.
- the rotary internal combustion engine of claim 9 which includes an oil inlet and oil outlet means for the rotary engine body and in which the oil is otherwise sealed in the rotary engine body.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Cylinder Crankcases Of Internal Combustion Engines (AREA)
- Transmission Devices (AREA)
- Combustion Methods Of Internal-Combustion Engines (AREA)
- Retarders (AREA)
Priority Applications (17)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US286294A US3871337A (en) | 1972-09-05 | 1972-09-05 | Rotating cylinder internal combustion engine |
IL43155A IL43155A (en) | 1972-09-05 | 1973-09-04 | Internal combustion engine |
CA180,189A CA997274A (en) | 1972-09-05 | 1973-09-04 | Rotary engine with oscillating piston plate on rotating plate carrier |
DE2344460A DE2344460C3 (de) | 1972-09-05 | 1973-09-04 | Schwenkkolben-Brennkraftmaschine |
ES418479A ES418479A1 (es) | 1972-09-05 | 1973-09-04 | Motor de combustion interna. |
AU59988/73A AU478553B2 (en) | 1972-09-05 | 1973-09-04 | Internal combustion engine |
JP48098975A JPS4992408A (ko) | 1972-09-05 | 1973-09-04 | |
FR7331816A FR2198543A5 (ko) | 1972-09-05 | 1973-09-04 | |
ZA736054A ZA736054B (en) | 1972-09-05 | 1973-09-04 | Internal combustion engine |
BE135299A BE804436A (fr) | 1972-09-05 | 1973-09-04 | Moteur a explosion rotatif |
IE1567/73A IE39533B1 (en) | 1972-09-05 | 1973-09-04 | Internal combustion engine |
CH1268173A CH575539A5 (ko) | 1972-09-05 | 1973-09-04 | |
IT28523/73A IT993141B (it) | 1972-09-05 | 1973-09-04 | Motore a combustione interna |
SE7312017A SE402798B (sv) | 1972-09-05 | 1973-09-04 | Forbrenningsmotor av rotationstyp med svengande kolvplattor |
GB4149373A GB1386925A (en) | 1972-09-05 | 1973-09-04 | Internal combustion engine |
NL7312155A NL7312155A (ko) | 1972-09-05 | 1973-09-04 | |
US05/400,580 US3948226A (en) | 1972-09-05 | 1973-09-25 | Internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US286294A US3871337A (en) | 1972-09-05 | 1972-09-05 | Rotating cylinder internal combustion engine |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US05/400,580 Continuation-In-Part US3948226A (en) | 1972-09-05 | 1973-09-25 | Internal combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
US3871337A true US3871337A (en) | 1975-03-18 |
Family
ID=23097947
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US286294A Expired - Lifetime US3871337A (en) | 1972-09-05 | 1972-09-05 | Rotating cylinder internal combustion engine |
Country Status (15)
Country | Link |
---|---|
US (1) | US3871337A (ko) |
JP (1) | JPS4992408A (ko) |
BE (1) | BE804436A (ko) |
CA (1) | CA997274A (ko) |
CH (1) | CH575539A5 (ko) |
DE (1) | DE2344460C3 (ko) |
ES (1) | ES418479A1 (ko) |
FR (1) | FR2198543A5 (ko) |
GB (1) | GB1386925A (ko) |
IE (1) | IE39533B1 (ko) |
IL (1) | IL43155A (ko) |
IT (1) | IT993141B (ko) |
NL (1) | NL7312155A (ko) |
SE (1) | SE402798B (ko) |
ZA (1) | ZA736054B (ko) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4106441A (en) * | 1977-01-19 | 1978-08-15 | Anderson Thomas W | Power translation machine with oscillating piston |
US4537162A (en) * | 1981-12-21 | 1985-08-27 | Kienle Gerhard K | Internal combustion engine having a rotating piston assembly |
