US3868277A - Method of producing a steel product having an oxidation-resistant coating - Google Patents
Method of producing a steel product having an oxidation-resistant coating Download PDFInfo
- Publication number
- US3868277A US3868277A US437916A US43791674A US3868277A US 3868277 A US3868277 A US 3868277A US 437916 A US437916 A US 437916A US 43791674 A US43791674 A US 43791674A US 3868277 A US3868277 A US 3868277A
- Authority
- US
- United States
- Prior art keywords
- coating
- oxidation
- substrate
- stage
- diffusion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C10/00—Solid state diffusion of only metal elements or silicon into metallic material surfaces
- C23C10/28—Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D3/00—Diffusion processes for extraction of non-metals; Furnaces therefor
- C21D3/02—Extraction of non-metals
- C21D3/04—Decarburising
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/06—Metallic material
- C23C4/08—Metallic material containing only metal elements
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/18—After-treatment
Definitions
- the present invention relates to a method of forming an oxidation-resistant coating on a steel substrate, such as steel sheet or wire, this coating comprising an oxidation-resistant material consisting of one or more of the metals Cr, Ni, Co, M0, or an alloy of two or more of these metals with one another or an alloy of one or more of these metals with iron or with other elements, the coating being formed by depositing the oxidationresistant material on the steel substrate (eg. by metalization or powder compacting techniques) and then subjecting the coated substrate to heat treatment to cause diffusion of the constituents of the substrate and coating.
- oxidation-resistant coatings are in the protection of ferrous products from corrosion and oxidation, and to this end it has already been suggested to employ powders comprising one or more of the metals Cr, Ni, Co and M or their alloys, whose protective properties are well known. With steel substrates it has in the past been found that satisfactory results, as far as corrosion resistance in an aqueous medium is concerned, could be obtained in practice with titanium-stabilized steels only.
- Methods used at present include carefully cleaning the substrate, then depositing an alloy on the substrate by spray metallization or by spreading and compacting of powder, and finally heat treating the coated substrate at a high temperature in a dry hydrogen atmosphere in order to cause diffusion of the alloy, deoxidation of the coating, and also decarburization of the substrate and the coating. After this, the coated product can be rolled and recrystallization annealing can take place depending upon the mechanical and structural properties desired in the final product.
- What is desired is a method of forming an oxidationresistant coating which does not undergo corrosion in an aqueous medium even when the substrate consists of ordinary steel, such as rimming steel or aluminum killed steel, whose carbon content is at least about 0.050 percent (by weight), this carbon being free.”
- the heat treatment comprises the following three stages in sequcnce:
- a decarburization stage in a decarburizing atmosphere such as carbon dioxide atmosphere or a wet hydrogen atmosphere
- the method is thus characterized in that diffusion takes place in an active atmosphere whose composition varies in the course of time.
- the temperature may also vary from stage to stage.
- the three stages of the heat treatment concerned can be carried out during a single annealing cycle.
- the preliminary diffusion stage is intended to ensure adhesion of the coating to the substrate and simultaneous removal of the oxygen present in the coating, and a dry hydrogen atmosphere is necessary in order to avoid oxidation of the interface between substrate and coating either due to the presence of this oxygen (the oxygen is eliminated as H O) or due to the action of that oxygen which would be brought about by an active gas whose dew point is not sufficiently low. Such oxidation of the interface would adversely affect diffusion and would inhibit adhesion of the coating.
- the decarburization stage is preferably carried out under a wet hydrogen atmosphere for well-known reasons of efficiency.
- the final diffusion stage is designed to complete the diffusion of the constituents of the coating and to prevent excessive oxidation of the surface of the substrate as a consequence of the preceding stage carried out in a wet hydrogen atmosphere.
- the preliminary diffusion stage at a temperature of 700C to l300C (preferably l000C to l250C) for 16 hours to A hour;
- the decarburization stage at a temperature of 900C to l300C for 4 hours to A hour according to the thickness of the coated substrate;
- the coating material may be deposited as a powder of one or more of the metals Cr, Ni, Co M0, or alloys of these metals, preferably an iron alloy of Cr or of Ni- Cr.
- the carbon contentof the powder will be between 0.020 and 1 percent.
- the deposition of the coating material is advantageously carried out either by metalization by means of a flame torch or an arc torch, or by a distribution or spreading operation followed by a compacting operation.
- the present invention particularly aims to a product whose coating advantageously has a carbon content lower than 0.020 percent.
- the coated substrate obtained may The above-described method enables a coating to be obtained whose microstructure is free from any intergranularcarbide, this ensuring good corrosion resistance in an aqueous medium.
- the coating obtained provides an improvement (with respect to other processes) in the surface finish after rolling and recrystallization.
- a heat treatment consisting of diffusion for 16 hours at 1 150C in dry hydrogen leads to the formation of a coating having a carbon content between 0.150 percent and 0.200 percent by weight.
