US3830396A - Containers for liquefied gases - Google Patents
Containers for liquefied gases Download PDFInfo
- Publication number
- US3830396A US3830396A US00181711A US18171171A US3830396A US 3830396 A US3830396 A US 3830396A US 00181711 A US00181711 A US 00181711A US 18171171 A US18171171 A US 18171171A US 3830396 A US3830396 A US 3830396A
- Authority
- US
- United States
- Prior art keywords
- shell
- layer
- panels
- tank
- insulation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000007789 gas Substances 0.000 title description 4
- 238000009413 insulation Methods 0.000 claims abstract description 63
- 239000000463 material Substances 0.000 claims abstract description 25
- 239000004033 plastic Substances 0.000 claims description 22
- 229920003023 plastic Polymers 0.000 claims description 22
- 240000007182 Ochroma pyramidale Species 0.000 claims description 21
- 239000011120 plywood Substances 0.000 claims description 16
- 239000007788 liquid Substances 0.000 claims description 12
- 238000011065 in-situ storage Methods 0.000 claims description 8
- 238000003860 storage Methods 0.000 claims description 8
- 239000013521 mastic Substances 0.000 claims description 7
- 239000003949 liquefied natural gas Substances 0.000 abstract description 13
- 229910052751 metal Inorganic materials 0.000 abstract description 2
- 239000002184 metal Substances 0.000 abstract description 2
- 239000012530 fluid Substances 0.000 abstract 1
- 229920002635 polyurethane Polymers 0.000 description 9
- 239000004814 polyurethane Substances 0.000 description 9
- 238000010276 construction Methods 0.000 description 6
- 239000004677 Nylon Substances 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 4
- 239000011152 fibreglass Substances 0.000 description 4
- 229920001778 nylon Polymers 0.000 description 4
- 230000003068 static effect Effects 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 244000182067 Fraxinus ornus Species 0.000 description 1
- 235000014676 Phragmites communis Nutrition 0.000 description 1
- 235000005018 Pinus echinata Nutrition 0.000 description 1
- 235000013264 Pinus jeffreyi Nutrition 0.000 description 1
- 235000016013 Pinus leiophylla var chihuahuana Nutrition 0.000 description 1
- 240000007320 Pinus strobus Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- CRQQGFGUEAVUIL-UHFFFAOYSA-N chlorothalonil Chemical compound ClC1=C(Cl)C(C#N)=C(Cl)C(C#N)=C1Cl CRQQGFGUEAVUIL-UHFFFAOYSA-N 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- -1 e.g. Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 235000013490 limbo Nutrition 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C3/00—Vessels not under pressure
- F17C3/02—Vessels not under pressure with provision for thermal insulation
- F17C3/025—Bulk storage in barges or on ships
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C13/00—Details of vessels or of the filling or discharging of vessels
- F17C13/08—Mounting arrangements for vessels
- F17C13/082—Mounting arrangements for vessels for large sea-borne storage vessels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/01—Reinforcing or suspension means
- F17C2203/011—Reinforcing means
- F17C2203/012—Reinforcing means on or in the wall, e.g. ribs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/03—Thermal insulations
- F17C2203/0304—Thermal insulations by solid means
- F17C2203/0329—Foam
- F17C2203/0333—Polyurethane
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/03—Thermal insulations
- F17C2203/0304—Thermal insulations by solid means
- F17C2203/0345—Fibres
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/03—Thermal insulations
- F17C2203/0304—Thermal insulations by solid means
- F17C2203/0354—Wood
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0602—Wall structures; Special features thereof
- F17C2203/0612—Wall structures
- F17C2203/0626—Multiple walls
- F17C2203/0631—Three or more walls
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0634—Materials for walls or layers thereof
- F17C2203/0636—Metals
- F17C2203/0646—Aluminium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0634—Materials for walls or layers thereof
- F17C2203/0636—Metals
- F17C2203/0648—Alloys or compositions of metals
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/03—Mixtures
- F17C2221/032—Hydrocarbons
- F17C2221/033—Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/01—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
- F17C2223/0146—Two-phase
- F17C2223/0153—Liquefied gas, e.g. LPG, GPL
- F17C2223/0161—Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/03—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
- F17C2223/033—Small pressure, e.g. for liquefied gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2260/00—Purposes of gas storage and gas handling
