RU2760316C1 - Способ получения многослойных высокоэнтропийных композитных покрытий - Google Patents

Способ получения многослойных высокоэнтропийных композитных покрытий Download PDF

Info

Publication number
RU2760316C1
RU2760316C1 RU2021111534A RU2021111534A RU2760316C1 RU 2760316 C1 RU2760316 C1 RU 2760316C1 RU 2021111534 A RU2021111534 A RU 2021111534A RU 2021111534 A RU2021111534 A RU 2021111534A RU 2760316 C1 RU2760316 C1 RU 2760316C1
Authority
RU
Russia
Prior art keywords
carried out
layer
entropy
powder
coating
Prior art date
Application number
RU2021111534A
Other languages
English (en)
Inventor
Петр Олегович Русинов
Жесфина Михайловна Бледнова
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ")
Priority to RU2021111534A priority Critical patent/RU2760316C1/ru
Application granted granted Critical
Publication of RU2760316C1 publication Critical patent/RU2760316C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying

Abstract

Изобретение относится к области металловедения, химико-термической обработке металлических изделий, к созданию материалов конструкционного назначения, к проблеме трения и износа и может быть использовано для повышения долговечности деталей машин в любой отрасли промышленности. Способ получения многослойного высокоэнтропийного композитного покрытия из порошковых материалов на стальной основе включает химическое травление, пескоструйную обработку стальной основы и нанесение высокоскоростным газопламенным напылением слоев высокоэнтропийного газопламенного покрытия. Нижний связующий слой наносят на стальную основу из механически активированного порошка Ni. Средний высокоэнтропийный слой - из механически активированного порошка TiNiZrHfCoCu с эффектом памяти формы, следующего состава, мас. %: Ti 9,7, Ni 11,9, Zr 18,3, Hf 35,8, Co 11,7, Cu 12,6. Верхний износостойкий слой - из механически активированной смеси порошков из cBN-Co-Mo, при их соотношении, мас. %: cBN 85-90, Со 4-6, Мо 6-9. После нанесения среднего слоя из сплава с эффектом памяти формы TiNiZrHfCoCu осуществляют его поверхностное пластическое деформирование при нагревании на величину 5-8% от толщины слоя. Механическую активацию упомянутых порошков и высокоскоростное газопламенное напыление указанных слоев проводят в защитной атмосфере. Полученное композитное покрытие подвергают отжигу. Обеспечивается повышение прочностных характеристик и износостойкости композитных материалов. 8 з.п. ф-лы, 1 табл., 1 пр.

