US3859629A - Speed alarm system for an automobile - Google Patents
Speed alarm system for an automobile Download PDFInfo
- Publication number
- US3859629A US3859629A US358490A US35849073A US3859629A US 3859629 A US3859629 A US 3859629A US 358490 A US358490 A US 358490A US 35849073 A US35849073 A US 35849073A US 3859629 A US3859629 A US 3859629A
- Authority
- US
- United States
- Prior art keywords
- speed
- alarm
- circuit
- output
- automobile
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000007493 shaping process Methods 0.000 claims description 11
- 230000000903 blocking effect Effects 0.000 claims description 9
- 230000008878 coupling Effects 0.000 claims description 6
- 238000010168 coupling process Methods 0.000 claims description 6
- 238000005859 coupling reaction Methods 0.000 claims description 6
- 230000009977 dual effect Effects 0.000 claims description 6
- 238000009499 grossing Methods 0.000 claims description 5
- 239000003990 capacitor Substances 0.000 description 11
- 230000005236 sound signal Effects 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- 206010039203 Road traffic accident Diseases 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P1/00—Details of instruments
- G01P1/07—Indicating devices, e.g. for remote indication
- G01P1/08—Arrangements of scales, pointers, lamps or acoustic indicators, e.g. in automobile speedometers
- G01P1/10—Arrangements of scales, pointers, lamps or acoustic indicators, e.g. in automobile speedometers for indicating predetermined speeds
- G01P1/103—Arrangements of scales, pointers, lamps or acoustic indicators, e.g. in automobile speedometers for indicating predetermined speeds by comparing the value of the measured signal with one or several reference values
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Q—ARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
- B60Q1/00—Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
- B60Q1/26—Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic
- B60Q1/50—Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating other intentions or conditions, e.g. request for waiting or overtaking
- B60Q1/54—Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating other intentions or conditions, e.g. request for waiting or overtaking for indicating speed outside of the vehicle
Definitions
- a speed alarm system for an automobile comprises a speed detector connected to the output of a generator [30] Foreign Application Priority Data for generating an output proportional in magnitude to May 15, 1972 Japan 47-47230 a travelling Speed of an automobile; a Speed detector for detecting the travelling speed set to a predeter- [52] US. Cl.
- This invention relates to a speed alarm system of an automobile.
- a variety of devices are designed to give a warning to the drive when excess speed is attained.-
- the speed alarm devices are designed to light a lamp and sound a buzzer when a present speed is encountered.
- a lamp alarm is liable to be overlooked by the driver focussing his attention to the foreground.
- An alarm buzzer is difficult to draw the drivers attention due to its monotonous tone.
- An object of this invention is to provide a speed alarm system for an automobile, capable of giving forth alarm sounds which easily attract the drivers attention.
- a speed detector is incorporated into an automobile and connected to the output of a generator for generating an output proportional in magnitude to the output of a travelling speed of an automobile.
- a speed setting device is coupled to the speed detector, is capable of being set to a predetermined speed and is operated when an output level corresponding to the setting speed is received from the speed detector.
- An alarm sound signal wave generator is operated by the operation of the speed setting device and generated desired alarm sound signal waves from two output terminals of the signal wave generator.
- the alarm sound signal wave generator is connected to a dual channel sound generating signal and generates alarm sounds from two speakers connected to the sound reproducing device.
- FIG. 1 is a block diagram showing an automobile speed alarm system according to this invention
- FIGS. 2A and 2B are schematic circuits of FIG. 1;
- FIG. 3 is a graphical representation showing a relation between the output voltage of a generator and the speedof an automobile
- FIG. 4 is a waveform of each part of a circuit of FIG.
- FIG. 5 is a graphical representation showing a relation in sound volume between alarm sounds and car stereo performance sounds
- FIG. 6 is a perspective view showing the interior of an automobile equipped with a speed alarm system
- FIG. 7 shows a connection between the speed alarm system, a generator and a car stero set
- FIG. 8 is a perspective view showing the speed alarm device
- FIG. 9 is a side cross-sectional view showing the speed alarm device
- FIG. 10 is a perspective view showing a speed setting switch section
- FIG. 11 is a perspective view showing a mounting bracket of the speed alarm system.