- F17C2260/03—Dealing with losses
- F17C2260/031—Dealing with losses due to heat transfer
- F17C2260/033—Dealing with losses due to heat transfer by enhancing insulation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2270/00—Applications
- F17C2270/01—Applications for fluid transport or storage
- F17C2270/0102—Applications for fluid transport or storage on or in the water
- F17C2270/0105—Ships
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2270/00—Applications
- F17C2270/01—Applications for fluid transport or storage
- F17C2270/0102—Applications for fluid transport or storage on or in the water
- F17C2270/0105—Ships
- F17C2270/0107—Wall panels
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S220/00—Receptacles
- Y10S220/901—Liquified gas content, cryogenic
Definitions
- SHEET 20F 3 Inventor Faber ⁇ ; G/ovcr'J agk sob W a lttorney PATENTEDAUG20
- This invention relates to containers for the bulk storage or transport of liquids at temperatures greatly differing from ambient temperatures and is a modification of the invention described and claimed in US. Pat. No. 3,595,424 July 27, 1971, for Containers for Liquefied Gases, which is concerned with the thermal insulation of such containers.
- such a container is characterized in that less highly stressed parts of said thermal insulation comprise rigid foamed plastics material sprayed in situ internally on the outer rigid shell while more highly stressed parts thereof are of load-bearing thermal insulating material of higher strength.
- FIGS. 1 to 3 of the drawings accompanying that Patent, being concerned with a container of the kind comprising a self-supporting tank and the other, with reference to FIG. 4, being concerned with a so-called integrated tank container.
- the above Patent indicates that the section of the thermal insulation lining the bottom of the outer rigid shell and supporting the bottom of the tank is wholly of load-bearing material of high compressive strength. Whilst the arrangement described therein is advantageous for acting as a secondary barrier to the liquid as well as supporting the load of the tank and the liquid contained therein and, in the case of a marine tanker incorporating such tanks, for supporting any fluctuating loads applied thereto during tans-shipment of the liquid, in practice the cost of the materials and labor for assembling such an insulation section is high compared with the foamed thermal insulation sections described for the side walls of the outer rigid shell.
- the object of the present invention is to provide, in the case of a container of the kind comprising a selfsupporting tank, an alternative insulation arrangement for the section lining the bottom of the outer rigid shell which (i) renders sufficient support for the bottom of the tank, (ii) is capable of acting as a secondary barrier, and (iii) utilizes at least in part the thermal insulation arrangement described and claimed in the above Patent for the side walls of the outer rigid shell, with consequent savings in cost.
- each bearer member comprises a plywood faced layer of balsa wood panels faced with plywood and rigidly secured to the bottom of said shell.
- a load-bearing block is secured to the upper face of each layer of panels and is adapted to support the tank clear of the rigid foamed plastics material.
- each load-bearing block comprises a second layer of balsa wood panels and the upper face of this second layer may have a facing providing good frictional engagement with the floor of the tank.
- the floor of the tank may be provided with a keying arrangement comprising two lines of brackets, the spacing of each line relative to the lines of bearer members being such that one line of brackets acts against a line of bearer members to locate the tank when the tank is at ambient temperature and the other line of brackets similarly acts against said line of bearer members when dimensional changes have taken place in the tank as a result of it being subjected to the temperature of the liquid cargo.
- FIG. 1 is a transverse vertical half-sectional view through the tanker
- FIG. 2 is an enlarged sectional view showing a detail of a bottom section of the thermal insulation
- FIG. 3 is an enlarged sectional view showing an alternative arrangement of the detail of FIG. 2;
- FIG. 4 is a fragmentary plan view of a bottom section of the thermal insulation.
- the tanker comprises an outer hull l and an inner hull 2.
- the inner hull together with two transverse bulkheads define a cargo hold 3.
- a cargo hold 3 Disposed within the cargo hold 3 is a self-supporting tank 4 which is of a metal not subject to cold embrittlement at the temperature of the LNG, e.g., aluminum or 9 percent nickel steel.