Description

Изобретение относится к области металловедения, химико-термической обработке металлических изделий к созданию наноструктурированных материалов конструкционного назначения, к проблеме трения и износа и может быть использовано для повышения долговечности деталей машин в любой отрасли промышленности.
Так, например, известен способ получения композиционных покрытий из порошковых материалов, включающий подготовку обрабатываемой поверхности посредством очистки, промывки и струйно-абразивной обработки, с последующей лазерной наплавкой порошкового материала в среде инертного газа, в качестве порошкового материала используют смесь из частиц титана и карбида кремния с размером - 20-100 мкм в массовом соотношении 6:4 или 6:5, а процесс наплавки осуществляют при мощности лазера 4÷5 кВт, скорости сканирования лазерного луча 500÷700 мм/мин и расходе порошка 9,6÷11,9 г/мин (патент РФ №2542199).
Недостатком данного способа является технологическая сложность процесса, требующего нагрева материала, хрупкость покрытий и изменение структурного состояния основы в результате нагрева.
Известен способ нанесения наноструктурированных износостойких электропроводящих покрытий из разнородных материалов, включающий подачу порошка в сверхзвуковой поток подогретого рабочего газа (например, воздуха) и нанесение его на металлическую поверхность изделия, для исключения межфазных границ, а также обеспечения изменения химического состава наносимого материала покрытия по линейной или логарифмической зависимости подачу порошков производят одновременно из двух или более автономно работающих дозаторов, причем плотность массового расхода порошка из первого дозатора увеличивают от 0,01 до 2 г/см⋅см2, а плотность массового расхода порошка из второго дозатора соответственно уменьшают также по линейной или логарифмической зависимости от 2 до 0,01 г/см⋅см2, обеспечивая тем самым изменение химического состава по толщине наносимого покрытия (патент РФ №2362839).
Недостатком данного способа являются низкие прочностные характеристики покрытия, такие как адгезия, предел усталости.
Известен способ высокоскоростного газопламенного напыления многослойного композитного покрытия из порошковых материалов на металлическое изделие, где нижний слой покрытия наносят толщиной 100-150 мкм из механически активированного порошка Ni, средний слой -толщиной 500-900 мкм из механически активированного порошка с эффектом памяти формы на основе TiNiZr, а верхний слой толщиной 150-600 мкм из механически активированной смеси порошков из BN, В4С, Со, Ni, С при их соотношении, мас. %: BN 65-70, В4С 10-15, Со 8-10, Ni 4-7, С 1-3, затем проводят отжиг при температуре 850-1000°С в течение 1,5-2 часа, причем после нанесения среднего слоя осуществляют его поверхностное пластическое деформирование при нагревании в интервале температур мартенситного превращения на величину до 2-5% от толщины слоя, а механическую активацию порошков и высокоскоростное газопламенное напыление производят в защитной атмосфере (патент РФ №2625618).
Недостатком данного способа являются низкие прочностные характеристики покрытия.
Задачей предложенного изобретения является получение многослойных композитных высокоэнтропийных керамических покрытий из порошковых материалов, содержащих связующий слой - функциональный слой из высокоэнтропийного материала с эффектом памяти формы - упрочняющий слой из износостойкой керамики.
Техническим результатом является повышение прочностных характеристик, износостойкости, композитных покрытий с использованием высокоэнтропийных материалов с эффектом памяти формы и износостойкой керамики.
Технический результат достигается предложенным способом получения многослойных высокоэнтропийных композитных покрытий из порошковых материалов, включающий нанесение многослойного высокоэнтропийного покрытия высокоскоростным газопламенным напылением, но перед высокоскоростным газопламенным напылением проводят химическое травление и пескоструйную обработку стальной основы, нижний (связующий) слой наносят на стальную основу из механически активированного порошка Ni, средний высокоэнтропийный слой из механически активированного порошка TiNiZrHfCoCu с эффектом памяти формы, следующего состава вес. %: Ti 9,7, Ni 11,9, Zr 18,3, Hf 35,8, Co 11,7, Cu 12,6, и верхний износостойкий слой из механически активированной смеси порошков из cBN-Co-Mo, при их соотношении мас. %: cBN 85-90, Со 4-6, Мо 6-9, нанесение слоев покрытия осуществляют высокоскоростным газопламенным напылением с получением многослойного композитного покрытия, причем после нанесения среднего слоя из сплава с эффектом памяти формы TiNiZrHfCoCu осуществляют его поверхностное пластическое деформирование при нагревании на величину 5-8% от толщины слоя, а механическую активацию порошков и высокоскоростное газопламенное напыление производят в защитной атмосфере, и полученное композитное покрытие, подвергают отжигу. Механическую активацию порошков и высокоскоростное газопламенное напыление производят в среде аргона. Нижний слой покрытия формируют толщиной 50-100 мкм. Средний слой покрытия формируют толщиной 500-800 мкм. Верхний слой покрытия формируют толщиной 200-500 мкм. Механическую активацию порошков осуществляют в шаровой мельнице с использованием мелющих тел в виде шаров состоящих из WC-CrC-Ni. Отжиг осуществляют при температуре 900°С. Поверхностное пластическое деформирование осуществляют в интервале температур мартенситных превращений. Отжиг осуществляют в течение 1 часа.
