US3858710A - Magnetic guide roller for conveyor belts - Google Patents
Magnetic guide roller for conveyor belts Download PDFInfo
- Publication number
- US3858710A US3858710A US440705A US44070574A US3858710A US 3858710 A US3858710 A US 3858710A US 440705 A US440705 A US 440705A US 44070574 A US44070574 A US 44070574A US 3858710 A US3858710 A US 3858710A
- Authority
- US
- United States
- Prior art keywords
- sections
- magnetic
- guide roller
- conveyor belt
- permanently magnetized
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G39/00—Rollers, e.g. drive rollers, or arrangements thereof incorporated in roller-ways or other types of mechanical conveyors
- B65G39/02—Adaptations of individual rollers and supports therefor
- B65G39/08—Adaptations of individual rollers and supports therefor the rollers being magnetic
Definitions
- the first section is sandwiched between the second and third sections and has the same diameter as the second and third sections, to form therewith the hub of the guide roller.
- the first section is of magnetically conductive material, not permanently magnetized to any appreciable degree.
- the second and third sections are permanently magnetized in axial direction, with the facing axial pole faces of the second and third sec tions being of like polarity.
- the fourth and fifth sections have diameters greater than the diameter of the first, second and third sections, so as to form radially outwardly projecting guide flanges for preventing lateral shifting of a belt travelling around the hub formed by the first, second and third sections.
- the fourth and fifth sections completely cover the outer axial pole faces of the respective adjoining ones of the second and third sections.
- the fourth and fifth sections are of magnetically conductive material not permanently magnetized to any appreciable extent.
- the characteristic feature of the structure is that the portions of the magnetic flux loops extending outside the material of the first through fifth sections are confined almost exclusively to the annular space intermediate the radially outwardly projecting portions of the fourth and fifth sections. As a result, a strong magnetic attractive force will be exerted upon attractable material in this region, but the magnetic flux, being confined to the just-mentioned annular space, will not interfere with the magnetic action of any other magnetic or magnetizable structure in the conveyor belt arrangement.
- the invention relates to magnetic guide rollers for magnetic conveyor belt arrangements of the endless type.
- two guide rollers for the endless conveyor belt are required, and when material is to be conveyed along more than one plane, three or more guide rollers are required.
- a magnetic guide roller such that, by reason of its magnetic configuration, it can be employed in conjunction with any stationary magnet system of a conveyor belt arrangement with complete disregard to the polarities of the magnetic guide roller.
- the magnetic guide roller is comprised of two circular axially polarized magnetic disks axially spaced from each other and having facing poles of like polarity, with an intermediate disk of soft iron sandwiched between the two magnetic disks and concentric therewith.
- the outwardly facing poles of the two magnetic disks are completely covered by two further soft iron disks of larger diameter which project radially beyond the outer periphery of the magnetic disks all around the outer periphery of the magnetic disks.
- These larger soft iron disks simultaneously serve as the lateral guide flanges of the guide roller.
- the intermediate soft iron disk is simultaneously polarized by both magnetic disks, and is accordingly doubly strongly polarized.
- a magnetic force field most heavily concentrated at the periphery of the intermediate soft iron disk, extends from the intermediate soft iron disk to the outwardly located larger soft iron disks. In this way, the magnetic field is completely concentrated in the annular region intermediate the two outer soft iron disks, while the soft iron disks themselves outside of the just-mentioned annular space are practically unmagnetized.
- a conveyor belt is guided on this guide roller between the two outermost soft iron disks of larger diameter.
- the magnetically attractable material brought by the conveyor belt into this annular region of concentrated magnetic flux is attracted with an increasing force and is transported a distance corresponding to the angle of the guide roller around which the conveyor belt passes.
- the disclosed embodiment of the inventive concept accordingly achieves unhindered transport from the stationary magnet system of the conveyor belt arrangement past the magnetic guide roller, and without requiring any correspondence between the polarities of the magnetic guide roller and of the stationary magnetic system.
- the outer disks of the disclosed guide roller are substantially completely unmagnetized, with a concentrated magnetic field being confined to the aforementioned annular space intermediate the outer soft iron disks. This results in sort of a magnetic suction effect in direction towards the soft iron intermediate disk.
