US3865703A - Electrowinning with an anode having a multicomponent coating - Google Patents
Electrowinning with an anode having a multicomponent coating Download PDFInfo
- Publication number
- US3865703A US3865703A US352417A US35241773A US3865703A US 3865703 A US3865703 A US 3865703A US 352417 A US352417 A US 352417A US 35241773 A US35241773 A US 35241773A US 3865703 A US3865703 A US 3865703A
- Authority
- US
- United States
- Prior art keywords
- percent
- anode
- metal oxide
- group
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000576 coating method Methods 0.000 title claims abstract description 25
- 239000011248 coating agent Substances 0.000 title claims abstract description 24
- 238000005363 electrowinning Methods 0.000 title claims description 15
- 238000000034 method Methods 0.000 claims abstract description 34
- 229910052751 metal Inorganic materials 0.000 claims abstract description 33
- 239000002184 metal Substances 0.000 claims abstract description 33
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 21
- 239000010936 titanium Substances 0.000 claims abstract description 19
- 150000002739 metals Chemical class 0.000 claims abstract description 18
- 239000000758 substrate Substances 0.000 claims abstract description 15
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 9
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000003929 acidic solution Substances 0.000 claims abstract description 5
- 239000000243 solution Substances 0.000 claims description 29
- 229910044991 metal oxide Inorganic materials 0.000 claims description 22
- XOLBLPGZBRYERU-UHFFFAOYSA-N SnO2 Inorganic materials O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 15
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 13
- 229910000410 antimony oxide Inorganic materials 0.000 claims description 13
- 229910052802 copper Inorganic materials 0.000 claims description 13
- 239000010949 copper Substances 0.000 claims description 13
- 150000004706 metal oxides Chemical class 0.000 claims description 13
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 claims description 12
- 229910001936 tantalum oxide Inorganic materials 0.000 claims description 11
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical class [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 claims description 10
- -1 PLATINUM GROUP METAL OXIDE Chemical class 0.000 claims description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 9
- 229910052760 oxygen Inorganic materials 0.000 claims description 9
- 239000001301 oxygen Substances 0.000 claims description 9
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 5
- 230000002378 acidificating effect Effects 0.000 claims description 5
- 229910052793 cadmium Inorganic materials 0.000 claims description 5
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims description 5
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 239000011651 chromium Substances 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 239000011701 zinc Substances 0.000 claims description 4
- 229910017052 cobalt Inorganic materials 0.000 claims description 3
- 239000010941 cobalt Substances 0.000 claims description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 3
- 229910000365 copper sulfate Inorganic materials 0.000 claims description 3
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 3
- GHPGOEFPKIHBNM-UHFFFAOYSA-N antimony(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Sb+3].[Sb+3] GHPGOEFPKIHBNM-UHFFFAOYSA-N 0.000 claims 3
- 101100042909 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) SNO2 gene Proteins 0.000 claims 1
- 229910052719 titanium Inorganic materials 0.000 abstract description 11
- 229910052715 tantalum Inorganic materials 0.000 abstract description 5
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 abstract description 5
- 229910052787 antimony Inorganic materials 0.000 abstract description 4
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 abstract description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 13
- 239000000463 material Substances 0.000 description 8
- 150000003839 salts Chemical class 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 5
- 238000005868 electrolysis reaction Methods 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 239000008199 coating composition Substances 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 238000002161 passivation Methods 0.000 description 4
- 229910001887 tin oxide Inorganic materials 0.000 description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 3
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000001680 brushing effect Effects 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910052707 ruthenium Inorganic materials 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 1
- 240000007930 Oxalis acetosella Species 0.000 description 1
- 235000008098 Oxalis acetosella Nutrition 0.000 description 1