В процессе высокоскоростного газопламенного напыления механически активированных порошков происходит выделение энергии, накопленной в процессе механической активации, что обеспечивает более надежную адгезию с основой и между слоями и повышенные прочностных свойств многослойного композитного покрытия, а высокая скорость напыления обеспечивает формирование наноразмерной структуры. Принятая последовательность нанесения слоев «адгезионный слой - функциональный слой из высокоэнтропийного материала с эффектом памяти формы -упрочняющий износостойкий слой» обеспечивает повышение прочностных характеристик и износостойкости композита. Наличие промежуточного слоя из высокоэнтропийного материала с эффектом памяти формы следующего многокомпонентного состава at.%, Ti16.7Ni16.7Zr16.7Hf16.7Co16.6Cu16.6 в равных атомных долях, помимо характерных для этих материалов свойств памяти, сверхупругости или сверхэластичности (в зависимости от термообработки), тормозят, а иногда блокируют распространение дефектов типа трещин, возникающих в прочном, но хрупком поверхностном слое и, как следствие, способствует повышению прочности и долговечности. Также кристаллическая решетка в высокоэнтропийных сплавах, состоящая из атомов разнородных элементов с разным электронным строением и размерами, существенно искажена, вследствие этих особенностей высокоэнтропийные сплавы обладают рядом улучшенных механических и физических свойств. Химическое травление и пескоструйная обработка стальной основы приводит к повышению адгезии многослойного высокоэнтропийного композитного покрытия, за счет снятия пленки окислов с поверхности стальной основы. Отжиг проводится для снятия внутренних напряжений после формирования многослойного композитного высокоэнтропийного покрытия. Предложенный способ обеспечивает получение многослойного композитного высокоэнтропийного покрытия с эффектом памяти формы на стальных образцах с размером зерен 120-235 нм.
На первом этапе проводится механическая активация порошка Ni, порошка TiNiZrHfCoCu, смеси порошков при следующем содержании компонентов, мас. %: 85-90 эльбора, 4-6 кобальта, 6-9 молибдена, подвергают перемешиванию и измельчению в шаровой мельнице с использованием мелющих тел (в виде шаров), содержащих WC-CrC-Ni. Механическая активация порошков осуществляется в шаровой мельнице АГО-2У. Загрузка и обработка порошков производится в инертной атмосфере (среда аргона), со следующими параметрами: частота вращения барабана 1200-1500 мин-1, частота вращения водила 900-1000 мин-1, диаметр шаров 6 мм, время работы 15-30 мин.
Перед высокоскоростным газопламенным напылением проводят химическое травление и пескоструйную обработку стальной основы. Для химического травления стальной основы применяется соляная, азотная и серная кислоты.
На втором этапе проводится высокоскоростное газопламенное напыление в защитной атмосфере (среда аргона) механически активированных порошков. В камере при помощи вакуумного насоса создается вакуум, далее этот вакуум заполняется аргоном. Механически активированные порошки Ni, TiNiZrHfCoCu, cBN-Co-Mo засыпают в порошковые дозаторы связанные шлангами подачи порошков к соплу газопламенной горелки. Сопло газопламенной горелки имеет три канала для ввода порошков. Первый канал сопла связанный с порошковым дозатором для подачи в зону напыления механически активированного порошка Ni, второй канал сопла связан с порошковым дозатором для подачи в зону напыления механически активированного высокоэнтропийного порошка с эффектом памяти формы TiNiZrHfCoCu, третий канал сопла связан с порошковым дозатором для подачи в зону напыления механически активированного порошка cBN-Co-Mo. Раздельная подача механически активированных порошков в зону напыления возможна за счет конструкции сопла газопламенной горелки.