- FIGS. 12 and 13 are a front view and a side view, respectively, of the speed alarm system incorporated into the speed alarm system.
- FIG. 1 there is shown a speed setting device 20 adapted to be set selectively to a control speed as stipulated in a Road Traffic Law.
- a speed detector 21 is operated.
- the speed detector is coupled to an alarm signal generator 22.
- An output signal of the detector as generated upon coincidence of the setting speed with the travelling speed is fed to an alarm signal generator 22 to cause it to be operated.
- the alarm signal generator 22 has two output terminals and adapted to generator alarm signals shifted in phase from each other.
- the output terminals of the alarm signal generator are connected, respectively, to the input terminals corresponding to the left and right channels of the dual channel sound reproducing device 23.
- the sound reproducing device is a dual channel sound reproducing device, for example a car stereo set such as a stereo tape player or a car stereo cartridge tape recorder and an FM car stereo receiver.
- a stereophonic performance or broadcasting is effected and, at the warning time, alarm signals from the alarm signal generator 22 are amplified and generated from a speaker.
- a stereophonic performance sound is also generated from the speaker.
- the sound reproducing device is also so designed that an electric power is supplied from another line when a speed detecting device 21 is operated. Even when the car stereo set is not used, alarm sounds can be generated due to a constant supply of electric current from said another line.
- a generator 25 incorporated into an automobile generates an AC output voltage nearly proportional to the travelling speed of the automobile, as shown in FIG. 3.
- One end of the generator is grounded and the other end of the generator is connectedto a speedlevel setting adjuster 26.
- the level setting adjuster consists of resistors Rl-R6 and a multicontact change-over switch 27.
- Each of the resistors Rl -R6 has one end connected to the output of the generator 25 and the other end connected to any one of the contacts of the change-over switch 27.
- a neutral contact of the changeover switch is grounded through a resistor R7 and connected to a rectifier circuit 28 consisting of a diode D1 and a smoothing capacitor C1.
- the level setting adjuster 26 is constituted of resistors whose resistances are accurately determined to correspond to respective travelling speeds based on the Road Traffic Law and, there fore, a more accurate speed setting is obtained than it is constituted of a potentiometer or continually variable resistor.
- the output of the rectifying circuit 28 is connected through a biasing resistor R9 to a Schmitt circuit 29 including a first and a second transistor Trl and Tr2 and 5 grounded through a resistor R8.
- the output of the Schmitt circuit that is, the collector of the transistor Tr2 is connected through a resistor R33 to the base of a third transistor Tr
- the collector of the third transistor is coupled to the base of each of parallel-connected amplification transistors Tr4, TrS and Tr6 in a. drive circuit 30.
- the alarm signal generating circuit 22 is connected through a resistor 10 to the output of the drive circuit 30 and consists of a modulation wave oscillating circuit 31, a first and a second modulation wave form shaping circuit 32 and 33, a sound signal oscillation circuit 34 and an output circuit 35 consisting of a differential circuits 351 and 352 and a filter 353.
- the modulation wave signal oscillating circuit 31 includes two transistors Tr7 and Tr8 and constitutes a conventional astable multivibrator having two output ends.
- the first modulation wave form shaping circuit 32 consists of a capacitor C3a connected to one output of the astable multivibrator 31, a breeder or voltage dividing circuit consisting of resistors Rl3a and R14a, a transistor circuit including a resistor RlSa and a transistor Tr9 connected to the breeder circuit, and a wave form shaping capacitor C4a connected between the emitter and the collector of the transistor Tr9.
- the second modulation wave form shaping circuit 33 constitutes the same circuit arrangement as the first modulation wave form shaping circuit and includes a capacitor C3b, resistors R13b, Rl4b and Rlb, a transistor Tr10 and a capacitor C4b.