- 229910000978 Pb alloy Inorganic materials 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910021627 Tin(IV) chloride Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- GPWHDDKQSYOYBF-UHFFFAOYSA-N ac1l2u0q Chemical compound Br[Br-]Br GPWHDDKQSYOYBF-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 239000011260 aqueous acid Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- DAMJCWMGELCIMI-UHFFFAOYSA-N benzyl n-(2-oxopyrrolidin-3-yl)carbamate Chemical compound C=1C=CC=CC=1COC(=O)NC1CCNC1=O DAMJCWMGELCIMI-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- RJGHQTVXGKYATR-UHFFFAOYSA-L dibutyl(dichloro)stannane Chemical compound CCCC[Sn](Cl)(Cl)CCCC RJGHQTVXGKYATR-UHFFFAOYSA-L 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 229940099596 manganese sulfate Drugs 0.000 description 1
- 235000007079 manganese sulphate Nutrition 0.000 description 1
- 239000011702 manganese sulphate Substances 0.000 description 1
- OHZZTXYKLXZFSZ-UHFFFAOYSA-I manganese(3+) 5,10,15-tris(1-methylpyridin-1-ium-4-yl)-20-(1-methylpyridin-4-ylidene)porphyrin-22-ide pentachloride Chemical compound [Cl-].[Cl-].[Cl-].[Cl-].[Cl-].[Mn+3].C1=CN(C)C=CC1=C1C(C=C2)=NC2=C(C=2C=C[N+](C)=CC=2)C([N-]2)=CC=C2C(C=2C=C[N+](C)=CC=2)=C(C=C2)N=C2C(C=2C=C[N+](C)=CC=2)=C2N=C1C=C2 OHZZTXYKLXZFSZ-UHFFFAOYSA-I 0.000 description 1
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 description 1
- 229910003455 mixed metal oxide Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 150000002895 organic esters Chemical class 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- SJLOMQIUPFZJAN-UHFFFAOYSA-N oxorhodium Chemical compound [Rh]=O SJLOMQIUPFZJAN-UHFFFAOYSA-N 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910003450 rhodium oxide Inorganic materials 0.000 description 1
- YBCAZPLXEGKKFM-UHFFFAOYSA-K ruthenium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Ru+3] YBCAZPLXEGKKFM-UHFFFAOYSA-K 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 1
- 229910000368 zinc sulfate Inorganic materials 0.000 description 1
- 229960001763 zinc sulfate Drugs 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C1/00—Electrolytic production, recovery or refining of metals by electrolysis of solutions
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C7/00—Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
- C25C7/02—Electrodes; Connections thereof
Definitions
- ores, ore concentrates, and other materials containing compounds of the desired metals are leached with acids, usually sulfuric acid, and the leach liquor, after upgrading if necessary, is then electrolyzed between an insoluble anode and a cathode, the latter often being of the same metal as that to be deposited.
- anodes In such processes, large amounts of oxygen are evolved at the anode and contribute to the chemical and mechanical attrition of same. Thus, anodes must be resistant in this respect and must also have a low oxygen overvoltage to ensure economical operation from a standpoint of electrical consumption. Perhaps most typically used for this purpose are lead and lead alloy anodes. Lead anodes nevertheless still have a definite wear-rate, and hence a limited life, and lead to contamination of the cathode deposit with small amounts of lead. Thus, the search had continued for anode materials having a suitable chemical and mechanical resistance coupled with the requisite low oxygen overvoltage.
- Such a process has the advantagcs ol' anodic oxygen evolution at a low oxygen overvoltage, thereby contributing to electrical efficiency; long operation without anode passivation; and substantially no contamination of the cathode deposit by metals dissolved from the anode.
- anode passivation it is intended to refer to an increase in operating voltage to a value at which operation no longer may be considered practical (e.g., 8 volts) brought about to a substantial extent by the evolution of oxgen at an anodic surface with consequent formation of nonconductive oxides.
- the invention encompasses the deposition of metals from aqueous acidic solutions by passing an electrolyzing current through said solution between at least one cathode and a specific, opposed anode within an electrolytic cell.
- the: cell itself need comprise little more than an open box, usually rectangular. in shape, with the appropriate inlets, outlets, and electrical current conductors and distributors.
- Such cells may be constructed of any suitably resistant material. for example, PVC-lined concrete.
- the cathode may be of the same metal as that to be won or may be different and may have any configuration suitable to the process and cell design, e.g., a metallic sheet provided with electrically conductive means (hooks) to depend same from a current collecting bar traversing the cell.
- a metallic sheet provided with electrically conductive means (hooks) to depend same from a current collecting bar traversing the cell.
- a variety of metals may be won from solution according to the practice of the present invention, including cobalt, zinc, iron, manganese, chromium, nickel, copper, and cadmium. While the specific details of operation depend upon the metal to be deposited, as is de' scribed more fully hereinbelow, generally operation is at a pH of less than 7, and preferably less than 4. This acidity is contributed by the acid used to leach the metals into solution from ores or other materials containing compounds of same, which acid is usually regenerated in the electrolytic process. Obviously, a large excess of acid is uneconomical and corrosive.