- the material conveyed away from the stationary magnet system of the conveyor belt arrangement immediately comes into the region of the spatially confined magnetic field and is further transported by the conveyor belt arrangement, under the influence of an increasing magnetic attractive force.
- the guide roller of vFIG. l is comprised of a soft iron intermediate disk 1, and of two adjoining magnet disks 2, 3 permanently magnetized in the axial direction and having facing poles of like polarity.
- the other pole faces of the magnet disks 2, 3 are completely covered by soft iron outer disks 4, 5 of larger diameter concentric with disks 1, 2, 3.
- the endless belt 6 of a conveyor belt arrangement travels around the concentric equaldiameter disks 1, 2, 3.
- the permanent magnet disks 2, 3, and possibly also the soft iron intermediate disk 1 can be covered by a tubular member of magnetically non-conductive material, with in particular the permanent magnet disks 2, 3 being completely closed off from the outside, as if by a housing. This would simultaneously result in an improved rolling surface for the belt 6 to travel on.
- the magnetic field will be most heavily concentrated at the periphery of the soft iron intermediate disk 1, and the magnetic field will be confined in the annular space 7 defined between the projecting annular portions of the outer soft iron disks 4, 5.
- the magnetically attractable material conveyed by the belt 6 will be attracted by the soft iron intermediate disk 1.
- FIG. 2 shows in a top view two such magnetic guide rollers employed in a simple conveyor belt arrangement.
- the stationary magnet system is located in conventional manner underneath the belt 6. It may for example consist of oppositely magnetically polarized rails 8 and 9 (shown in dash-dot lines), each terminating short of the adjoining guide roller.
- the magnetic guide rollers with their outer soft iron disks 4 are located practically directly in front of the magnetic rails 8, 9, no detrimental magnetic influence exists, because, as a result of the concentration of the magnetic field in the annular space 7, the soft iron disks 4, 5 out side the annular space 7 are practically unmagnetized.
- the constituent parts of the magnetically attractable material carried on the belt 6 will be in linear or point contact with the belt 6, in dependence upon the geometrical form of such constituent parts. However, as the magnetically attractable material travels along the region in which the belt 6 contacts the guide roller, all portions of each of the constituent parts of the attractable material will be attracted by the magnetic field. In other words, the magnetically attractable goods will be attracted by the magnetic fields not only at the surface portions thereof in the most direct contact with the magnet poles, but all throughout the spatial extension of such goods.
- the magnetic pole formed by the soft iron intermediate disk 1 can be extended towards the soft iron outer disks 4, 5.
- Conveyed material of substantial spatial extension would for example be metal containers or cans. They can either stand on the belt 6 with their bottoms in contact with the belt, or they can be transported lying on their sides.
- the containers enter into the confined magnetic field of the magnetic guide rollers of the invention and, because of the aforedescribed stronger concentration of magnetic force lines, are held in place by a correspondingly stronger magnetic attractive force. This is particularly important if the containers to be transported are not empty, but filled. What is here described with respect to the magnetic attractive force which holds containers or cans, of course applies no less for all other objects of substantial spatial extension.
- FIG. 3 depicts an arrangement of three magnetic guide rollers such as shown in FIG. 1.
- the guide rollers in FIG. 3 are supported on a two-armed support bracket 10, 11, and are adapted to guide a conveyor belt along two different planes, in succession.