- the tank 4 is of sufficient thickness and suitably stiffened by inner frame members, one being indicated at 5, to contain the liquid; a centerline bulkhead 6 is provided within the tank.
- the tank 4 is surrounded by thermal insulation generally indicated at 7, which lines the cargo hold 3.
- FIG. 2 is not drawn to scale, and in particular the insulation is shown to a larger scale than the tanker for clarity.
- the thermal insulation 7 comprises a section A lining the top of, and extending a short distance down to the sides of the cargo hold 3, sections B lining the sides of the hold and a section C lining the bottom of the hold.
- Each section B of the thermal insulation which is substantially the same as described for section B in the Patent above referred to, comprises a constant thickness of rigid closed cell polyurethane 8 sprayed in layers onto the main portions of the side walls of the cargo hold 3.
- layers of nylon mesh are incorporated within the thickness of the polyurethane instead of layers of hessian mat as described in the above Patent.
- the corners of the cargo hold 3 defining the side walls, i.e., the top, bottom and vertical corners, are lined with corner sections D of load-bearing thermal insulation which is substantially the same as that defound, particularly in the case where the container is i for LNG, that the temperature gradient across the insulation, of the order of 160 C, for LNG at normal atmospheric pressure, imposes critical stresses across the polyurethane in view of its relatively high co-efficient of expansion which is of the order of 40 to 50 X l metres per metre per C. over the range of densities for the polyurethane as quoted in the above Patent.
- Each corner section D thus comprises timber ground strips 9 secured at regular intervals around their respective corners of the cargo hold 3 and panels 11 of balsa wood faced with plywood secured, for example by a suitable adhesive to the ground strips 9.
- the tank 4 is provided with a lower chamfer l2 and the cargo hold is similarly shaped; Hence the side walls of the cargo hold 3 are provided with an intermediate wide-angled corner to which a further corner section D is secured
- the junctions between the sections B and corner sections D are again substantially as described in the above-identified Patent, the line of each junction extending at an angle to the plane of the wall of the cargo hold other than a right angle.
- the nylon mesh layers are secured to the surface of the corner sections D by a suitable adhesive rather than via slots as described in the above Patent; for each section B the two inner most layers of nylon mesh extend continuously therethrough while the two outermost layers extend a relatively short distance into the polyurethane from each corner section D.
- Section C of the thermal insulation in accordance with the invention, this is provided with a combined polyurethane and loadbearing insulation, the latter providing local areas of support for the bottom of the tank 4 rather than a continuous support as is the case with the section A insulation described in the abovecited Patent.
- Section C comprises basically a composite of the section B insulation and the loadbearing insulation construction of the corner sections D, both described above.
- spaced lines of load-bearing insulation sections C1 extending longitudinally of the ship are secured to the floor of the cargo hold 3.
- these lines of insulation sections are of similar construction to the corner sections D and comprise layers of balsa wood panels 13 faced with plywood 13A the edges of which extend at an angle to the plane of the hold floor. It will be appreciated however that the maximum strength requirement for the C1 sections is perpendicular to the plane of the hold floor whereas that for the corner sections D is parallel to the planes of the floor and walls of the hold and hence,
- FIG. 2 shows the nylon mesh layers described previously, the two innermost layers being referenced l5 and the two outermost 16.
- Each section Cl rigidly and securely supports a loadbearing block 17, of, for example, a dense wood such as yellow pine, and the bottom of the tank 4 is seated on the blocks 17; it will be appreciated that the number and spacing of the sections C1 and hence the blocks 17 over the floor of the cargo hold 3 is such that, between them, these blbcks provide sufficient strength to support the static loads of the tank and stored LNG as well as any fluctuating loads arising during the transshipment of the LNG. Should it be necessary to strengthen the blocks 17 against the effects of rolling shear, these blocks can be formed with horizontal and- /or vertical laminations of, for example, plywood.
- one section Cl coincides with the centerline bulkhead 6 of the tank 4 and preferably each of the other sections Cl coincides with a longitudinally extending bottom frame member 5 for the tank.
- the blocks 17 as weli as providing support for the tank 4 may be used to hold said tank in a located position.