- the temperature range of the process may be between room temperature and the boiling point of the solution in question. While higher temperatures lower the electrical resistivity of the solution, operation at elevated temperatures contributes to a lower current efficiency, excessive evaporation, and exaggerates the effect of impurities in the solution upon the metal being deposited. Therefore, it is necessary to strike a balance between these considerations and operate somewhat above room temperature but considerably below boil' ing, this often requiring the provision of cooling means.
- the invention contemplates the use of any of the additive materials conventional to electrowinning appli cations and useful in reducing'the roughness of the deposit with increasing thickness, in reducing the effect ofimpurities on the electrical efficiency, and/or in providing a demisting foam blanket on the surface of the electrolyte.
- the solutions to be treated are prepared by leaching ores, ore concentrates, metallurgical byproducts, and the like, with an aqueous acid, usually sulfuric, followed in many instances by purification (e.g., cementation), especially if the undesired metals in solution are more noble than the metal to be won.
- the solution is then ready for electrolysis using the anodes according to the present invention.
- a critical feature of the present invention is the use of a particular anode which, as mentioned above, is a conductive substrate bearing on at least a portion of the surface thereof a coating of mixed oxides of tin, antimony, at least one platinum group metal, and a valve metal selected from the group titanium and tantalum.
- the conductive substrate is preferably titanium, although tantalum, niobium, and zirconium may also be employed. ln addition, a covering of one of the aforementioned metals over a more conductive material, such as copper or aluminum, may be used. Further, layers on the substrate intermediate the base metal and the coating, such as those described in U.S. Pat. No. 3,71 1,397, are contemplated.
- the configuration of the substrate may vary considerablybut is generally in the form of rods or an imperforate or foraminous metal sheet, e.g., of titanium metal.
- stannic oxide preferably present in the form of crystalline SnO and employed within the range of from 30 to 90, especially 30 to 50, percent by weight of the total coating composition.
- the antimony oxide component enters into the tin oxide crystal lattice, rendering same more electrically conductive.
- the antimony is present in an indeterminate oxide form owing to its entrance into the stannic oxide crystal lattice, it is expressed for convenience sake as Sb O
- the antimony oxide is present within the range from 1.0 to 10, preferably 4.0 to 8.0, percent by weight.
- tin and antimony oxides are further qualified by the proviso that they be present, respectively, in the range, on a mole ratio basis, of 95:5 to 85:15, especially 90:10. In this fashion, there is obtained the desired doping effect of the antimony on the tin oxide without the presence of an excess separate phase of antimony oxide.
- the third component of the mixed coating is at least one platinum group metal oxide," by which term it is intended to include the oxides of platinum, palladium, ruthenium, iridium, rhodium, and osmium, especially those of ruthenium and iridium. These platinum group metal oxides are present for the most part in their most highly oxidized state and within the range of from L to 50, especially 20 to 40, percent by weight.
- An especially preferred anode is one the coating of which contains a combination of Ru0 and [r0 or rhodium oxide.
- the final component is a valve metal oxide selected from the group consisting oftitanium and tantalum oxides.
- the titanium is present in the form of TiO and is essentially crystalline (rutile) in nature
- tantalum is employed, as in the preferred embodiment, a generally amorphous tantalum oxide results. Therefore, although it is expressed as Ta O it is understood that mixtures of tantalum oxides may in fact be present.
- the amounts of valve metal oxide employed are generally within the range of from 0.5 to 30 percent by weight, especially to 25.
- a preferred electrode comprises a titanium substrate bearing a coating containing about 47 percent SnO 5 percent Sb O 23.5 percent RuO 4.5 percent ho and percent Ta O
- the preferred method of preparing the multicomponent coating composition on the titanium substrate is by deposition from a solution of the appropriate thermochemically decomposable salts. For example, it is desirable to paint or brush an acidified alcoholic solution of said salts onto the substrate followed by drying at l00-l40C for from 3 to 10, especially 5, minutes and finally by baking in an oxidizing atmosphere, e.g., air, at 450 to 520C, especially 500C, for from 5 to 10, especially about 7, minutes.