- the outputs of both the modulation wave form shaping circuits 32 and 33 are coupled, respectively, to diodes D4 and D5 of the output circuit 35.
- the sound signal oscillating circuit 34 constitutes an astable multivibrator including transistors Tr11 and Tr12, resistors R16-R19 and capacitors C5a and C5b.
- the output of the astable multivibrator 34 is coupled on the diodes D4 and D5.
- the diode D4 is coupled through a first DC blocking circuit 351 consisting of a blocking capacitor C6 and a resistor R20 to a first filter circuit 353 consisting of resistors R22, R23, R24 and capacitors C8 and C9.
- the diode D5 is coupled through a second DC blocking circuit 352 including a blocking capacitor C7 and a resistor R21 to a second filter circuit 354 consisting of resistors R25, R26 and R27 and capacitors C10, and C11.
- the outputs from both the filter circuits are supplied, respectively, to electric amplifiers 44L and 44R of the sound reproducing device 23.
- the dual channel sound reproducing device 23 is a car stereo tape player having a left channel including a reproducing head 40L, a preamplifier 41L, a sound volume adjuster 42L, a level setting resistor 43L and the electric amplifier 44L; a right channel including a reproducing head 40R, a preamplifier 41R, a level setting resistor 43R and the electric amplifier 44R; a series connection of an electric power switch 45, a diode 46 and a smoothing circuit 47; and a tape drive motor 48 connected between ground and a junction present between the power switch 45 and a diode 46.
- the diode 46 is provided to prevent a supply of an output from the drive circuit to the motor 48 when the power switch 45 is opened.
- the collector of each of transistors Tr4, Tr5 and Tr6 in the drive circuit 30 is connected in a forward direction to a diode D2.
- the diode D2 is provided to prevent a supply of a DC current into the drive circuit 30 when the power switch 45 is thrown in.
- the level setting adjuster 26 is set to a control speed, 80 km/h for example, as stipulated by the Road Traffic Law.
- the generator generates an AC output voltage nearly proportional to a travelling speed of an automobile, as shown in FIG. 3.
- the AC output voltage so generated is set, through resistors R3 and R7 of the level setting adjuster 26, to a predetermined level, rectified in a rectifying circuit 28 consisting of a diode D1 and a capacitor C1 and supplied through a resistor R9 to the base of the transistor Trl of the Schmitt circuit 29.
- the travelling speed of the automobile exceeds a setting speed and the output voltage of the rectifying circuit reaches a predetermined potential.
- the transistor Trl is turned ON and the transistor Tr2 is turned OFF.
- the collector potential of the transistor Tr2 is raised to cause the transistor Tr3 to turn ON, the transistors Tr4, Tr5 and Tr6 of the drive circuit 30 are operated.
- This causes a DC power to be supplied through a resistor R10 to an alarm signal generator 22 and through diode D2 to the smoothing circuit 47 of the sound reproducing device 23.
- the astable multivibrator 31 is operated to cause signals opposite in phase to each other, as shown in FIGS. 4a and 4b, to be generated from the two output terminals of the astable multivibrator.
- These signals are shaped, by the first and second modulation wave form shaping circuits 32 and 33, to wave forms shown in FIGS. 40 and 4d.
- the outputs supplied through resistors R31 and R32 from the first and second modulation circuits 32 and 33 modulate output signals supplied through diodes D4 and D5 from the astable multivibrator 34.
- the output signals of the astable multivibrator 34 and the modulated signals are respectively shown in FIGS. 4e to 4g.
- the DC portions of the modulated signals are eliminated at the first and second blocking circuits 351 and 352 to obtain signals as shown in FIGS. 4H and 4l.
- These modulated signals are filtered at the first and second filter circuits to obtain wave forms shown in FIGS. 4j and 4k.
- the two modulated signals or alarm signals so filtered are obtained through modification of the output signals of the astable multivibrator 34 by the signal alternately generated from the two output terminals of the astable multivibrator 31, these alarm output signals are shifted in phase from each other.