US4560328A (en) * | 1983-06-29 | 1985-12-24 | Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt e.V. Linder Hohe | Rotary piston machine having a plurality of chambers containing reciprocating flap pistons |
US5033429A (en) * | 1990-01-11 | 1991-07-23 | Groves James L | Internal combustion engine |
US5305716A (en) * | 1991-07-12 | 1994-04-26 | Huettlin Herbert | Rocking-type piston engine |
US5466138A (en) * | 1993-07-22 | 1995-11-14 | Gennaro; Mark A. | Expansible and contractible chamber assembly and method |
US5518382A (en) * | 1993-07-22 | 1996-05-21 | Gennaro; Mark A. | Twin rotor expansible/contractible chamber apparauts |
US6457450B1 (en) * | 2000-03-01 | 2002-10-01 | Jury Mikhaylovich Luzhkov | Ju. M. Luzhkov rotary-turbine internal combustion engine |
US6576246B1 (en) | 1999-05-24 | 2003-06-10 | Seefar Technologies, Inc. | Degradable animal chewing article possessing enhanced safety, durability and mouth-feel |
US6606973B2 (en) | 2001-05-23 | 2003-08-19 | Cordell R. Moe | Rotary engine |
US6668767B1 (en) * | 1999-09-08 | 2003-12-30 | Sanchez Talero John Alejandro | Internal combustion engine rotatory (turbovolante) |
WO2006016358A2 (en) * | 2004-08-10 | 2006-02-16 | Peleg, Aharon | Rotary internal combustion engine with coupled cylinders |
US20060260564A1 (en) * | 2005-04-29 | 2006-11-23 | Timber Dick | Radial impulse engine, pump, and compressor systems, and associated methods of operation |
WO2008116258A1 (en) * | 2007-03-27 | 2008-10-02 | Randotor Australia Pty Limited | Magnetic motor |
US20080310985A1 (en) * | 2004-07-28 | 2008-12-18 | Rkg Holding As | Motor Driven by Pressure Medium Supplied From an External Pressure Source |
US20100065258A1 (en) * | 2008-09-15 | 2010-03-18 | Mike Blomquist | Modular cooling system |
US20100242891A1 (en) * | 2008-10-30 | 2010-09-30 | Timber Dick | Radial impulse engine, pump, and compressor systems, and associated methods of operation |
CN102269048A (zh) * | 2011-08-10 | 2011-12-07 | 段方泉 | 绝热内冷循环润滑型双旋转活塞式双轴内燃机 |
US9664106B2 (en) * | 2015-02-17 | 2017-05-30 | Ted Nae-Kuan Chiang | Rotary combustion engine system having toroidal compression and expansion chambers |
EP3489492A1 (en) | 2017-11-22 | 2019-05-29 | Wise Motor Works, Ltd. | Internal combustion engine, method of modifying an engine and method of running an engine |
US10344670B2 (en) | 2013-06-05 | 2019-07-09 | Wise Motor Works, Ltd. | Internal combustion engine with paired, parallel, offset pistons |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS575502A (en) * | 1980-06-11 | 1982-01-12 | Teruyasu Mochizuki | Rotor type rotary machine |
JPS5765801A (en) * | 1980-10-06 | 1982-04-21 | Kaoru Ohashi | Double action engine |
GB2219630B (en) * | 1988-06-08 | 1993-02-17 | Egan Michael J | Variable ratio coupling. |
DE102006027953A1 (de) * | 2006-06-14 | 2007-12-20 | Hüttlin, Herbert, Dr. h.c. | Brennkraftmaschine, insbesondere für ein Arbeitsgerät |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US638570A (en) * | 1899-03-13 | 1899-12-05 | Philip F Haas | Rotary engine. |
US726353A (en) * | 1902-06-12 | 1903-04-28 | Alphonse G Col | Rotary explosive-engine. |
US1209204A (en) * | 1914-03-16 | 1916-12-19 | James H Richards | Rotary engine. |
US1236009A (en) * | 1916-06-03 | 1917-08-07 | Saunders Motor Power Company | Rotary engine. |
US2182269A (en) * | 1938-07-26 | 1939-12-05 | Whritenour Edward | Engine |