- an oxidizing atmosphere e.g., air
- the preferred solvents for the thermally decomposable salts are the lower alkanols such as ethanol, propanol, amyl alcohol, and especially n-butyl alcohol, although other solvents including water may be employed.
- an acid such as hydrochloric acid.
- concentration of the metals in the solution from which the coating composition is to be derived ranges between about 50 to 200 grams per liter.
- the salts employed are generally any thermally decomposable inorganic or organic salt or organic ester of the metals in question such as the chlorides, nitrates, alkoxides, alkoxy halides, resinates, amines, and the like.
- Specific and illustrative examples include potassium hexachloroplatinate, hexachloroiridic acid, ruthenium trichloride or tribromide, orthobutyl titanate, antimony trichloride or pentachloride, and stannic chloride or dibutyl tin dichloride.
- preformed oxides of the various component metal and salts of the remaining materials although it is generally believed that preformed valve metal oxides should not be employed nor should separately preformed'tin and antimony oxides be used.
- thermal decomposition is incomplete, small amounts of salts may remain without detrimental effect in the coating, for example.
- small amounts of chloride in the primarily oxide coat Perhaps most exemplary of the process of the present invention is the electrowinning of copper from an aqueous solution comprising copper sulfate and sulfuric acid employing a copper sheet cathode and anode according to the present invention.
- electrolysis During electrolysis, generally occuring at a current density within the range of 15 to amperes per square foot, sulfuric acid is regenerated and copper is deposited at the cathode.
- the pH of the electrolyte will range from less than 1 up to about 2.0 and a temperature of 30 to 65C is most commonly employed.
- concentration of the electrolyte In order to obtain a chemically pure, physically dense, and adherent cathode deposit, the concentration of the electrolyte must be controlled, as severe depletion cannot be allowed.
- a typically advantageous amount of copper in the solution is within the range of 25 to 50 grams per liter. Of course, the presence or absence of other metals will depend upon the nature of the material leached.
- electrolysis is generally of a zinc sulfate solution that has usually been purified to some extent by a cementation reaction.
- electrolysis is of a solution containing from 40 to 50 gpl zinc at a pH of from less than 1.0 to about 2.0 and a temperature within the range of 30 to 40C.
- aluminum cathodes may again be employed in the electrolysis of a solution containing from 100 to 200 gpl cadmium at a pH of from less than 1 to about 1.5, a temperature within the range of 20 to 35C and at a current density of 4 to 10 asf.
- An anode coating solution is prepared from 45 ml ethanol, 4.5 g TaCl 1.1 g SbCl 15.1 g SnCl .5H O, and 7.6 g RuCl .xH- O (38Ru).
- An etched titanium l f i chrome; 3: fgb g 5 mesh substrate is coated by brushing, drying at 1 10, C zzg z hggf xg i 5 e Ca for 3 minutes, and baking at 500 C for 7 minutes.
- the y p n um epo coating procedure is repeated until a coating having a ally on a stainless steel cathode at a current denslty ruthemum content of 1 gram per square foot is obwithin the range of 45 to 70 asf and a temperature on l o O tamed. This is labeled Anode 4. theorderof50 to60C.
- Electrowinning of manganese likewise takes lace in .110 e prepare m an entlca] ashlon but Submtutmg 0.92 g of lrCl and 6.54 g RuCl .xl-l O for the rua diaphragm type cell employing a feed contalnmg bethemum content of Anode 4.
- Anode 6 is likewise simitween and gpl manganese as manganese sulfate lar with th ex th I l 28 f Rhcl 3H 0 d together with ammonium sulfate.
- Sulfuric acid is again regenen eye as e .ectiowmnmg es i evd ermed in the anolyte compartment.
- Exam- Further processes include the electrowinning of cok 1 above Anodes and 6 have f l f respeci bah (15 50 gpl CO PH l.5 7.0 5 o o and 3O 4O t1vely,of 185, 250, and 350 hours. Th1s indlcates the asf) and nickel (50:10 gpl, pH 304.5 0 0 and 1mproved operation possible employing a mixture of 1540 as precious metal oxides in the coating.
- a coating consisting essentially of from resultant solution is brushed onto an expanded titanium I 10 Percent n im ny oxide, as z al On Weight mesh substrate previously cleaned by etching for 30 basis, from 30 t0 90 Percent 2 from to 50 P minutes in boiling (l8%) aqueous hydrochloric acid.