- two sets of brackets 18, 19 are secured to the bottom of the tank 4 and are arranged such that when the tank is at ambient temperature the brackets 18 are in contact with and act against those sides of their respective blocks 17 facing towards the centerline of the tank to keep the tank in position, and when the tank is cooled down and loaded with LNG the brackets 19 act against the opposite faces of their respective blocks 17. It will be appreciated that in this latter condition the tank 4 will have contracted toward its center under the effect of the cold of the LNG and hence, during assembly of the brackets 19 under ambient conditions, appropriate spacings must be left between them and their respective faces of the blocks 17 to cater for this thermal contraction.
- brackets 19 may be modified such that during rolling of the tanker at sea, at least the major part of the loading at any instant is taken by those brackets 19 and blocks 17 on that side of the tank centerline which is away from the side to which the tanker is heeled; this provides the advantage that the effective head of LNG and hence the loading on said side of the tank centerline is significantly less than that of the other side.
- each layer of panels 13' has secured thereto a second layer of balsa panels 22 which seats between the respective ground strips 21.
- the second layer of panels 22 is thinner than the ground strips 21 to allow for irregularities in the floor of the cargo hold 3 and the spaces left between this layer, the cargo hold 3 and the ground strips 21 are filled with a suitable loadbearing mastic 23.
- the loadbearing blocks 17 for supporting the floor of the tank 4 comprise a third layer of balsa wood panels 24 secured to the plywood facing 13A of the layer of panels 13'.
- the layer of panels 24 is also provided with a plywood facing 25 to provide good frictional engagement between the Cl sections and the floor of the tank when the latter is filled with cargo so that there is less likelihood of the tank 4 tending to slide during transshipment thereby effectively reducing the potential loading of the keying arrangement l8, 19.
- FIG. 4 shows a typical layout of the Cl/C2 thermal insulation over the floor of the cargo hold 3.
- a line of abutting Cl sections of insulation extend along the length of the hold floor at the longitudinal centerline of the tanker.
- lines of C1 sections 27 of insulation are spaced on either side of the sections 26 in parallel relationship, each line 27 comprising a number of spaced island sections so as to provide a multiplicity of discrete areas of support over the floor of the tank 4.
- the number, spacing, and support area of the lines of C1 sections 26, 27 will be such as to provide adequate support for the tank 4 against all expected static and fluctuating loads to which the tank will be subjected during trans-shipment.
- the line of sections 26 is shown with a keyway 28 extending along the longitudinal centerline of the tanker for receiving a mating key provided on the floor of the tank 4.
- a keying arrangement provides an alternative to the keying arrangement 18, 19 described hereinbefore with reference to FIG. 2 and is similar to that described in British Pat. No. 854,708.
- the tops of the tanks 4 may be stabilized in relation to the decks of the tanker to reduce the possibility of the tank 4 rocking on the Cl sections of insulation.
- Tests have indicated that a thermal insulation system such as described above for the sides and bottom of the cargo hold 3 is tight against LNG and hence would provide a secondary barrier to the LNG if the tank 4 should rupture.
- tests have been carried out on a full scale joint of load-bearing insulation and polyurethane constructed substantially as described above at a normal operating temperature, and under fluctuating load conditions-many times more severe than would be encountered in normal operation of a tanker at sea with no evidence of rupture.
- the spaces between the side and bottom walls of the tank and the cargo hold may be at least partially filled with additional relatively cheap thermal insulation material, e.g., fibreglass.
- additional relatively cheap thermal insulation material e.g., fibreglass.
- fibreglass is provided in the spaces between the side walls of the tank and hold this may be supported, as described in the US. Pat. No. 3,595,424 above referred to, on the face of the insulation system, or on the outer surface of the tank.
- a supporting framework (not shown) may be provided to retain the fibreglass in position.
- section A insulation is such that it is not essential for it to be capable of acting as a secondary barrier although it is desirable that it be splash-tight.
- This in this construction a relatively cheap insulation is provided comprising fibreglass 21 faced with plywood 22.