Многослойное композитное высокоэнтропийное покрытие получаем следующим образом: сначала на стальной образец производят напыление нижнего слоя на основе механически активированного порошка Ni, имеющего неограниченную растворимость с железом толщиной 50-100 мкм на деталь (изделие), для увеличения адгезии с основой и с последующим слоем; на нижний слой на основе Ni, наносят средний слой механически активированного высокоэнтропийного порошка с эффектом памяти формы TiNiZrHfCoCu толщиной 500-800 мкм, после нанесения среднего слоя осуществляют его поверхностное пластическое деформирование на величину до 5-8% от толщины среднего слоя с помощью пресса, состоящего из верхней и нижней траверс; далее осуществляется нанесение верхнего слоя механически активированного порошка cBN-Co-Mo толщиной 200-500 мкм. Контроль температуры процесса осуществляют пирометром. Вакуумная камера со смотровым окном, расположена на раме. В процессе поверхностного пластического деформирования осуществляют нагрев среднего слоя при помощи трансформатора соединенного с нижней траверсой пресса. Весь процесс получения композита осуществляется автоматически при помощи блока управления, к которому при помощи шлангов подсоединены баллоны с газами. Нагрев образца с композитным покрытием для отжига осуществляют с помощью трансформатора.
После получения композита проводят отжиг при температуре 900°С в течение 1 часа.
Пример
На первом этапе проводится механическая активация порошка Ni, порошка TiNiZrHfCoCu следующего состава мас. %: Ti 9,7, Ni 11,9, Zr 18,3, Hf 35,8, Co 11,7, Cu 12,6, смеси порошков при следующем содержании компонентов 90 мас. % эльбора, 4 мас. % кобальта, 6 мас. % молибдена, подвергают перемешиванию и измельчению в шаровой мельнице с использованием мелющих тел (в виде шаров), содержащих WC-CrC-Ni. Механическая активация порошков осуществляется в шаровой мельнице АГО-2У. Загрузка и обработка порошков производится в инертной атмосфере (среда аргона), со следующими параметрами: частота вращения барабана 1200 мин-1, частота вращения водила 1000 мин-1, диаметр шаров 6 мм, время работы 20 мин. В качестве стальной основы используется сталь 45 химически протравленная соляной кислотой с последующей пескоструйной обработкой. Для химического травления стальной основы применяется соляная, азотная и серная кислоты. На втором этапе проводится высокоскоростное газопламенное напыление в защитной атмосфере (среда аргона) механически активированных порошков. В камере при помощи вакуумного насоса создается вакуум, далее этот вакуум заполняется аргоном. Механически активированные порошки Ni, TiNiZrHfCoCu, эльбор-Со-Мо засыпают в порошковые дозаторы связанные шлангами подачи порошков к соплу газопламенной горелки. Сопло газопламенной горелки имеет три канала для ввода порошков. Первый канал сопла связанный с порошковым дозатором для подачи в зону напыления механически активированного порошка Ni, второй канал сопла связан с порошковым дозатором для подачи в зону напыления механически активированного высокоэнтропийного порошка с эффектом памяти формы TiNiZrHfCoCu, третий канал сопла связан с порошковым дозатором для подачи в зону напыления механически активированного порошка эльбор-Со-Мо. Раздельная подача механически активированных порошков в зону напыления возможна за счет конструкции сопла газопламенной горелки. Многослойное композитное покрытие получаем следующим образом: сначала происходит напыление нижнего слоя на основе механически активированного порошка Ni толщиной 50 мкм на деталь (изделие), для увеличения адгезии последующих слоев; на нижний слой на основе Ni, наносят средний функциональный слой механически активированного порошка с эффектом памяти формы TiNiZrHfCoCu толщиной 800 мкм, после нанесения среднего слоя осуществляют его поверхностное пластическое деформирование на величину 5% от толщины среднего слоя с помощью пресса состоящего из верхней и нижней траверс; далее осуществляют нанесение верхнего слоя механически активированного порошка эльбор-Со-Мо толщиной 300 мкм. Контроль температуры процесса осуществляют пирометром. Вакуумная камера со смотровым окном, расположена на раме. В процессе поверхностного пластического деформирования осуществляют нагрев среднего слоя при помощи трансформатора соединенного с нижней траверсой пресса. Весь процесс получения композита осуществляется автоматически при помощи блока управления, к которому при помощи шлангов подсоединены баллоны с газами. Нагрев образца с композитным покрытием для отжига осуществляют с помощью трансформатора. После получения композита проводят отжиг при температуре 900°С в течение 1 часа.
К преимуществам изобретения следует отнести технологическую простоту обработки, отсутствие требования дополнительного нагрева материала в процессе обработки, малую продолжительность цикла обработки, формирование в материале наноструктурного состояния, увеличение реакционной способности компонентов композита в связи с увеличением площади межфазных границ, реализацию деформационного и дисперсного упрочнения материала.
Результаты испытаний сведены в таблицу 1.
Figure 00000001
Как видно из таблицы 1, полученное многослойное высокоэнтропийное композитное наноструктурированное покрытие с использованием материала с эффектом памяти формы обладает повышенными механическими свойствами и износостойкостью.