- c of at least 0118 Platinum g p metal OXide, 21nd The solution is applied to the mesh by brushing, folfrom 15 to 25 percent of a valve metal oxide selected lowed by drying the anode for 3 minutes at l 10C and from the group consisting of titanium and tantalum oxfiring in air at 500C for 7 minutes.
- the test is continued until consists essentially of from 4.0 to 8.0 percent Sbg03, the anodes have passivated, i.e., a voltage of 8.0 volts from 30 to 50 percent SnO from 20 to 40 percent of or greater is obtained.
- the lifetime of the anode, that at least one platinum metal oxide, and from 15 to 25 the umbe Of hours of Successful operation until percent ofa valve metal oxide selected from the group passivation occurs, is reported in the following table. consisting of titanium and tantalum oxides.
- a process for winning copper from an acidic aque processes wherein an acidic aqueous electrolyte is to be ous copper sulfate solution, which process comprises treated can be operated for extended periods of time employing anodes within the definition of the present invention.
- anode comprises an electrically conductive supporting substrate bearing on at least a portion of the surface thereof a coating consisting essentially of from 1.0 to 10 percent antimony oxide, as Sb O on a weight basis, from 30 to 90 percent SnO from 1.0 to 50 percent of at least one platinum group metal oxide, and from to 25 percent ofa valve metal oxide selected from the group consisting of titanium and tantalum oxides, with the proviso that the mole ratio of tin to antimony oxides is between 95:5 and 85:15.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electrolytic Production Of Metals (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US352417A US3865703A (en) | 1973-04-19 | 1973-04-19 | Electrowinning with an anode having a multicomponent coating |
CA195,004A CA1037416A (en) | 1973-04-19 | 1974-03-14 | Electrowinning with an anode having a multicomponent coating |
BR3076/74A BR7403076D0 (pt) | 1973-04-19 | 1974-04-17 | Aperfeicoamento em processo de eletroproducao de metais |
DE2418741A DE2418741B2 (de) | 1973-04-19 | 1974-04-18 | Anode für die elektrolytische Gewinnung von Metallen aus deren wäßrigen Lösungen |
SE7405201A SE405868B (sv) | 1973-04-19 | 1974-04-18 | Anod for anvendning vid elektrolytisk utvinning av metaller fran suravattenhaltiga losningar |
GB1710874A GB1398378A (en) | 1973-04-19 | 1974-04-18 | Electrowinning of metal |
IT50461/74A IT1004477B (it) | 1973-04-19 | 1974-04-18 | Procedimento elettrolitico per il recupero di metalli da soluzioni acquose acide |
JP49043492A JPS5011906A (enrdf_load_stackoverflow) | 1973-04-19 | 1974-04-19 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US352417A US3865703A (en) | 1973-04-19 | 1973-04-19 | Electrowinning with an anode having a multicomponent coating |
Publications (1)
Publication Number | Publication Date |
---|---|
US3865703A true US3865703A (en) | 1975-02-11 |
Family
ID=23385046
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US352417A Expired - Lifetime US3865703A (en) | 1973-04-19 | 1973-04-19 | Electrowinning with an anode having a multicomponent coating |
Country Status (8)
Country | Link |
---|---|
US (1) | US3865703A (enrdf_load_stackoverflow) |
JP (1) | JPS5011906A (enrdf_load_stackoverflow) |
BR (1) | BR7403076D0 (enrdf_load_stackoverflow) |
CA (1) | CA1037416A (enrdf_load_stackoverflow) |
DE (1) | DE2418741B2 (enrdf_load_stackoverflow) |
GB (1) | GB1398378A (enrdf_load_stackoverflow) |
IT (1) | IT1004477B (enrdf_load_stackoverflow) |
SE (1) | SE405868B (enrdf_load_stackoverflow) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3940323A (en) * | 1974-08-02 | 1976-02-24 | Hooker Chemicals & Plastics Corporation | Anode for electrolytic processes |