- these alarm signals after amplified by the amplifiers 44L and 44R of the stereo player set, are supplied to the left and right channel speakers 24R and 24L intermittent sounds shifted intime from each other are generated from the left and right speakers to alarmingly provide stereophonic alarm signals.
- an indication circuit 37 receives intermittent signals alternatively from the first and second modulation circuits 32 and 33 to cause the transistors Tr13 to effect an on-off operation. This causes a lamp 38 connected to the transistor Tr13 to flicker in synchronization with the alarm sounds of speakers, thereby too attracting the attention of the driver.
- the alarm sounds are generated from the speakers together with performance sounds where the alarm device is operated.
- the drive circuit 30 feeds DC electric powers to the amplifiers of the car stereo set, where they are amplified.
- the amplified alarm signals are supplied to the speaker, and alarm sounds are generated from the speakers.
- the alarm device is so designed that its sound volume is varied according to the sound volume set up by the adjuster of the car stereo set. with a predetermined difference in level left therebetween. That is, an alarm sig nal current is flowed through resistors R24 and R27 of the filter circuit and resistors 43L and 43R into the sound volume adjusting resistors 42L and 42R to cause a voltage drop to take place across the adjusting resistors 42L and 42R and resistors 43L and 43R. The voltage drop across the resistors 42L and 42R and 43L and 43R provides an input voltage to the amplifiers 44L and 44R.
- adjustment of the sound volume adjusting resistors 42L and 42R causes the level of the level alarm signal to be varied at the input terminal of the amplifiers 44L and 44R.
- alarm sounds are generated from the speaker with a predetermined difference in level be tween the performance signal and the alarm signal.
- the difference in level between the signals, or sound volumes is provided by selecting a desired value of the resistors 43L and 43R.
- the sound volume level relation between the alarm sound and the performance sound is shown in FIG. 5.
- the alarm system is so designed that an operational accuracy is not varied relative to a temperature variation.
- a circuit device using a semiconductor element is generally susceptible to influence due to a temperature variation. For this reason, such circuit device is provided with a temperature compensating means.
- provision of the temperature compensating means makes the circuit of the device intricate in design and, furthermore, an expensive circuit device results.
- a temperature compensation is made by a generator having an opposite temperature characteristic to that of a semiconductor and no particular temperature compensating means is necessary.
- a speed alarm device 50 is mounted to a dash-board 51 at the front of the drivers seat of the automobile, and electrically coupled to a sound reproducing device 23, a car stereo set for example, adjacent to the device 50.
- the output line of the car stereo set 23 is connected to two speakers 24L and 24R disposed at the rear of a backward seat of the automobile.
- the speed alarm device as shown in FIG. 7, is coupled to the output of a generator 56 for generating an electric power through rotation of the engine 54.
- the generator 56 is connected to a speedometer 57.
- the generator 56 is mechanically connected to a shaft of a flexible cable 55 toward speedometer 57.
- the speed alarm device 50 has a metal fitting 61 by means of which, as shown in FIG. 8, an indication window 58 is mounted at the front of a casing 59 and an operating knob 60 is secured to the bottom of the easing 59.
- a printed circuit board 63 onto which electrical parts elements 62 constituting an electrical circuit shown in FIG. 2 of the device are mounted, is accommodated into the alarm device 50 as shown in FIG. 9.
- the rear end of the substrate 63 is inserted into a groove 73 provided between projections 71 and 72 projecting from the back face of the casing 59.
- a preset switch 64 of the speed setting device is provided at the forward bottom portion of the casing.
- a shaft 65 extends through the bottom of the casing and towards the outside of the casing.
- An operating knob 60 is fitted over an operating section 66 of the shaft 65.
- the preset switch 64 is secured fixedly to the bottom of the case by a fastening nut 67a and a nut 67b.
- the print substrate 63 is arranged on the top of the speed setting switch 64 and electrically connected to a switch contact and an electrical circuit of the print substrate.
- a rotatable long shaft 68 is connected integrally to the shaft 65 of the speed setting switch 64 and extends vertically in the casing 59.