- a container for the bulk storage or transport of liquids at temperatures greatly differing from ambient temperature comprising a tank surrounded by thermal insulation in an outer rigid shell, with a section of said insulation lining the bottom of said shell and supporting said tank,
- section of insulation comprises individual compact members of load-bearing thermal insulation rigidly fixed to and spaced apart from each other both transversely and longitudinally over the bottom of said shell,
- each compact member comprises a layer of balsa wood panels faced with plywood and rigidly secured to the bottom of said shell
- a load-bearing block is secured to the upper face of each layer of panels and is adapted to support the tank clear of the rigid foamed plastic material
- each load-bearing block comprises a second layer of balsa wood panels
- each first mentioned layer of panels is secured to the bottom of theshell via spaced timber grounds and a third layer of balsa wood panels is secured to the bottom face of the first layer of panels and set in mastic within the space between said grounds.
- a container for the bulk storage or transport of liquids at temperatures greatly differing from ambient temperature comprising a tank surrounded by thermal insulation in an outer rigid shell, with a section of said insulation lining the bottom of said shell and sup- 0 porting said tank,
- section of insulation comprises individual compact members of load-bearing thermal insulation rigidly fixed to and arranged in spaced lines over the bottom of said shell,
- each compact member comprises a layer of balsa wood panels faced with plywood and rigidly secured to the bottom of said shell
- each layer of panels is secured to the bottom of the shell via spaced timber grounds and a second layer of panels is secured to the bottom face of the first layer of panels and set in mastic within d. wherein the planes of junction between said comthe space between said grounds. pact members and said rigid foamed plastic mate- 3.
- a container for the bulk storage or transport of liqrial extend obliquely to the plane of the walls of uids at temperatures greatly differing from ambient said shell, so as to lie more nearly horizontal than temperature and comprising a tank surrounded by therperpendicular,
- each compact member comprises a layer said insulation lining the bottom of said shell and supof balsa wood panels faced with plywood and rigporting said tank, idly secured to the bottom of said shell,
- said section of insulation comprises indif. wherein a load-bearing block is secured to the vidual compact members of load-bearing thermal 10 upper face of each layer of panels and comprises a insulation rigidly fixed to and spaced over the botsecond layer of balsa wood panels, tom of said shell, g. wherein each first mentioned layer of panels is sec. and rigid foamed plastic material sprayed in situ in cured to the bottom of the shell via spaced timber the spaces between said compact members, the grounds and set in mastic within the space between total area of said plastic material being greater than said grounds. the toal area of said load-bearing members,
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB48749/70A GB1300730A (en) | 1968-03-01 | 1970-10-14 | Improvement in containers for liquefied gases |
CA121,143A CA943883A (en) | 1970-10-14 | 1971-08-23 | Containers for liquefied gases |
US00181711A US3830396A (en) | 1970-10-14 | 1971-09-20 | Containers for liquefied gases |
DE19712150866 DE2150866A1 (de) | 1968-03-01 | 1971-10-12 | Behaelter zum Lagern und/oder Transportieren tiefkalter Fluessigkeiten |
BE773806A BE773806R (fr) | 1968-03-01 | 1971-10-12 | Citerne pour liquide a calorifugeage |
SE7112933A SE379320B (enrdf_load_stackoverflow) | 1970-10-14 | 1971-10-12 | |