US3943042A (en) * | 1974-08-02 | 1976-03-09 | Hooker Chemicals & Plastics Corporation | Anode for electrolytic processes |
US3951766A (en) * | 1974-08-02 | 1976-04-20 | Hooker Chemicals & Plastics Corporation | Electrolytic cell and method of using same |
US3956083A (en) * | 1974-08-02 | 1976-05-11 | Hooker Chemicals & Plastics Corporation | Electrochemical anode and process using the anode |
US4061558A (en) * | 1975-06-09 | 1977-12-06 | Tdk Electronics Co., Ltd. | Electrode |
US4067783A (en) * | 1977-03-21 | 1978-01-10 | Bell Telephone Laboratories, Incorporated | Gold electroplating process |
US4213843A (en) * | 1978-03-24 | 1980-07-22 | Permelec Electrode Ltd. | Electrolysis electrodes and method of making same |
US4422917A (en) * | 1980-09-10 | 1983-12-27 | Imi Marston Limited | Electrode material, electrode and electrochemical cell |
DE3731285A1 (de) * | 1987-09-17 | 1989-04-06 | Conradty Metallelek | Dimensionsstabile anode, verfahren zu deren herstellung und verwendung derselben |
US5227032A (en) * | 1991-09-24 | 1993-07-13 | The United State Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Method for producing oxygen from lunar materials |
US7781679B1 (en) * | 2005-09-09 | 2010-08-24 | Magnecomp Corporation | Disk drive suspension via formation using a tie layer and product |
CN116102124A (zh) * | 2022-12-14 | 2023-05-12 | 上海电力大学 | 一种铜/锌/锑共掺杂的钛基-二氧化锡阳极材料及其制备和应用 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5263176A (en) * | 1975-11-20 | 1977-05-25 | Hodogaya Chem Co Ltd | Anode for electrolysis |
US4040939A (en) * | 1975-12-29 | 1977-08-09 | Diamond Shamrock Corporation | Lead dioxide electrode |
CA2203410C (en) * | 1995-08-28 | 2001-12-18 | Yosuke Hoshijima | Process for vacuum refining molten steel and apparatus therefor |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3701724A (en) * | 1968-10-18 | 1972-10-31 | Ici Ltd | Electrodes for electrochemical processes |
US3775284A (en) * | 1970-03-23 | 1973-11-27 | J Bennett | Non-passivating barrier layer electrodes |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3853479A (en) * | 1972-06-23 | 1974-12-10 | Sherwood Medical Ind Inc | Blood oxygenating device with heat exchanger |
JPS4938411A (enrdf_load_stackoverflow) * | 1972-08-15 | 1974-04-10 |
-
1973
- 1973-04-19 US US352417A patent/US3865703A/en not_active Expired - Lifetime
-
1974
- 1974-03-14 CA CA195,004A patent/CA1037416A/en not_active Expired
- 1974-04-17 BR BR3076/74A patent/BR7403076D0/pt unknown
- 1974-04-18 DE DE2418741A patent/DE2418741B2/de not_active Ceased
- 1974-04-18 SE SE7405201A patent/SE405868B/xx not_active IP Right Cessation
- 1974-04-18 GB GB1710874A patent/GB1398378A/en not_active Expired
- 1974-04-18 IT IT50461/74A patent/IT1004477B/it active
- 1974-04-19 JP JP49043492A patent/JPS5011906A/ja active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3701724A (en) * | 1968-10-18 | 1972-10-31 | Ici Ltd | Electrodes for electrochemical processes |
US3775284A (en) * | 1970-03-23 | 1973-11-27 | J Bennett | Non-passivating barrier layer electrodes |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3940323A (en) * | 1974-08-02 | 1976-02-24 | Hooker Chemicals & Plastics Corporation | Anode for electrolytic processes |
US3943042A (en) * | 1974-08-02 | 1976-03-09 | Hooker Chemicals & Plastics Corporation | Anode for electrolytic processes |
US3951766A (en) * | 1974-08-02 | 1976-04-20 | Hooker Chemicals & Plastics Corporation | Electrolytic cell and method of using same |
US3956083A (en) * | 1974-08-02 | 1976-05-11 | Hooker Chemicals & Plastics Corporation | Electrochemical anode and process using the anode |
US4061558A (en) * | 1975-06-09 | 1977-12-06 | Tdk Electronics Co., Ltd. | Electrode |
US4067783A (en) * | 1977-03-21 | 1978-01-10 | Bell Telephone Laboratories, Incorporated | Gold electroplating process |