- a rotatable drum 69 is mounted to, and rotated with, the shaft 68.
- the rotatable drum 69 is made of, for example, a transparent or semitransparent synthetic resin, and characters, such as 40 km/h, 60 km/h, 80 km/h etc., representative of respective control speeds are printed on the outer periphery of the drum 69.
- a doughnut-shaped cavity 74 is formed within the drum 69.
- An indication lamp is disposed opposite to an indication window 58 and within the cavity 74. The indication lamp is mounted on the print substrate 63 and electrically connected to the electrical circuit of the print substrate.
- the speed setting switch 64 is switched to cause the rotatable drum 69 to be rotated to permit the characters of the control speeds visually observed from the indication window 58 to be varied.
- the alarm device 50 is set to a speed control indicated by the character.
- a front covering 75 having the indication window 58 is formed from synthetic resin, plastics, for example, and detachably mounted to the casing body 59.
- a groove 76 is provided in the upper inner surface of the front cover 75 and a projection 77 is provided on the lower outer surface of the front covering.
- the upper forward end of the casing body 59 has a section 78 bent into L-shape in cross section and an engaging pawl 79 at the lower forward end of the casing body.
- the front covering 75 is mounted to the casing 59 by engaging the forward end of the bent section 77 with the groove 76 while engaging the projection 77.
- the engaging pawl 79 is located in the recess 80 provided in the bottom of the casing 59, as shown in FIG.
- the engaging pawl 79 consists of a washer portion 81, a leg portion and a pawl.
- a bracket 85 has a frame 86 and a side plate 87 provided on one side of the frame. Two openings 88 are provided one at one side and one at the other side of the frame 86. At the top surface of the frame are formed three openings 89. Three openings 90 are provided at the side plate 87.
- the bracket 85 is mounted to the lower portion of the dash-board, as shown in FIG. 12, by a bolt 91 passed through the central opening provided at the top surface of the bracket 85.
- the bracket arm 61 is mounted to one side of the bracket 85 in a manner to permit a hole 61a of the bracket arm to align with the opening 88 of the bracket.
- the alarm device 50 is secured to the bracket 85 by bolt and nut means inserted into the aligned hole and opening.
- the alarm device is mounted through the bracket 85 to the dash-board 51 by inserting a bolt into the opening of the side plate 87 of the bracket 85.
- a speed alarm system mounted on an automobile with a car stereo device including an AC generator for generating an output voltage proportional in magnitude to a travelling velocity of the automobile comprising; a speed setting device coupled to the AC generator and being selectively set to a predetermined velocity; a speed limiting detector including a Schmitt circuit coupled to the speed setting device and being operated by the output thereof when the travelling velocity of the automobile reaches said predetermined velocity; an alarm signal generator coupled to the speed detector and adapted to be operated by the output of the speed detector to generate two intermittent alarm signals shifted in phase from each other; and means for coupling the alarm signal generator to a car stereo device installed in the automobile to deliver the two alarm signals respectively from the car stereo device whether or not it has been activated prior to the attainment of said predetermined velocity.
- said alarm signal generator comprises an astable multivibrator for alternately generating output signals from its two terminals; two modulation wave form shaping means connected respectively to the two terminals of the astable multivibrator; an alarm signal oscillator for oscillating alarm signals having a predetermined frequency; and an output circuit for modulating the outputs of the two modulation wave form shaping means with these output signals of the alarm signal generator divided into two routes and smoothing the modulated signal.
- said car stereo device includes a stereo tape player comprising a motor and a dual channel sound reproducing circuit having a second backward current diode connected between the motor and the sound reproducing circuit and one end of the first backward current blocking diode connected between the second diode and the reproducing circuit.
