US3825522A - Process for the preparation of self-extinguishing epoxy resins - Google Patents
Process for the preparation of self-extinguishing epoxy resins Download PDFInfo
- Publication number
- US3825522A US3825522A US00313904A US31390472A US3825522A US 3825522 A US3825522 A US 3825522A US 00313904 A US00313904 A US 00313904A US 31390472 A US31390472 A US 31390472A US 3825522 A US3825522 A US 3825522A
- Authority
- US
- United States
- Prior art keywords
- epoxy
- reaction
- resin
- epoxy resins
- epoxy equivalent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/02—Polycondensates containing more than one epoxy group per molecule
- C08G59/04—Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/20—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
- C08G59/22—Di-epoxy compounds
- C08G59/30—Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen
Definitions
- the present invention relates to a new class of selfextinguishing epoxy resins with high values of epoxy equivalent, and to a process for their manufacture.
- epoxy resin generally means those resinous products having more than one epoxy group per molecule, which are hardened by interaction of the epoxy groups with suitable hardening agents.
- epoxy resins are obtained industrially by reaction between polyphenols and halohydrins. Normally used for the purpose are 2,2'-bis(4-oxyphenyl) propane (bisphenol A) and epichlorohydrin, and epoxy resins are prepared which have high values of epoxy equivalent, using a twostage process.
- an intermediate epoxy product is prepared from epichlorohydrin and bisphenol A in the presence of caustic soda in equivalent quantity with respect to the epichlorohydrin.
- anintermediate epoxy product is obtained which is caused to react with a further quantity of bisphenol A until epoxy resins are obtained which have values of epoxy equivalent in excess of approximately 1,000.
- the bisphenol A can be wholly or partly replaced by thecorresponding halogenated products.
- brominated derivatives of bisphenol A such as for example beta-beta'-bis(3,5-dibromo- 4-oxyphenyl)propane, or the chlorinated derivatives such as for example beta, beta'-bis(3,5-dichloro-4-oxyphenyl) propane, may be used.
- the epoxy resins which have a high value of epoxy equivalent are used above all in the field of protective coatings, varnishes, adhesives and for the impregnation of fibres, or in printing compositions together with resin products of the phenol or amine type.
- the viscosity of the resin or of its relative solutions gives a measure of the ease with which the said resin may be used.
- the epoxy equivalent of an epoxy resin indicates the rate at which the actual resin hardens, in the sense that the greater the epoxy equiva- "ice lent, the more slowly the resin hardens when treated with a given hardening agent.
- An object of the present invention is to provide epoxy resins which have a high level of epoxy equivalent and a low level of viscosity.
- a further object of the present invention is to provide epoxy resins which also have self-extinguishing characteristics.
- a further object of the present invention is to suggest a process for the preparation of the said resins.
- solid and self-extinguishing epoxy resins having high epoxy equivalent values and which produce solutions having low viscosity levels are prepared by a process which consists essentially in reacting bisphenol A with an intermediate epoxy product obtained by dehydrochlorinating the products of reaction between epichlorohydrin and a halogenated and hydroxylated products belonging to the following classes of compound R1 represents chlorine or bromine;
- R2, R3, R4, R5, R6, R7, R8 represent hydrogen or chlorine or bromine
- X represents nitrogen or oxygen
- R represents an alkylene radical containing from 2 to 8 carbon atoms.
- Examples of compounds belonging to such a class are: bis(diethyleneglycol)octochlorodiphenyl; N,N' di(ethan- 2-o1)diamino-octochlorodiphenyl; the diols derived from decachlorodiphenyl, for example by reaction with glycols or with amino alcohols; the diols derived from octochlorodihydroxydiphenyl; the diols derived from tetrabromodiphenylmethane; the diols derived from tetrabromodianilinomethane.
- the said monomers will be generically referred to as halogenated monomers during the course of the present description.
- the halogenated monomer and epichlorohydrin are first caused to react in the presence of an alkylation catalyst, particularly boron trifiuoride, preferably in the form of etherated boron trifluoride.
- an alkylation catalyst particularly boron trifiuoride, preferably in the form of etherated boron trifluoride.
- the working temperature ranges from approximately C. to C., the epichlorohydrin being added slowly to the reagent mixture.
- the halogenated monomer is charged into the reaction vessel and boron trifluoride or other alkylation catalyst is added in quantities of 0.01 to 0.5% by weight with respect to the halogenated monomer itself.
- the epichlorohydrin is added over a period ranging from 8 to 16 hours, up to a total quantity of 3.0 to 6.5 moles for every mole of halogenated monomer, and during this period of time, the thermal effects of the reaction are monitored so as to maintain the temperature within the range of values described.