US3203405A (en) * | 1961-02-03 | 1965-08-31 | Sabet Huschang | Rotary engine |
US3548790A (en) * | 1968-06-06 | 1970-12-22 | Walter J Pitts | Rotary vane type turbine engine |
US3552363A (en) * | 1967-11-06 | 1971-01-05 | Eisuke Funakoshi | Rotary engine |
-
1972
- 1972-09-05 US US286294A patent/US3871337A/en not_active Expired - Lifetime
-
1973
- 1973-09-04 GB GB4149373A patent/GB1386925A/en not_active Expired
- 1973-09-04 ZA ZA736054A patent/ZA736054B/xx unknown
- 1973-09-04 IE IE1567/73A patent/IE39533B1/xx unknown
- 1973-09-04 SE SE7312017A patent/SE402798B/xx unknown
- 1973-09-04 CA CA180,189A patent/CA997274A/en not_active Expired
- 1973-09-04 FR FR7331816A patent/FR2198543A5/fr not_active Expired
- 1973-09-04 DE DE2344460A patent/DE2344460C3/de not_active Expired
- 1973-09-04 IT IT28523/73A patent/IT993141B/it active
- 1973-09-04 CH CH1268173A patent/CH575539A5/xx not_active IP Right Cessation
- 1973-09-04 IL IL43155A patent/IL43155A/en unknown
- 1973-09-04 ES ES418479A patent/ES418479A1/es not_active Expired
- 1973-09-04 NL NL7312155A patent/NL7312155A/xx unknown
- 1973-09-04 BE BE135299A patent/BE804436A/xx unknown
- 1973-09-04 JP JP48098975A patent/JPS4992408A/ja active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US638570A (en) * | 1899-03-13 | 1899-12-05 | Philip F Haas | Rotary engine. |
US726353A (en) * | 1902-06-12 | 1903-04-28 | Alphonse G Col | Rotary explosive-engine. |
US1209204A (en) * | 1914-03-16 | 1916-12-19 | James H Richards | Rotary engine. |
US1236009A (en) * | 1916-06-03 | 1917-08-07 | Saunders Motor Power Company | Rotary engine. |
US2182269A (en) * | 1938-07-26 | 1939-12-05 | Whritenour Edward | Engine |
US3203405A (en) * | 1961-02-03 | 1965-08-31 | Sabet Huschang | Rotary engine |
US3552363A (en) * | 1967-11-06 | 1971-01-05 | Eisuke Funakoshi | Rotary engine |
US3548790A (en) * | 1968-06-06 | 1970-12-22 | Walter J Pitts | Rotary vane type turbine engine |
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4106441A (en) * | 1977-01-19 | 1978-08-15 | Anderson Thomas W | Power translation machine with oscillating piston |
US4537162A (en) * | 1981-12-21 | 1985-08-27 | Kienle Gerhard K | Internal combustion engine having a rotating piston assembly |
US4560328A (en) * | 1983-06-29 | 1985-12-24 | Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt e.V. Linder Hohe | Rotary piston machine having a plurality of chambers containing reciprocating flap pistons |
US5033429A (en) * | 1990-01-11 | 1991-07-23 | Groves James L | Internal combustion engine |
US5305716A (en) * | 1991-07-12 | 1994-04-26 | Huettlin Herbert | Rocking-type piston engine |
US5518382A (en) * | 1993-07-22 | 1996-05-21 | Gennaro; Mark A. | Twin rotor expansible/contractible chamber apparauts |
US5466138A (en) * | 1993-07-22 | 1995-11-14 | Gennaro; Mark A. | Expansible and contractible chamber assembly and method |
US6576246B1 (en) | 1999-05-24 | 2003-06-10 | Seefar Technologies, Inc. | Degradable animal chewing article possessing enhanced safety, durability and mouth-feel |
US6668767B1 (en) * | 1999-09-08 | 2003-12-30 | Sanchez Talero John Alejandro | Internal combustion engine rotatory (turbovolante) |
US6457450B1 (en) * | 2000-03-01 | 2002-10-01 | Jury Mikhaylovich Luzhkov | Ju. M. Luzhkov rotary-turbine internal combustion engine |