- said car stereo device is coupled to the sound volume adjuster and includes a sound reproducing circuit having an electric power amplifier to which the output of the alarm signal generator is received, and a level setting impedance connected between the sound volume adjusting device and a junction connected to the electric power amplifier and supplied with the output of the alarm signal generator, said level setting impedance being designed to generate at all times alarm sounds at a volume increased by a predetermined level.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Emergency Alarm Devices (AREA)
- Indicating Measured Values (AREA)
- Amplifiers (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4723072A JPS5341544B2 (enrdf_load_stackoverflow) | 1972-05-15 | 1972-05-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3859629A true US3859629A (en) | 1975-01-07 |
Family
ID=12769392
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US358490A Expired - Lifetime US3859629A (en) | 1972-05-15 | 1973-05-09 | Speed alarm system for an automobile |
Country Status (3)
Country | Link |
---|---|
US (1) | US3859629A (enrdf_load_stackoverflow) |
JP (1) | JPS5341544B2 (enrdf_load_stackoverflow) |
DE (1) | DE2324531C2 (enrdf_load_stackoverflow) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4143352A (en) * | 1977-07-26 | 1979-03-06 | Paul Jarmotz | Audible speed indicator |
DE3037298A1 (de) * | 1979-10-04 | 1981-04-23 | Nissan Motor Co., Ltd., Yokohama, Kanagawa | Akustische informations- oder warneinrichtung fuer kraftfahrzeuge mit automatischer geschwindigkeits-kontrolleinrichtung |
DE3040223A1 (de) * | 1979-10-24 | 1981-05-07 | Nissan Motor Co., Ltd., Yokohama, Kanagawa | Akustische informations- oder wandeinrichtung fuer kraftfahrzeuge |
US4342023A (en) * | 1979-08-31 | 1982-07-27 | Nissan Motor Company, Limited | Noise level controlled voice warning system for an automotive vehicle |
US4359713A (en) * | 1979-08-31 | 1982-11-16 | Nissan Motor Company, Limited | Voice warning system with automatic volume adjustment for an automotive vehicle |
US4401848A (en) * | 1979-10-04 | 1983-08-30 | Nissan Motor Company, Limited | Voice warning system for an automotive vehicle |
US4413248A (en) * | 1980-12-31 | 1983-11-01 | Brunswick Corporation | Low fuel pressure monitor for internal combustion engine |
US4594573A (en) * | 1983-01-19 | 1986-06-10 | Nippondenso Co., Ltd. | Reverberation sound generator |
US5319352A (en) * | 1990-11-30 | 1994-06-07 | Telesis Controls Corporation | Speed monitoring of in-plant, operator controlled vehicles |
US5872508A (en) * | 1996-05-13 | 1999-02-16 | Niles Parts Co., Ltd. | Electronic flasher system |
US6087934A (en) * | 1997-12-26 | 2000-07-11 | Golab; Thomas | Velocity-discriminating cable motion transducer system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3764975A (en) * | 1972-05-30 | 1973-10-09 | Trw Inc | Vehicle speed responsive control and signal device |
US3771122A (en) * | 1972-08-11 | 1973-11-06 | Gen Motors Corp | Motor vehicle automatic hazard warning system |
-
1972
- 1972-05-15 JP JP4723072A patent/JPS5341544B2/ja not_active Expired
-
1973
- 1973-05-09 US US358490A patent/US3859629A/en not_active Expired - Lifetime
- 1973-05-15 DE DE2324531A patent/DE2324531C2/de not_active Expired
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3764975A (en) * | 1972-05-30 | 1973-10-09 | Trw Inc | Vehicle speed responsive control and signal device |
US3771122A (en) * | 1972-08-11 | 1973-11-06 | Gen Motors Corp | Motor vehicle automatic hazard warning system |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4143352A (en) * | 1977-07-26 | 1979-03-06 | Paul Jarmotz | Audible speed indicator |