NL7114025A NL7114025A (enrdf_load_stackoverflow) | 1968-03-01 | 1971-10-12 | |
FR7136652A FR2109997A6 (enrdf_load_stackoverflow) | 1968-03-01 | 1971-10-12 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB48749/70A GB1300730A (en) | 1968-03-01 | 1970-10-14 | Improvement in containers for liquefied gases |
US00181711A US3830396A (en) | 1970-10-14 | 1971-09-20 | Containers for liquefied gases |
Publications (1)
Publication Number | Publication Date |
---|---|
US3830396A true US3830396A (en) | 1974-08-20 |
Family
ID=26266324
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00181711A Expired - Lifetime US3830396A (en) | 1968-03-01 | 1971-09-20 | Containers for liquefied gases |
Country Status (3)
Country | Link |
---|---|
US (1) | US3830396A (enrdf_load_stackoverflow) |
CA (1) | CA943883A (enrdf_load_stackoverflow) |
SE (1) | SE379320B (enrdf_load_stackoverflow) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3927788A (en) * | 1974-07-12 | 1975-12-23 | Kaiser Aluminium Chem Corp | Cryogenic liquid containment system |
US3974935A (en) * | 1973-09-08 | 1976-08-17 | Conch Lng (General Partnership) | Storage containers for liquefied gases |
FR2358337A1 (fr) * | 1976-07-13 | 1978-02-10 | Conch Int Methane Ltd | Conteneur pour le stockage en vrac ou le transport de liquides |
US4075264A (en) * | 1976-04-02 | 1978-02-21 | The Dow Chemical Company | Method of insulating a container |
US4169461A (en) * | 1977-10-27 | 1979-10-02 | Haug Henry W | Storge tank especially suitable for use in a solar heat system |
DE2936420A1 (de) * | 1979-09-08 | 1981-03-12 | Dyckerhoff & Widmann AG, 8000 München | Doppelwandiger behaelter fuer tiefkalte fluessigkeiten |
DE2936421A1 (de) * | 1979-09-08 | 1981-03-12 | Dyckerhoff & Widmann AG, 8000 München | Doppelwandiger behaelter fuer tiefkalte fluessigkeiten |
EP0039101A1 (en) * | 1980-04-25 | 1981-11-04 | Shell Internationale Researchmaatschappij B.V. | A heat-insulated container provided with a locating and/or supporting device |
FR2540967A1 (fr) * | 1983-02-11 | 1984-08-17 | Nord Mediterranee Chantiers | Navire de transport de gaz liquefie, procede et dispositif d'isolation thermique des cuves de celui-ci |
US20060131304A1 (en) * | 2004-12-08 | 2006-06-22 | Yang Young M | Liquid tank system |
US20070246473A1 (en) * | 2006-04-20 | 2007-10-25 | Korea Gas Corporation | Lng tank and vehicle with the same |
US20080053993A1 (en) * | 2006-09-01 | 2008-03-06 | Korea Gas Corporation | Structure for liquefied natural gas storage tank |
US20130048642A1 (en) * | 2009-10-29 | 2013-02-28 | Aker Engineering & Technology As | Supports for tanks |
US8783502B2 (en) * | 2009-10-29 | 2014-07-22 | Aker Engineering & Technology As | Supports anchored with ribs |
WO2014128414A1 (fr) * | 2013-02-22 | 2014-08-28 | Gaztransport Et Technigaz | Procede de fabrication d'une barriere etanche et thermiquement isolante pour cuve de stockage |
RU2592962C2 (ru) * | 2012-02-17 | 2016-07-27 | ЭлЭнДжи НЬЮ ТЕКНОЛОДЖИЗ ПТИ., ЛТД | Конструкция для содержания сжиженного природного газа (спг) |
US20180209586A1 (en) * | 2015-07-13 | 2018-07-26 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | Liquefied gas storage tank having insulation parts and method for arranging insulation parts |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB854708A (en) * | 1956-05-07 | 1960-11-23 | Constock Liquid Methane Corp | Improvements in or relating to ships for carrying liquefied gases |
US2993460A (en) * | 1958-05-29 | 1961-07-25 | California Research Corp | Tank support |
US3071094A (en) * | 1959-06-02 | 1963-01-01 | Anciens Chantiers Dubigeon Sa | Vessel for transporting liquefied hydrocarbons |
US3099362A (en) * | 1961-02-07 | 1963-07-30 | Conch Int Methane Ltd | Container for storing liquefied gases at very low temperatures |