- an inorganic base is added to the mass, normally sodium or potassium hydroxide, in solid sub-divided form and in quantities of 2 to 3 moles for every mole of halogenated monomer.
- the inorganic base is dispersed homogeneously and is maintained in contact for a period of 4 to 8 hours at a temperature preferably of the order of 130 to 140 C.
- the mixture is subjected to extraction by means of an organic solvent such as toluene, xylene or acetone and from the extracted phase, the solvent is then evaporated, working at below atmospheric pressure.
- Epoxy equivalent 550 to 650; Viscosity at 25 C., at 40% in butyl Carbitolz150 to 250 cps; Gel time: 30 to 60 minutes.
- the gel time is determined by homogenising 100 parts by weight of resin and 3 parts by weight of triethylenetetramine at 60 C.
- the mixture comprising resin and hardener is maintained at 60 C. until it assumes a gelatinous appearance.
- the gel time is the time elapsing between homogenisation of the resin with the hardener at 60 C. and the time when the mixture assumes a gelatinous consistency.
- this intermediate product is caused to react with bisphenol A in order to obtain a solid epoxy resin with an epoxy equivalent above approximately 2,000, which produces solutions having low viscosity levels.
- the reaction is furthermore catalysed by tertiary amines or quaternary ammonium bases which are added in quantities of 0.2 to 1% by weight with respect to the intermediate epoxy product.
- the catalyst it is preferable to add the catalyst slowly during the reaction between the intermediate epoxy product and the bisphenol A, for example in periods ranging from 20 to 80 minutes.
- catalysts which belong to the said classes particularly useful for the purpose are benzyldimethylamine, trimethylamine, tetraethylammoniumhydroxide and benzyltrimethylammoniumhydroxide.
- Epoxy equivalent 2,500 to 5,000
- the epoxy resins prepared according to the process of the present invention have self-extinguishing characteristics which are a function of the quantity of halogen bonded to the halogenated monomer.
- the epoxy equivalent of the resins of the present invention is high and generally higher than approximately 2,000.
- the solubility of such resins in normal solvents used is high and the solutions produced have low values of viscosity.
- an epoxy resin obtained according to the process of the present invention having an epoxy equivalent equal to approximately 3,000, has a viscosity of the order of cps. at 25 C. in a 40% butyl Carbitol solution.
- An epoxy resin of the prior art obtained from bisphenol A and epichlorohydrin according to the process previously mentioned, in which there are two stages, the product having an epoxy equivalent equal to approximately 3,000, generally has a viscosity level of around 3,000 to 9,000 cps. at 25 C. in a 40% butyl Carbitol solution.
- the epoxy resins of the present invention are particularly useful in impregnation of for example glass or paper fibres, or for forming laminates with self-extinguishing properties.
- Example 1 Into a flask fitted with an agitator, reflux cooler and a thermometer are placed 638 g. bis(diethyleneglycol) octochlorodiphenyl) which are heated in a stream of nitrogen to a temperature of approximately 140 C. After approximately 10 minutes, 2.0 g. boron trifluoride in the form of boron tri-fluoride etherate are added, and the mixture is completely homogenised. 400 g. epichlorohydrin are added over a period equal to approximately 10 hours, the thermal effects being monitored while the temperature is maintained at the level stated. Then, while the mixture is maintained at to C., 92 g. of sodium hydroxide in the form of a solid powder are added and the mixture maintained at the said temperature for approximately 5 hours. Then, the reaction mass is extracted with xylene and finally the xylene is evaporated, a pressure being maintained which is below ambient pressure.
- Epoxy equivalent 570 to 620 Viscosity at 25 C., in 40% butyl Carbitol: to 200 cps.
- Example 2 Into a flask fitted with an agitator, cooler and thermometer are placed 400 g. of the resin described in Example 1.
- the mass is heated while being stirred and kept in a current of nitrogen, to a temperature of 130' to 140 C.
- Epoxy equivaent 3,230 Melting point (capillary): 52 C. Viscosity at 25 C., in 40% butyl Carbitol: 110 cps.
- Example 4 Into a flask fitted with an agitator, cooler and thermometer are placed 500 g. of the liquid epoxy product prepared as described in the first Example. The mass is heated under agitation and in a stream of nitrogen up to a temperature of 160 C. 95 g. of bisphenol A are added in finely sub-divided form and the mass is heated up to 180 C. 5 g. of benzyldimethylamine are added in 80 minutes, the temperature being maintained at the said level and during this period the characteristic features of the resin are monitored until they are constant. Thus, an epoxy resin is obtained which has the following characteristic features:
- Epoxy equivalent 2,450 Melting point (capillary): 58 to 60 Viscosity at 25 C., in 40% butyl Carbitol: 145 cps.