- a magnetic guide roller for guiding a conveyor belt of the conveyor belt arrangement, comprising, in combination, a stack of concentric first, second, third, fourth and fifth diskshaped sections, said first disk-shaped section being sandwiched between said second and third sections and being of equal diameter as said second and third sections to form therewith a hub of the guide roller, said first section being of magnetically conductive material, and said second and third sections being permanently magnetized in axial direction with facing axial pole faces of said second and third sections being of like polarity, said first, second and third sections being sandwiched between said fourth and fifth sections, and said fourth and fifth sections having diameters greater than the diameter of said first, second and third sections so as to form radially outwardly projecting guide flanges for preventing lateral shifting of a belt travelling around said hub, said fourth and fifth sections completely covering outwardly facing axial pole faces of respective adjoining ones of said second andthird sections and being of magnetically conductive material not permanently magnetized.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Belt Conveyors (AREA)
- Rollers For Roller Conveyors For Transfer (AREA)
- Structure Of Belt Conveyors (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2306931A DE2306931C2 (de) | 1973-02-13 | 1973-02-13 | Dauermagnetische Umlenkrolle |
Publications (1)
Publication Number | Publication Date |
---|---|
US3858710A true US3858710A (en) | 1975-01-07 |
Family
ID=5871715
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US440705A Expired - Lifetime US3858710A (en) | 1973-02-13 | 1974-02-08 | Magnetic guide roller for conveyor belts |
Country Status (12)
Country | Link |
---|---|
US (1) | US3858710A (ja) |
AT (1) | AT337091B (ja) |
BE (1) | BE810319A (ja) |
CA (1) | CA994273A (ja) |
CH (1) | CH559683A5 (ja) |
DE (1) | DE2306931C2 (ja) |
ES (1) | ES422777A1 (ja) |
FR (1) | FR2217242B1 (ja) |
GB (1) | GB1393079A (ja) |
IT (1) | IT1002831B (ja) |
NL (1) | NL7401868A (ja) |
SE (1) | SE406071B (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4337856A (en) * | 1980-08-14 | 1982-07-06 | Dorner Mfg. Corp. | Transfer mechanism for a magnetic conveyor |
DE3248193A1 (de) * | 1982-01-28 | 1983-08-04 | Továrny strojírenské techniky koncern, 113 42 Praha | Rollenmagnetfoerderer fuer spaene |
US5219063A (en) * | 1992-07-06 | 1993-06-15 | Wyatt Group, Inc. | Conveyor belt alignment maintenance device |
US6241077B1 (en) * | 1998-04-10 | 2001-06-05 | W. Schlafhorst Ag & Co. | Transport system for spinning bobbins and bobbin tubes with a transport path bridging a passage |
US6390289B1 (en) | 2000-02-04 | 2002-05-21 | Richard M. Hoggan | Conveyor belt alignment device |
US20040262131A1 (en) * | 2003-05-23 | 2004-12-30 | Siemens Aktiengesellschaft | Circulating mechanism, and method of operating such a circulating mechanism |
US20050067260A1 (en) * | 2003-09-30 | 2005-03-31 | Lawrence Eric C. | Magnetic turnaround |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3120891A (en) * | 1961-01-19 | 1964-02-11 | Eriez Mfg Co | Magnetic conveyor with improved flanged roll |
US3417853A (en) * | 1966-12-06 | 1968-12-24 | Fleetwood Syst Inc | Conveyor assembly |
US3795301A (en) * | 1972-05-10 | 1974-03-05 | Dawa Can Co Ltd | Apparatus for turning and transferring sheet metal |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1031443B (de) * | 1953-01-30 | 1958-06-04 | Spodig Heinrich | Dauermagnetsystem |
AT199562B (de) * | 1955-11-03 | 1958-09-10 | Spodig Heinrich | Permanentmagnetischer Rollgang |
FR1299488A (fr) * | 1961-09-07 | 1962-07-20 | Transporteur magnétique à bande |
-
1973
- 1973-02-13 DE DE2306931A patent/DE2306931C2/de not_active Expired
-
1974
- 1974-01-18 AT AT44074A patent/AT337091B/de not_active IP Right Cessation
- 1974-01-29 BE BE140313A patent/BE810319A/xx unknown
- 1974-01-30 ES ES422777A patent/ES422777A1/es not_active Expired
- 1974-01-31 CH CH135974A patent/CH559683A5/xx not_active IP Right Cessation
- 1974-02-01 FR FR7403413A patent/FR2217242B1/fr not_active Expired