US3112043A (en) * | 1962-03-12 | 1963-11-26 | Conch Int Methane Ltd | Container for storing a liquid at a low temperature |
US3305122A (en) * | 1964-09-04 | 1967-02-21 | Exxon Research Engineering Co | Keyed cargo container |
US3339515A (en) * | 1965-07-06 | 1967-09-05 | Phillips Petroleum Co | Atmospheric pressure storage and transportation of volatile liquids |
US3425583A (en) * | 1966-09-07 | 1969-02-04 | Mcmullen John J | Arrangement for keying liquefied gas storage tanks within a transport vessel |
US3595424A (en) * | 1969-02-24 | 1971-07-27 | Conch Int Methane Ltd | Containers for liquefied gases |
-
1971
- 1971-08-23 CA CA121,143A patent/CA943883A/en not_active Expired
- 1971-09-20 US US00181711A patent/US3830396A/en not_active Expired - Lifetime
- 1971-10-12 SE SE7112933A patent/SE379320B/xx unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB854708A (en) * | 1956-05-07 | 1960-11-23 | Constock Liquid Methane Corp | Improvements in or relating to ships for carrying liquefied gases |
US2993460A (en) * | 1958-05-29 | 1961-07-25 | California Research Corp | Tank support |
US3071094A (en) * | 1959-06-02 | 1963-01-01 | Anciens Chantiers Dubigeon Sa | Vessel for transporting liquefied hydrocarbons |
US3099362A (en) * | 1961-02-07 | 1963-07-30 | Conch Int Methane Ltd | Container for storing liquefied gases at very low temperatures |
US3112043A (en) * | 1962-03-12 | 1963-11-26 | Conch Int Methane Ltd | Container for storing a liquid at a low temperature |
US3305122A (en) * | 1964-09-04 | 1967-02-21 | Exxon Research Engineering Co | Keyed cargo container |
US3339515A (en) * | 1965-07-06 | 1967-09-05 | Phillips Petroleum Co | Atmospheric pressure storage and transportation of volatile liquids |
US3425583A (en) * | 1966-09-07 | 1969-02-04 | Mcmullen John J | Arrangement for keying liquefied gas storage tanks within a transport vessel |
US3595424A (en) * | 1969-02-24 | 1971-07-27 | Conch Int Methane Ltd | Containers for liquefied gases |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3974935A (en) * | 1973-09-08 | 1976-08-17 | Conch Lng (General Partnership) | Storage containers for liquefied gases |
US3927788A (en) * | 1974-07-12 | 1975-12-23 | Kaiser Aluminium Chem Corp | Cryogenic liquid containment system |
US4075264A (en) * | 1976-04-02 | 1978-02-21 | The Dow Chemical Company | Method of insulating a container |
FR2358337A1 (fr) * | 1976-07-13 | 1978-02-10 | Conch Int Methane Ltd | Conteneur pour le stockage en vrac ou le transport de liquides |
US4169461A (en) * | 1977-10-27 | 1979-10-02 | Haug Henry W | Storge tank especially suitable for use in a solar heat system |
DE2936421A1 (de) * | 1979-09-08 | 1981-03-12 | Dyckerhoff & Widmann AG, 8000 München | Doppelwandiger behaelter fuer tiefkalte fluessigkeiten |
DE2936420A1 (de) * | 1979-09-08 | 1981-03-12 | Dyckerhoff & Widmann AG, 8000 München | Doppelwandiger behaelter fuer tiefkalte fluessigkeiten |
EP0039101A1 (en) * | 1980-04-25 | 1981-11-04 | Shell Internationale Researchmaatschappij B.V. | A heat-insulated container provided with a locating and/or supporting device |
FR2540967A1 (fr) * | 1983-02-11 | 1984-08-17 | Nord Mediterranee Chantiers | Navire de transport de gaz liquefie, procede et dispositif d'isolation thermique des cuves de celui-ci |
EP0117828A1 (fr) * | 1983-02-11 | 1984-09-05 | CHANTIERS DU NORD ET DE LA MEDITERRANEE Société Anonyme dite: | Navire de transport de gaz liquifié, procédé et dispositif d'isolation thermique des cuves de celui-ci |
US20060131304A1 (en) * | 2004-12-08 | 2006-06-22 | Yang Young M | Liquid tank system |
US20070246473A1 (en) * | 2006-04-20 | 2007-10-25 | Korea Gas Corporation | Lng tank and vehicle with the same |