- Example 5 Into a flask fitted with an agitator, reflux cooler and thermometer are placed 450 g. of the epoxy product obtained in the first example.
- Epoxy equivalent 3,200 Melting point (capillary): 56 C. Viscosity at 25 C. in 40% butyl Carbitol: 90 cps.
- R represents chlorine or bromine
- R R R R R R R R represent hydrogen or chlorine or bromide
- X represents nitrogen or oxygen
- R represents an alkylene radical containing from 2 to 8 carbon atoms with epichlorohydrin in the presence of an alkylation catalyst, followed by treatment with an inorganic base and extraction of the resultant epoxy product with a solvent; by, in a second stage of reaction, reacting the intermediate epoxy product, after separation of the solvent, with quantity of 10 to 30 parts by Weight of 2,2-bis(4-oxyphenyl)propane for every parts by weight of the said intermediate product, at a temperature of 150 to 180 C. and for periods ranging from 2 to 4 hours in the presence of catalytic quantities of an organic compound chosen from among the tertiary amines and quaternary ammonium bases.
- halogenated monomer used is: bis(diethyleneglycol) octochlorodiphenyl; N,N'-di(ethan-2-ol) diamino octochlorodiphenyl, or the diols derived from the following compounds: decachlorodiphenyl, octochlorodihydroxydiphenyl, tetrabromodiphenylmethane, tetrabromodianilinomethane.
- Process according to Claim 1 characterised in that in the first stage of reaction the working temperatures range from to C. over a period ranging from 8 to 16 hours, with a molar ratio of epichlorohydrin to halogenated monomer of 3.0:1 to 6.5:1, the reaction being carried out in the presence of a quantity of 0.01 to 0.05% by weight with respect to the halogenated monomer, of an alkylation catalyst.
- Process according to Claim 1 characterised in that in the first stage of reaction, an inorganic base, is used in quantities of 2 to 3 moles for every mole of halogenated monomer, the working temperatures being from 130 to 140 C., the reaction time ranging from 4 to 8 hours.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Epoxy Resins (AREA)
- Laminated Bodies (AREA)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| IT32946/71A IT951954B (it) | 1971-12-27 | 1971-12-27 | Procedimento per la preparazione di resine epossidiche autoestinguenti |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3825522A true US3825522A (en) | 1974-07-23 |
Family
ID=11236197
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US00313904A Expired - Lifetime US3825522A (en) | 1971-12-27 | 1972-12-11 | Process for the preparation of self-extinguishing epoxy resins |
Country Status (11)
| Country | Link |
|---|---|
| US (1) | US3825522A (forum.php) |
| JP (1) | JPS5019160B2 (forum.php) |
| CA (1) | CA964798A (forum.php) |
| CH (1) | CH589677A5 (forum.php) |
| DE (1) | DE2262157C2 (forum.php) |
| ES (1) | ES410024A1 (forum.php) |
| FR (1) | FR2165987B1 (forum.php) |
| GB (1) | GB1385803A (forum.php) |
| IT (1) | IT951954B (forum.php) |
| NL (1) | NL173532C (forum.php) |
| YU (1) | YU34055B (forum.php) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3960981A (en) * | 1973-12-28 | 1976-06-01 | Societa' Italiana Resine S.I.R. S.P.A. | Mixtures of vinyl ester resins |
| US4877857A (en) * | 1988-05-05 | 1989-10-31 | The Dow Chemical Company | Preparation of epoxy resins |
| US5777007A (en) * | 1996-03-13 | 1998-07-07 | Tosoh Corporation | Brominated p-cumylphenol flame-retardants for resin composition |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4818650A (en) * | 1987-06-10 | 1989-04-04 | Xerox Corporation | Arylamine containing polyhydroxy ether resins and system utilizing arylamine containing polyhydroxyl ether resins |
| US5011939A (en) * | 1987-06-10 | 1991-04-30 | Xerox Corporation | Hydroxy functionalized arylamine compounds |