US6606973B2 (en) | 2001-05-23 | 2003-08-19 | Cordell R. Moe | Rotary engine |
US7736139B2 (en) | 2004-07-28 | 2010-06-15 | Soerby Reidar | Motor driven by pressure medium supplied from an external pressure source |
US20080310985A1 (en) * | 2004-07-28 | 2008-12-18 | Rkg Holding As | Motor Driven by Pressure Medium Supplied From an External Pressure Source |
WO2006016358A2 (en) * | 2004-08-10 | 2006-02-16 | Peleg, Aharon | Rotary internal combustion engine with coupled cylinders |
WO2006016358A3 (en) * | 2004-08-10 | 2006-04-13 | Peleg Aharon | Rotary internal combustion engine with coupled cylinders |
US20080087162A1 (en) * | 2005-04-29 | 2008-04-17 | Tendix Development, Llc | Radial impulse engine, pump, and compressor systems, and associated methods of operation |
US20060260564A1 (en) * | 2005-04-29 | 2006-11-23 | Timber Dick | Radial impulse engine, pump, and compressor systems, and associated methods of operation |
US7325517B2 (en) * | 2005-04-29 | 2008-02-05 | Tendix Development, Llc | Radial impulse engine, pump, and compressor systems, and associated methods of operation |
US7328672B2 (en) * | 2005-04-29 | 2008-02-12 | Tendik Development, Llc | Radial impulse engine, pump, and compressor systems, and associated methods of operation |
US20080087237A1 (en) * | 2005-04-29 | 2008-04-17 | Tendix Development, Llc | Radial impulse engine, pump, and compressor systems, and associated methods of operation |
US20060260565A1 (en) * | 2005-04-29 | 2006-11-23 | Timber Dick | Radial impulse engine, pump, and compressor systems, and associated methods of operation |
US7392768B2 (en) * | 2005-04-29 | 2008-07-01 | Tendix Development, Llc | Radial impulse engine, pump, and compressor systems, and associated methods of operation |
US7404381B2 (en) * | 2005-04-29 | 2008-07-29 | Tendix Development, Llc | Radial impulse engine, pump, and compressor systems, and associated methods of operation |
US8100094B2 (en) | 2005-04-29 | 2012-01-24 | Iris Engines, Inc. | Radial impulse engine, pump, and compressor systems, and associated methods of operation |
US20060260563A1 (en) * | 2005-04-29 | 2006-11-23 | Timber Dick | Radial impulse engine, pump, and compressor systems, and associated methods of operation |
US7650860B2 (en) | 2005-04-29 | 2010-01-26 | Iris Engines, Inc. | Engine with pivoting type piston |
US20100282201A1 (en) * | 2005-04-29 | 2010-11-11 | Iris Engines, Inc. | Radial impulse engine, pump, and compressor systems, and associated methods of operation |
US7707975B2 (en) | 2005-04-29 | 2010-05-04 | Iris Engines, Inc. | Radial impulse engine, pump, and compressor systems, and associated methods of operation |
US20060260566A1 (en) * | 2005-04-29 | 2006-11-23 | Timber Dick | Radial impulse engine, pump, and compressor systems, and associated methods of operation |
US7753011B2 (en) | 2005-04-29 | 2010-07-13 | Iris Engines, Inc. | Radial impulse engine, pump, and compressor systems, and associated methods of operation |
US7770546B2 (en) | 2005-04-29 | 2010-08-10 | Iris Engines, Inc. | Radial impulse engine, pump, and compressor systems, and associated methods of operation |
US20100206258A1 (en) * | 2005-04-29 | 2010-08-19 | Iris Engines, Inc. | Radial impulse engine, pump, and compressor systems, and associated methods of operation |