US7819273B2 (en) * | 2006-04-20 | 2010-10-26 | Korea Gas Corporation | Liquid natural gas tank with wrinkled portion and spaced layers and vehicle with the same |
US7717289B2 (en) * | 2006-09-01 | 2010-05-18 | Korea Gas Corporation | Anchor for liquefied natural gas storage tank |
US20100018225A1 (en) * | 2006-09-01 | 2010-01-28 | Korea Gas Corporation | Structure for liquefied natural gas storage tank |
US20080053993A1 (en) * | 2006-09-01 | 2008-03-06 | Korea Gas Corporation | Structure for liquefied natural gas storage tank |
US7938287B2 (en) * | 2006-09-01 | 2011-05-10 | Korea Gas Corporation | Structure for liquefied natural gas storage tank |
US20130048642A1 (en) * | 2009-10-29 | 2013-02-28 | Aker Engineering & Technology As | Supports for tanks |
US8708185B2 (en) * | 2009-10-29 | 2014-04-29 | Aker Engineering & Technology As | Supports for tanks |
US8783502B2 (en) * | 2009-10-29 | 2014-07-22 | Aker Engineering & Technology As | Supports anchored with ribs |
RU2592962C2 (ru) * | 2012-02-17 | 2016-07-27 | ЭлЭнДжи НЬЮ ТЕКНОЛОДЖИЗ ПТИ., ЛТД | Конструкция для содержания сжиженного природного газа (спг) |
US9676456B2 (en) | 2012-02-17 | 2017-06-13 | Lng New Technologies Pte., Ltd. | Arrangement for containment of liquid natural gas (LNG) |
FR3002514A1 (fr) * | 2013-02-22 | 2014-08-29 | Gaztransp Et Technigaz | Procede de fabrication d'une barriere etanche et thermiquement isolante pour cuve de stockage |
CN105026819A (zh) * | 2013-02-22 | 2015-11-04 | 气体运输技术公司 | 生产用于存储容器的密封隔热层的方法 |
WO2014128414A1 (fr) * | 2013-02-22 | 2014-08-28 | Gaztransport Et Technigaz | Procede de fabrication d'une barriere etanche et thermiquement isolante pour cuve de stockage |
RU2649168C2 (ru) * | 2013-02-22 | 2018-03-30 | Газтранспорт Э Технигаз | Способ изготовления герметизирующей теплоизолирующей стенки резервуара-хранилища |
US20180209586A1 (en) * | 2015-07-13 | 2018-07-26 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | Liquefied gas storage tank having insulation parts and method for arranging insulation parts |
US11428369B2 (en) * | 2015-07-13 | 2022-08-30 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | Liquefied gas storage tank having insulation parts and method for arranging insulation parts |
Also Published As
Publication number | Publication date |
---|---|
SE379320B (enrdf_load_stackoverflow) | 1975-10-06 |
CA943883A (en) | 1974-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3830396A (en) | Containers for liquefied gases | |
US3941272A (en) | Cryogenic transport | |
US3537416A (en) | Shipping container and method for transporting hydrocarbon fluids and the like | |
KR101863989B1 (ko) | 밀봉된 단열 탱크 | |
US2954003A (en) | Means for transportation of low temperature liquids | |
US3498249A (en) | Tanker vessel | |
US3367492A (en) | Insulation system | |
US3894372A (en) | Cryogenic insulating panel system | |
US4066184A (en) | Thermal insulation systems | |
US3692205A (en) | Drip pan lng tank | |
US3145680A (en) | Transport of liquefied gases | |
US3998350A (en) | Semi-membrane like container, heat-insulated fluid-tight tank embodying same and methods of making same | |
KR102651476B1 (ko) | Lng 저장탱크의 단열시스템 | |
US3298345A (en) | Double hulled ship | |
US3312076A (en) | Drip pan lng tank | |
US3457890A (en) | Concrete liquefied gas vessel | |
KR20220157393A (ko) | 밀폐 단열 탱크 | |
KR102614525B1 (ko) | Lng 저장탱크의 단열시스템 | |
US3566824A (en) | Marine transportation of liquified gases | |
US3490639A (en) | Containers for liquefied gases | |
US3922987A (en) | Liquefied gas tanker construction using stiffener members | |
CN117881919A (zh) | 用于液化气的储存设施 | |
US3363796A (en) | Insulated cargo container | |
US3339515A (en) | Atmospheric pressure storage and transportation of volatile liquids | |
US3536226A (en) | Self-supporting cargo tank with partially perforated sandwich panels |