- a method of producing a steel product having a decarburized oxidation-resistant coating comprising the steps of depositing on a mild steel substrate a coating of at least one oxidation-resistant material selected from the group consisting of the metals Cr, Ni, Co, and Mo, alloys of at least two of these metals with each other, and alloys of at least one of these metals with iron or other elements; and then subjecting the coated substrate to heat treatment to cause diffusion of constituents of the substrate and coating, the heat treatment comprising the following three stages in sequence;
- a method as claimed in claim-4 in which a powder of an iron-alloy of nickel and chromium is deposited on the substrate.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Coating By Spraying Or Casting (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| BE794757 | 1973-01-30 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3868277A true US3868277A (en) | 1975-02-25 |
Family
ID=3860707
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US437916A Expired - Lifetime US3868277A (en) | 1973-01-30 | 1974-01-30 | Method of producing a steel product having an oxidation-resistant coating |
Country Status (10)
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3959028A (en) * | 1972-11-20 | 1976-05-25 | The International Nickel Company, Inc. | Process of working metals coated with a protective coating |
| US4007064A (en) * | 1974-10-23 | 1977-02-08 | Vereinigte Osterreichische Eisen- Und Stahlwerke-Alpine Montan Aktiengesellschaft | Process of producing surface-decarburized steel sheets or plates |
| US20050174058A1 (en) * | 2002-06-07 | 2005-08-11 | Koninklojke Phillips Electronics N.V. | Electric lamp |
| CN103255409A (zh) * | 2013-05-13 | 2013-08-21 | 上海大学 | 一种基于纳米技术在低碳钢表面制备不锈钢涂层的方法 |
| US11130190B2 (en) * | 2016-08-31 | 2021-09-28 | Huys Industries Limited | Electro-spark deposition of molybdenum on stainless steel and products thereof |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS52115749A (en) * | 1976-03-26 | 1977-09-28 | Nippon Steel Corp | High anticorrosive rail |
| GB2122651B (en) * | 1982-06-25 | 1985-12-04 | Atomic Energy Authority Uk | Low porosity sprayed metallic coatings |
| GB2320929B (en) * | 1997-01-02 | 2001-06-06 | Gen Electric | Electric arc spray process for applying a heat transfer enhancement metallic coating |
| RU2760316C1 (ru) * | 2021-04-21 | 2021-11-23 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") | Способ получения многослойных высокоэнтропийных композитных покрытий |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2536774A (en) * | 1946-03-07 | 1951-01-02 | Diffusion Alloys Corp | Process of coating ferrous metal and heat pack mixture therefor |
| US2899332A (en) * | 1959-08-11 | Chromizing method and composition | ||
| US3340054A (en) * | 1963-07-24 | 1967-09-05 | Bethlehem Steel Corp | Formation of chromium-containing coatings on steel strip |
| US3589927A (en) * | 1965-07-01 | 1971-06-29 | Albright & Wilson | Chromising of ferrous metal substrates |
| US3623901A (en) * | 1968-11-18 | 1971-11-30 | Bethlehem Steel Corp | Formation of chromium-containing coatings on both sides of steel strip with one coated side having a bright finish |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB577504A (en) * | 1944-05-03 | 1946-05-21 | Robert Lionel Samuel | A process for the diffusion of metals into iron and steel |
| NL75631C (enrdf_load_stackoverflow) * | 1951-01-18 | |||
| FR1402352A (fr) * | 1963-07-24 | 1965-06-11 | Bethlehem Steel Corp | Procédé pour la formation d'un revêtement à base de chrome sur une bande d'acier, et bande conforme à celle obtenue par le procédé ci-dessus ou procédé similaire |
-
0
- BE BE794757D patent/BE794757A/xx unknown
-
1974
- 1974-01-18 IT IT67140/74A patent/IT1009109B/it active
- 1974-01-21 NL NL7400779A patent/NL7400779A/xx not_active Application Discontinuation
- 1974-01-24 SE SE7400936A patent/SE390033B/xx unknown
- 1974-01-28 CA CA191,023A patent/CA1011226A/en not_active Expired