WO2008116258A1 (en) * | 2007-03-27 | 2008-10-02 | Randotor Australia Pty Limited | Magnetic motor |
US20100065258A1 (en) * | 2008-09-15 | 2010-03-18 | Mike Blomquist | Modular cooling system |
US8250876B2 (en) * | 2008-09-15 | 2012-08-28 | Mike Blomquist | Modular cooling system |
US20100242891A1 (en) * | 2008-10-30 | 2010-09-30 | Timber Dick | Radial impulse engine, pump, and compressor systems, and associated methods of operation |
CN102269048A (zh) * | 2011-08-10 | 2011-12-07 | 段方泉 | 绝热内冷循环润滑型双旋转活塞式双轴内燃机 |
CN102269048B (zh) * | 2011-08-10 | 2014-08-13 | 段方泉 | 绝热内冷循环润滑型双旋转活塞式双轴内燃机 |
US10344670B2 (en) | 2013-06-05 | 2019-07-09 | Wise Motor Works, Ltd. | Internal combustion engine with paired, parallel, offset pistons |
US10690050B2 (en) | 2013-06-05 | 2020-06-23 | Wise Motor Works, Ltd. | Internal combustion engine with paired, parallel, offset pistons |
US9664106B2 (en) * | 2015-02-17 | 2017-05-30 | Ted Nae-Kuan Chiang | Rotary combustion engine system having toroidal compression and expansion chambers |
EP3489492A1 (en) | 2017-11-22 | 2019-05-29 | Wise Motor Works, Ltd. | Internal combustion engine, method of modifying an engine and method of running an engine |
Also Published As
Publication number | Publication date |
---|---|
CH575539A5 (ko) | 1976-05-14 |
ZA736054B (en) | 1974-06-26 |
IE39533B1 (en) | 1978-11-08 |
CA997274A (en) | 1976-09-21 |
ES418479A1 (es) | 1976-07-16 |
IT993141B (it) | 1975-09-30 |
AU5998873A (en) | 1975-03-06 |
DE2344460B2 (de) | 1980-10-16 |
JPS4992408A (ko) | 1974-09-03 |
FR2198543A5 (ko) | 1974-03-29 |
NL7312155A (ko) | 1974-03-07 |
IL43155A0 (en) | 1973-11-28 |
IL43155A (en) | 1976-05-31 |
GB1386925A (en) | 1975-03-12 |
DE2344460A1 (de) | 1974-05-09 |
BE804436A (fr) | 1974-03-04 |
SE402798B (sv) | 1978-07-17 |
DE2344460C3 (de) | 1981-07-02 |
IE39533L (en) | 1974-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3871337A (en) | Rotating cylinder internal combustion engine | |
US3855977A (en) | Rotary internal-combustion engine | |
US3990405A (en) | Rotary internal combustion engine | |
US5623894A (en) | Dual compression and dual expansion engine | |
US8733317B2 (en) | Rotary, internal combustion engine | |
US4860704A (en) | Hinge valved rotary engine with separate compression and expansion sections | |
US4072132A (en) | Rotary internal combustion engine | |
US4010719A (en) | Rotary internal combustion engine | |
US6341590B1 (en) | Rotary engine | |
KR0144452B1 (ko) | 회전식 슬리이브밸브 내연기관 | |
US7621253B2 (en) | Internal turbine-like toroidal combustion engine | |
US3948226A (en) | Internal combustion engine | |
US6325603B1 (en) | Charged cooled rotary engine | |
CA1082603A (en) | Reciprocating rotary engine | |
US20100018490A1 (en) | Rotary internal combustion engine with annular chamber | |
EP1141530B1 (en) | Rotary engine having enhanced charged cooling and lubrication | |
US20090320794A1 (en) | Novel Internal Combustion Torroidal Engine | |
CN201092883Y (zh) | 旋板式内燃机 | |
US4005687A (en) | Concealed regenerative combustion engine | |
EP2165048A1 (en) | Rotary internal combustion engine with annular chamber | |
US4649801A (en) | Compound displacement mechanism for simplified motors and compressors | |
CN85103216A (zh) | 活塞齿条式内燃机 | |
US3496917A (en) | Internal combustion engine | |
Chinitz | Rotary engines | |
US3156220A (en) | Rotary internal combustion engine |