US4342023A (en) * | 1979-08-31 | 1982-07-27 | Nissan Motor Company, Limited | Noise level controlled voice warning system for an automotive vehicle |
US4359713A (en) * | 1979-08-31 | 1982-11-16 | Nissan Motor Company, Limited | Voice warning system with automatic volume adjustment for an automotive vehicle |
US4389537A (en) * | 1979-10-04 | 1983-06-21 | Nissan Motor Company, Limited | Voice warning system for an automotive vehicle provided with an automatic speed control device |
DE3037298A1 (de) * | 1979-10-04 | 1981-04-23 | Nissan Motor Co., Ltd., Yokohama, Kanagawa | Akustische informations- oder warneinrichtung fuer kraftfahrzeuge mit automatischer geschwindigkeits-kontrolleinrichtung |
US4401848A (en) * | 1979-10-04 | 1983-08-30 | Nissan Motor Company, Limited | Voice warning system for an automotive vehicle |
DE3040223A1 (de) * | 1979-10-24 | 1981-05-07 | Nissan Motor Co., Ltd., Yokohama, Kanagawa | Akustische informations- oder wandeinrichtung fuer kraftfahrzeuge |
US4359714A (en) * | 1979-10-24 | 1982-11-16 | Nissan Motor Company, Limited | Voice warning system for an automotive vehicle |
US4413248A (en) * | 1980-12-31 | 1983-11-01 | Brunswick Corporation | Low fuel pressure monitor for internal combustion engine |
US4594573A (en) * | 1983-01-19 | 1986-06-10 | Nippondenso Co., Ltd. | Reverberation sound generator |
US5319352A (en) * | 1990-11-30 | 1994-06-07 | Telesis Controls Corporation | Speed monitoring of in-plant, operator controlled vehicles |
US5872508A (en) * | 1996-05-13 | 1999-02-16 | Niles Parts Co., Ltd. | Electronic flasher system |
US6087934A (en) * | 1997-12-26 | 2000-07-11 | Golab; Thomas | Velocity-discriminating cable motion transducer system |
Also Published As
Publication number | Publication date |
---|---|
JPS4912859A (enrdf_load_stackoverflow) | 1974-02-04 |
DE2324531C2 (de) | 1974-08-22 |
DE2324531A1 (enrdf_load_stackoverflow) | 1974-01-31 |
JPS5341544B2 (enrdf_load_stackoverflow) | 1978-11-04 |
DE2324531B1 (de) | 1974-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3859629A (en) | Speed alarm system for an automobile | |
US4403208A (en) | Warning-signal-producing system for a motor vehicle responsive to a vehicle-presence-indicating radio wave signal emitted by another vehicle and indicative of its presence | |
DE2627119C3 (de) | Fahrzeugalarmanlage | |
US5027432A (en) | Motor vehicle radio with an automatic volume control device | |
GB2058497A (en) | Voice warning system with volume control | |
US4158190A (en) | Wailing siren detecting circuit | |
US4229727A (en) | Vehicle speed alarm | |
GR3015503T3 (en) | Sound effect device for radio controllable toy vehicle. | |
FI96729C (fi) | Ajoneuvon yleisradiovastaanotin | |
GB1381613A (en) | Vehicle signal devices | |
US3867719A (en) | Relative movement responsive siren alert | |
US4088995A (en) | System for selectively operable dual simultaneous siren broadcast from a single speaker | |
US4184115A (en) | Mobile citizen band transceiver control unit with an audio frequency apparatus | |
US1168053A (en) | Vehicle signaling system. | |
JPS5857006B2 (ja) | 電子情報機器の機能表示装置 | |
JPS58171141A (ja) | 車内放送装置 | |
JPS6136641U (ja) | イオン導入装置 | |
US3475618A (en) | Noise control safety device for automobiles | |
JPS6094845A (ja) | 車両用の警報装置 | |
DE2801734A1 (de) | Einrichtung zur automatischen anpassung der lautstaerke eines autoradios an die fahrgeraeusche | |
JPH033040Y2 (enrdf_load_stackoverflow) | ||
JP2000142259A (ja) | 自動車の速度警告装置 | |
JPH0117920Y2 (enrdf_load_stackoverflow) | ||
EP0015332A1 (en) | Audible warning equipment in and for a road vehicle | |
CN2041645U (zh) | 微型超车信号接收装置 |