- 1974-01-29 LU LU69266A patent/LU69266A1/xx unknown
- 1974-01-29 JP JP49012127A patent/JPS49106444A/ja active Pending
- 1974-01-30 GB GB423874A patent/GB1408127A/en not_active Expired
- 1974-01-30 FR FR7403710A patent/FR2215489B1/fr not_active Expired
- 1974-01-30 US US437916A patent/US3868277A/en not_active Expired - Lifetime
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2899332A (en) * | 1959-08-11 | Chromizing method and composition | ||
| US2536774A (en) * | 1946-03-07 | 1951-01-02 | Diffusion Alloys Corp | Process of coating ferrous metal and heat pack mixture therefor |
| US3340054A (en) * | 1963-07-24 | 1967-09-05 | Bethlehem Steel Corp | Formation of chromium-containing coatings on steel strip |
| US3589927A (en) * | 1965-07-01 | 1971-06-29 | Albright & Wilson | Chromising of ferrous metal substrates |
| US3623901A (en) * | 1968-11-18 | 1971-11-30 | Bethlehem Steel Corp | Formation of chromium-containing coatings on both sides of steel strip with one coated side having a bright finish |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3959028A (en) * | 1972-11-20 | 1976-05-25 | The International Nickel Company, Inc. | Process of working metals coated with a protective coating |
| US4007064A (en) * | 1974-10-23 | 1977-02-08 | Vereinigte Osterreichische Eisen- Und Stahlwerke-Alpine Montan Aktiengesellschaft | Process of producing surface-decarburized steel sheets or plates |
| US20050174058A1 (en) * | 2002-06-07 | 2005-08-11 | Koninklojke Phillips Electronics N.V. | Electric lamp |
| US7378798B2 (en) * | 2002-06-07 | 2008-05-27 | Koninklijke Philips Electronics, N.V. | Electric lamp |
| CN103255409A (zh) * | 2013-05-13 | 2013-08-21 | 上海大学 | 一种基于纳米技术在低碳钢表面制备不锈钢涂层的方法 |
| US11130190B2 (en) * | 2016-08-31 | 2021-09-28 | Huys Industries Limited | Electro-spark deposition of molybdenum on stainless steel and products thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| NL7400779A (enrdf_load_stackoverflow) | 1974-08-01 |
| CA1011226A (en) | 1977-05-31 |
| LU69266A1 (enrdf_load_stackoverflow) | 1974-04-10 |
| BE794757A (fr) | 1973-05-16 |
| FR2215489A1 (enrdf_load_stackoverflow) | 1974-08-23 |
| GB1408127A (en) | 1975-10-01 |
| IT1009109B (it) | 1976-12-10 |
| FR2215489B1 (enrdf_load_stackoverflow) | 1976-06-25 |
| SE390033B (sv) | 1976-11-29 |
| JPS49106444A (enrdf_load_stackoverflow) | 1974-10-09 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP2708390B2 (ja) | クロム含有アルミ化鋼合金およびその製法 | |
| KR20180126580A (ko) | 저밀도 용융 아연도금 강철 및 이의 제조 방법 | |
| JP5799819B2 (ja) | めっき濡れ性及び耐ピックアップ性に優れる溶融亜鉛めっき鋼板の製造方法 | |
| KR101789958B1 (ko) | 합금화 용융 아연 도금 강판 및 그 제조 방법 | |
| US3868277A (en) | Method of producing a steel product having an oxidation-resistant coating | |
| EP0523809B1 (en) | Method for hot-dip coating chromium-bearing steel | |
| US5494706A (en) | Method for producing zinc coated steel sheet | |
| KR101707981B1 (ko) | 용융 아연 도금 강판의 제조 방법 | |
| US3597172A (en) | Alloys having an aluminum-diffused surface layer | |
| US20220170164A1 (en) | Method for producing a steel strip with improved bonding of metallic hot-dip coatings | |
| JP2587725B2 (ja) | P含有高張力合金化溶融亜鉛めっき鋼板の製造方法 | |
| KR100342310B1 (ko) | 내식성및도금밀착성이우수한탈스케일공정생략형용융아연도금강판제조방법 | |
| JPH02285057A (ja) | 溶融亜鉛めっき用鋼板の連続焼鈍方法 | |
| US3151001A (en) | Method of treating boron coated steel to eliminate luders' bands | |
| JPH06116653A (ja) | めっき表面性状およびめっき密着性に優れた低コスト型熱延溶融めっき鋼帯の製造方法および製造装置 | |
| US3926688A (en) | Method of manufacturing a flat steel product having an oxidation-resistant coating | |
| US3265541A (en) | Elimination of enamel fishscaling in iron and steel sheets | |
| JP3233043B2 (ja) | 溶融亜鉛系めっき鋼板の製造方法 | |
| CN112795859B (zh) | 一种热成形钢板镀层、镀液及热浸镀方法 | |
| JPH0413856A (ja) | 耐食性にすぐれた合金化溶融亜鉛メッキ鋼板の製造法 | |
| US3653990A (en) | Method for improving steel for carbonated beverage containers | |
| CN116790860A (zh) | 一种硅弹簧扁钢全脱碳的控制方法 | |
| CN117344219A (zh) | 高抗延迟断裂1800MPa级铝合金涂层热成形钢板及生产方法、热成形钢构件和应用 | |
| JP3279062B2 (ja) | 耐食性に優れた表面処理鋼板およびその製造方法 | |
| RU2090647C1 (ru) | Способ диффузионного хромирования прокатных валков из отбеленного чугуна |