- 1974-02-01 IT IT48092/74A patent/IT1002831B/it active
- 1974-02-04 SE SE7401406A patent/SE406071B/xx unknown
- 1974-02-06 CA CA191,928A patent/CA994273A/en not_active Expired
- 1974-02-08 US US440705A patent/US3858710A/en not_active Expired - Lifetime
- 1974-02-12 NL NL7401868A patent/NL7401868A/xx not_active Application Discontinuation
- 1974-02-13 GB GB644074A patent/GB1393079A/en not_active Expired
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3120891A (en) * | 1961-01-19 | 1964-02-11 | Eriez Mfg Co | Magnetic conveyor with improved flanged roll |
US3417853A (en) * | 1966-12-06 | 1968-12-24 | Fleetwood Syst Inc | Conveyor assembly |
US3795301A (en) * | 1972-05-10 | 1974-03-05 | Dawa Can Co Ltd | Apparatus for turning and transferring sheet metal |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4337856A (en) * | 1980-08-14 | 1982-07-06 | Dorner Mfg. Corp. | Transfer mechanism for a magnetic conveyor |
DE3248193A1 (de) * | 1982-01-28 | 1983-08-04 | Továrny strojírenské techniky koncern, 113 42 Praha | Rollenmagnetfoerderer fuer spaene |
US5219063A (en) * | 1992-07-06 | 1993-06-15 | Wyatt Group, Inc. | Conveyor belt alignment maintenance device |
US6241077B1 (en) * | 1998-04-10 | 2001-06-05 | W. Schlafhorst Ag & Co. | Transport system for spinning bobbins and bobbin tubes with a transport path bridging a passage |
US6390289B1 (en) | 2000-02-04 | 2002-05-21 | Richard M. Hoggan | Conveyor belt alignment device |
US20040262131A1 (en) * | 2003-05-23 | 2004-12-30 | Siemens Aktiengesellschaft | Circulating mechanism, and method of operating such a circulating mechanism |
US7156224B2 (en) * | 2003-05-23 | 2007-01-02 | Siemens Aktiengesellschaft | Circulating mechanism, and method of operating such a circulating mechanism |
US20050067260A1 (en) * | 2003-09-30 | 2005-03-31 | Lawrence Eric C. | Magnetic turnaround |
WO2005032981A2 (en) * | 2003-09-30 | 2005-04-14 | Lawrence Equipment, Inc. | Magnetic turnaround |
WO2005032981A3 (en) * | 2003-09-30 | 2005-10-20 | Lawrence Equip Inc | Magnetic turnaround |
US7097026B2 (en) | 2003-09-30 | 2006-08-29 | Lawrence Equipment, Inc. | Magnetic turnaround |
Also Published As
Publication number | Publication date |
---|---|
AT337091B (de) | 1977-06-10 |
ATA44074A (de) | 1976-09-15 |
CA994273A (en) | 1976-08-03 |
SE406071B (sv) | 1979-01-22 |
DE2306931C2 (de) | 1982-09-02 |
DE2306931A1 (de) | 1974-08-15 |
FR2217242B1 (ja) | 1977-09-16 |
NL7401868A (ja) | 1974-08-15 |
BE810319A (fr) | 1974-05-16 |
IT1002831B (it) | 1976-05-20 |
GB1393079A (en) | 1975-05-07 |
FR2217242A1 (ja) | 1974-09-06 |
ES422777A1 (es) | 1976-04-16 |
CH559683A5 (ja) | 1975-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3581873A (en) | Endless magnetic conveyor | |
US3978441A (en) | Permanent magnet holding system | |
US3858710A (en) | Magnetic guide roller for conveyor belts | |
US4051023A (en) | Combination electromagnet and permanent magnet separator | |
US4107653A (en) | Document processing, magnetic character detecting apparatus | |
GB1479216A (en) | Materials separator | |
US5127509A (en) | Apparatus for rotatably positioning textile yarn winding tubes about their lengthwise axes while supported on tube carriers | |
US3809239A (en) | Magnetic refuse separator | |
US3666080A (en) | Conveyor belt system | |
US3801804A (en) | Drum driven document back-up roller | |
US4337856A (en) | Transfer mechanism for a magnetic conveyor | |
GB1456124A (en) | Magnetic belt conveyor | |
US3537048A (en) | Permanent magnet device for holding or conveying purposes | |
US4234076A (en) | Magnetic roller conveyor | |
US3120891A (en) | Magnetic conveyor with improved flanged roll | |
US2939568A (en) | Conveyor with magnetic pipe separators thereon | |
US3468406A (en) | Conveyor arrangement | |
JPH03223021A (ja) | 特殊環境下で用いられる搬送装置 | |
US6241077B1 (en) | Transport system for spinning bobbins and bobbin tubes with a transport path bridging a passage | |
GB1058372A (en) | Magnetic separation | |
US3936873A (en) | Conveyor belt system | |
GB1129800A (en) | Magnetic conveyor | |
CN218786271U (zh) | 扣件防漏胶精准预涂装置 | |
US2497162A (en) | Magnetic roll conveyer | |
JPS60251943A (ja) | 磁気検出器付き磁気選別装置 |