| DE19622216A1 (de) * | 1996-06-03 | 1997-12-04 | Kunstfaserwerk Erwin Hahl Gmbh | Monofile mit verbesserter Chemikalienbeständigkeit und höherem E-Modul (Steifheit) sowie Verfahren zu ihrer Herstellung |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR1321721A (fr) * | 1961-04-13 | 1963-03-22 | Ciba Geigy | éthers glycidyliques, procédés pour leur production et leurs emplois |
-
1971
- 1971-12-27 IT IT32946/71A patent/IT951954B/it active
-
1972
- 1972-11-28 CA CA157,659A patent/CA964798A/en not_active Expired
- 1972-11-28 GB GB5500572A patent/GB1385803A/en not_active Expired
- 1972-11-29 CH CH1739872A patent/CH589677A5/xx not_active IP Right Cessation
- 1972-12-11 US US00313904A patent/US3825522A/en not_active Expired - Lifetime
- 1972-12-14 NL NLAANVRAGE7216985,A patent/NL173532C/xx not_active IP Right Cessation
- 1972-12-19 DE DE2262157A patent/DE2262157C2/de not_active Expired
- 1972-12-21 FR FR7245790A patent/FR2165987B1/fr not_active Expired
- 1972-12-25 YU YU3225/72A patent/YU34055B/xx unknown
- 1972-12-26 JP JP47129651A patent/JPS5019160B2/ja not_active Expired
- 1972-12-26 ES ES72410024A patent/ES410024A1/es not_active Expired
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3960981A (en) * | 1973-12-28 | 1976-06-01 | Societa' Italiana Resine S.I.R. S.P.A. | Mixtures of vinyl ester resins |
| US4877857A (en) * | 1988-05-05 | 1989-10-31 | The Dow Chemical Company | Preparation of epoxy resins |
| US5777007A (en) * | 1996-03-13 | 1998-07-07 | Tosoh Corporation | Brominated p-cumylphenol flame-retardants for resin composition |
Also Published As
| Publication number | Publication date |
|---|---|
| DE2262157C2 (de) | 1982-02-18 |
| CH589677A5 (forum.php) | 1977-07-15 |
| YU34055B (en) | 1978-10-31 |
| NL7216985A (forum.php) | 1973-06-29 |
| DE2262157A1 (de) | 1973-07-26 |
| JPS4876996A (forum.php) | 1973-10-16 |
| JPS5019160B2 (forum.php) | 1975-07-04 |
| GB1385803A (en) | 1975-02-26 |
| ES410024A1 (es) | 1975-12-01 |
| FR2165987A1 (forum.php) | 1973-08-10 |
| YU322572A (en) | 1978-05-15 |
| IT951954B (it) | 1973-07-10 |
| NL173532C (nl) | 1984-02-01 |
| NL173532B (nl) | 1983-09-01 |
| FR2165987B1 (forum.php) | 1977-08-05 |
| CA964798A (en) | 1975-03-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US2924580A (en) | Divinyl benzene dioxide compositions | |
| US2951825A (en) | Glycidyl derivatives of amino phenols | |
| US2651589A (en) | Process for forming cured glycidyl ether resinous bonds between two solid surfaces | |
| EP3555170B1 (en) | Epoxy stabilization using substituted barbituric acids | |
| US4554342A (en) | Heat-curable compositions comprising an epoxy resin, an amine and a sulfonium salt | |
| JPH0635503B2 (ja) | ジエチルトルエンジアミン硬化剤系 | |
| US4396754A (en) | Rapid curing epoxy compositions | |
| US3488404A (en) | Diepoxy alkanes as epoxy diluents for polyglycidyl ethers of polyhydric phenols or epoxidized novolacs | |
| KR100571136B1 (ko) | 물에 영향을 받지 않는 에폭시 수지 경화촉진제인 노볼락 | |
| US3565861A (en) | Amine complexes of pf5,asf5,and sbf5 as latent curing agents for epoxy resins | |
| US3825522A (en) | Process for the preparation of self-extinguishing epoxy resins | |
| US3072606A (en) | Hardenable compositions comprising epoxide compounds and cyclic ethers or thioethers | |
| US4560739A (en) | Triglycidyl compounds of aminophenols | |
| US3403131A (en) | Epoxide resin-acid anhydride compositions containing a hydroxyalkylated aromatic amine accelerator | |
| US3036975A (en) | Rapid-curing epoxy resin compositions and method of making | |
| US2893978A (en) | Epoxide resins, etc. | |
| US3945971A (en) | Phenyl urea epoxy resin accelerator | |
| GB1492150A (en) | Resin compositions containing polyepoxides and uretdiones | |
| US3753917A (en) | Curing agent for epoxy resins to impart excellent solvent resistance | |
| JP2548355B2 (ja) | エポキシ樹脂硬化剤用ポリチオール | |
| US3207813A (en) | Novel polyepoxide compositions of matter and methods and steps for producing the same | |
| US2928794A (en) | Curing of polyepoxides | |
| US2947726A (en) | Epoxide resins | |
| US3781244A (en) | Process for preparing epoxidic resins | |
| US3271371A (en) | Cured diepoxy sulfone and polyfunctional amine compositions |