US4213843A (en) * | 1978-03-24 | 1980-07-22 | Permelec Electrode Ltd. | Electrolysis electrodes and method of making same |
US4422917A (en) * | 1980-09-10 | 1983-12-27 | Imi Marston Limited | Electrode material, electrode and electrochemical cell |
DE3731285A1 (de) * | 1987-09-17 | 1989-04-06 | Conradty Metallelek | Dimensionsstabile anode, verfahren zu deren herstellung und verwendung derselben |
US5227032A (en) * | 1991-09-24 | 1993-07-13 | The United State Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Method for producing oxygen from lunar materials |
US7781679B1 (en) * | 2005-09-09 | 2010-08-24 | Magnecomp Corporation | Disk drive suspension via formation using a tie layer and product |
US20100230144A1 (en) * | 2005-09-09 | 2010-09-16 | Magnecomp Corporation | Disk drive suspension via formation using a tie layer and product |
CN116102124A (zh) * | 2022-12-14 | 2023-05-12 | 上海电力大学 | 一种铜/锌/锑共掺杂的钛基-二氧化锡阳极材料及其制备和应用 |
Also Published As
Publication number | Publication date |
---|---|
DE2418741A1 (de) | 1974-11-07 |
SE405868B (sv) | 1979-01-08 |
IT1004477B (it) | 1976-07-10 |
BR7403076D0 (pt) | 1974-11-19 |
DE2418741B2 (de) | 1979-09-27 |
CA1037416A (en) | 1978-08-29 |
GB1398378A (en) | 1975-06-18 |
JPS5011906A (enrdf_load_stackoverflow) | 1975-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4146438A (en) | Sintered electrodes with electrocatalytic coating | |
US3865703A (en) | Electrowinning with an anode having a multicomponent coating | |
US5156726A (en) | Oxygen-generating electrode and method for the preparation thereof | |
US3875043A (en) | Electrodes with multicomponent coatings | |
US3632498A (en) | Electrode and coating therefor | |
US4502936A (en) | Electrode and electrolytic cell | |
DE69115213T2 (de) | Elektrode. | |
JP2011514446A5 (enrdf_load_stackoverflow) | ||
US3926751A (en) | Method of electrowinning metals | |
US3801490A (en) | Pyrochlore electrodes | |
US3793164A (en) | High current density brine electrolysis | |
DK155529B (da) | Elektrode til smeltet saltelektrolyse | |
JP2761751B2 (ja) | 耐久性電解用電極及びその製造方法 | |
US3350294A (en) | Electrodes | |
SE457004B (sv) | Elektrolyselektrod med ett mellanskikt mellan substrat och elektrodbelaeggning samt foerfarande foer framstaellning av elektroden | |
US6231731B1 (en) | Electrolyzing electrode and process for the production thereof | |
JP2000110000A (ja) | 電解プロセスにおける酸素発生用アノ―ド | |
KR20140101423A (ko) | 산소 발생용 양극 및 그의 제조방법 | |
CA1327339C (en) | Oxygen-generating electrode and method for the preparation thereof | |
EP0344378A1 (en) | Oxygen-generating electrode and method for the preparation thereof | |
GB1446168A (en) | Elect4odes | |
JPS586786B2 (ja) | 改良された電極の製造方法 | |
US4512866A (en) | Titanium-lead anode for use in electrolytic processes employing sulfuric acid | |
CA1124210A (en) | Sintered electrodes with electrocatalytic coating | |
US3826733A (en) | Bipolar electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: DIAMOND SHAMROCK CHEMICALS COMPANY Free format text: CHANGE OF NAME;ASSIGNOR:DIAMOND SHAMROCK CORPORATION CHANGED TO DIAMOND CHEMICALS COMPANY;REEL/FRAME:004197/0130 |
|
AS | Assignment |
Owner name: ELTECH SYSTEMS CORPORATION, 6100 GLADES ROAD, BOCA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:DIAMOND SHAMROCK CORPORATION, 717 N. HARWOOD STREET, DALLAS, TX 75201;REEL/FRAME:004357/0479 Effective date: 19841024 |
|
AS | Assignment |
Owner name: ELECTRODE CORPORATION, 470 CENTER STREET, CHARDON, Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:ELTECH SYSTEMS CORPORATION;REEL/FRAME:004976/0455 Effective date: 19881026 Owner name: ELECTRODE CORPORATION, A CORP. OF DE, OHIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ELTECH SYSTEMS CORPORATION;REEL/FRAME:004976/0455 Effective date: 19881026 |