Claims (9)

1. Способ получения многослойного высокоэнтропийного композитного покрытия из порошковых материалов на стальной основе, включающий нанесение многослойного высокоэнтропийного покрытия, отличающийся тем, что перед высокоскоростным газопламенным напылением слоев высокоэнтропийного композитного покрытия проводят химическое травление и пескоструйную обработку стальной основы, нижний связующий слой наносят на стальную основу из механически активированного порошка Ni, средний высокоэнтропийный слой - из механически активированного порошка TiNiZrHfCoCu с эффектом памяти формы, следующего состава, мас. %: Ti 9,7, Ni 11,9, Zr 18,3, Hf 35,8, Co 11,7, Cu 12,6, и верхний износостойкий слой - из механически активированной смеси порошков из cBN-Co-Mo, при их соотношении, мас. %: cBN 85-90, Со 4-6, Мо 6-9, причем после нанесения среднего слоя из сплава с эффектом памяти формы TiNiZrHfCoCu осуществляют его поверхностное пластическое деформирование при нагревании на величину 5-8% от толщины слоя, а механическую активацию упомянутых порошков и высокоскоростное газопламенное напыление указанных слоев проводят в защитной атмосфере и полученное композитное покрытие подвергают отжигу.
2. Способ по п. 1, отличающийся тем, что механическую активацию упомянутых порошков и высокоскоростное газопламенное напыление проводят в среде аргона.
3. Способ по п. 1, отличающийся тем, что нижний связующий слой покрытия формируют толщиной 50-100 мкм.
4. Способ по п. 1, отличающийся тем, что средний слой покрытия формируют толщиной 500-800 мкм.
5. Способ по п. 1, отличающийся тем, что верхний слой покрытия формируют толщиной 200-500 мкм.
6. Способ по п. 1, отличающийся тем, что механическую активацию упомянутых порошков осуществляют в шаровой мельнице с использованием мелющих тел в виде шаров, состоящих из WC-CrC-Ni.
7. Способ по п. 1, отличающийся тем, что отжиг осуществляют при температуре 900°С.
8. Способ по п. 1, отличающийся тем, что поверхностное пластическое деформирование осуществляют в интервале температур мартенситных превращений.
9. Способ по п. 1, отличающийся тем, что отжиг осуществляют в течение 1 часа.
RU2021111534A 2021-04-21 2021-04-21 Способ получения многослойных высокоэнтропийных композитных покрытий RU2760316C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2021111534A RU2760316C1 (ru) 2021-04-21 2021-04-21 Способ получения многослойных высокоэнтропийных композитных покрытий

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2021111534A RU2760316C1 (ru) 2021-04-21 2021-04-21 Способ получения многослойных высокоэнтропийных композитных покрытий

Publications (1)

Publication Number Publication Date
RU2760316C1 true RU2760316C1 (ru) 2021-11-23

Family

ID=78719329

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2021111534A RU2760316C1 (ru) 2021-04-21 2021-04-21 Способ получения многослойных высокоэнтропийных композитных покрытий

Country Status (1)

Country Link
RU (1) RU2760316C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116354730A (zh) * 2023-03-31 2023-06-30 中国科学院上海硅酸盐研究所 一种(Ti,Zr,Hf)B2中熵陶瓷基复相材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1408127A (en) * 1973-01-30 1975-10-01 Cockerill Method of producing a steel product having an oxidation-resistant coating
RU2605018C1 (ru) * 2015-06-22 2016-12-20 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Способ получения высокотемпературного многослойного композита на металлической поверхности
RU2605717C1 (ru) * 2015-06-22 2016-12-27 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Способ получения многослойных композитных покрытий
RU2625618C1 (ru) * 2016-10-10 2017-07-17 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Способ получения многослойного композитного покрытия
CN108950462A (zh) * 2018-08-17 2018-12-07 滁州欧瑞斯机车部件有限公司 一种在摩擦材料钢背表面喷涂复合陶瓷绝缘层的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1408127A (en) * 1973-01-30 1975-10-01 Cockerill Method of producing a steel product having an oxidation-resistant coating
RU2605018C1 (ru) * 2015-06-22 2016-12-20 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Способ получения высокотемпературного многослойного композита на металлической поверхности
RU2605717C1 (ru) * 2015-06-22 2016-12-27 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Способ получения многослойных композитных покрытий
RU2625618C1 (ru) * 2016-10-10 2017-07-17 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Способ получения многослойного композитного покрытия
CN108950462A (zh) * 2018-08-17 2018-12-07 滁州欧瑞斯机车部件有限公司 一种在摩擦材料钢背表面喷涂复合陶瓷绝缘层的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116354730A (zh) * 2023-03-31 2023-06-30 中国科学院上海硅酸盐研究所 一种(Ti,Zr,Hf)B2中熵陶瓷基复相材料及其制备方法

Similar Documents

Publication Publication Date Title
Li et al. Solid-state cold spraying of Ti and its alloys: A literature review
Luo et al. High velocity impact induced microstructure evolution during deposition of cold spray coatings: A review
RU2625618C1 (ru) Способ получения многослойного композитного покрытия
TWI299292B (en) Method for making an electrode for dischage processing of surface and electrode thereof
Kale et al. Effect of initial microstructure on the deformation heterogeneities of 316L stainless steels fabricated by selective laser melting processing
JP7018603B2 (ja) クラッド層の製造方法
CN114032544B (zh) 一种难熔高熵合金涂层及其制备方法
RU2760316C1 (ru) Способ получения многослойных высокоэнтропийных композитных покрытий
Kharanzhevskiy et al. Model experiment on reactive phase formation and solidification of B 4 C-BN composites via nanosecond pulse laser processing
Hosseini-Tayeb et al. Enhanced microstructural and mechanical properties of Stellite/WC nanocomposite on Inconel 718 deposited through vibration-assisted laser cladding
JP6364195B2 (ja) 高速断続切削加工においてすぐれた耐チッピング性を発揮する表面被覆切削工具
RU2753636C1 (ru) Способ получения износостойкого покрытия
RU2605717C1 (ru) Способ получения многослойных композитных покрытий
JP2010144224A (ja) 金属皮膜の改質処理方法及びアルミ基合金積層体
JP3874682B2 (ja) 摺動部材とその作製方法
Ma et al. Microstructure and mechanical performance of nickel coating on copper sheet via laser shock processing
Lotfi Elevated temperature oxidation behavior of HVOF sprayed TiB2 cermet coating
RU2667571C1 (ru) Способ повышения износостойкости деталей центробежного насоса
Chen et al. Effect of Submicron SiC Particles on the Properties of Alcocrfeni High Entropy Alloy Coatings
Yilbas et al. Laser gas assisted nitriding of alumina surfaces
KR101543891B1 (ko) 초음속 진공유동 적층을 통한 나노구조의 금속 박막 코팅방법
Romankov et al. Effect of annealing treatment on the structure and properties of the nanograined TiN coatings produced by ultrasonic-based coating process
RU2634099C1 (ru) Способ получения износостойкого многослойного композита на металлической поверхности
Pelleg et al. Surface Treatment
Goutier et al. Alumina plasma spraying on 304L stainless steel: Role of a wüstite interlayer