US3778038A - Method and apparatus for mixing and modulating liquid fuel and intake air for an internal combustion engine - Google Patents

Method and apparatus for mixing and modulating liquid fuel and intake air for an internal combustion engine Download PDF

Info

Publication number
US3778038A
US3778038A US00151373A US3778038DA US3778038A US 3778038 A US3778038 A US 3778038A US 00151373 A US00151373 A US 00151373A US 3778038D A US3778038D A US 3778038DA US 3778038 A US3778038 A US 3778038A
Authority
US
United States
Prior art keywords
fuel
air
zone
mixture
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00151373A
Inventor
J Eversole
L Berriman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dresser Industries Inc
Original Assignee
Dresser Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dresser Industries Inc filed Critical Dresser Industries Inc
Application granted granted Critical
Publication of US3778038A publication Critical patent/US3778038A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M9/00Carburettors having air or fuel-air mixture passage throttling valves other than of butterfly type; Carburettors having fuel-air mixing chambers of variable shape or position
    • F02M9/12Carburettors having air or fuel-air mixture passage throttling valves other than of butterfly type; Carburettors having fuel-air mixing chambers of variable shape or position having other specific means for controlling the passage, or for varying cross-sectional area, of fuel-air mixing chambers
    • F02M9/127Axially movable throttle valves concentric with the axis of the mixture passage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M19/00Details, component parts, or accessories of carburettors, not provided for in, or of interest apart from, the apparatus of groups F02M1/00 - F02M17/00
    • F02M19/08Venturis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M19/00Details, component parts, or accessories of carburettors, not provided for in, or of interest apart from, the apparatus of groups F02M1/00 - F02M17/00
    • F02M19/12External control gear, e.g. having dash-pots
    • F02M19/124Connecting rods between at least two throttle valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M7/00Carburettors with means for influencing, e.g. enriching or keeping constant, fuel/air ratio of charge under varying conditions
    • F02M7/12Other installations, with moving parts, for influencing fuel/air ratio, e.g. having valves
    • F02M7/18Other installations, with moving parts, for influencing fuel/air ratio, e.g. having valves with means for controlling cross-sectional area of fuel-metering orifice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S261/00Gas and liquid contact apparatus
    • Y10S261/56Variable venturi

Definitions

  • ABSTRACT A combustible mixture of air and minute fuel droplets is produced for supply to the cylinders of an internal combustion engine. This mixture is formed by accurately controlling both the atomization of fuel and the mass flow rate of air over substantially the entire operating range of the engine. These controls are accomplished by introducing liquid fuel into a stream of intake air and uniformly distributing the fuel in the air followed by passing the air and fuel mixture through a constricted zone to increase the velocity of the mixture to sonic. The sonic velocity air at the constricted zone divides the fuel into minute droplets that are uniformly entrained throughout the air stream.
  • the area of the constricted zone and the quantity of fuel introduced are adjustably varied in correlation with operating demands imposed upon the engine. Downstream from the constricted sonic zone, the air and fuel mixture is accelerated to supersonic velocity in a supersonic zone without imparting substantial turbulent flow thereto. Thereafter the mixture is decelerated to subsonic velocity in a subsonic zone to produce a shock zone where the fuel droplets entrained in the air are believed to be further subdivided and uniformly distributed throughout the combustible mixture before the mixture is supplied to the engine cylinders.
  • the supersonic and subsonic velocities occur in a gradually increasing cross-sectional area corresponding to that of a conical section having an apex angle in the range of about 6 to 18.
  • Operation of the engine with such a combustible mixture results in substantially reduced levels of undesirable exhaust emissions, and also permits operation of high compression ratio engines on relatively low octane fuel with good power and fuel economy characteristics. Additionally, misfire does not occur even when the engine is operated on rela tively lean air-fuel ratios.
  • the present invention relates generally to gasoline internal combustion engines and more particularly concerns a method and apparatus for mixing and modulating liquid fuel and intake air in order to reduce the undesirable exhaust emissions from such engines.
  • a carburetor connected to the intake manifold of the engine. While these carburetors differ considerably in detail, their overall operation is basically the same in that fuel is drawn from a float-controlled fuel reservoir through one or more small fuel jets by the pressure drop created as the air flows through a fixed venturi section formed in the throat of the carburetor. During normal operation the air flow through the carburetor and, hence, the amount of fuel drawn through the metering jets is controlled by a butterfly-valve-type throttle plate.
  • a vacuum in the intake manifold only slightly below threshold vacuum willjust produce sonic velocity through the throttle opening.
  • This condition which is referred to hereinafter as the unchoking point" occurs at about 12 in. Hg. for a typical carburetor.
  • Sonic velocity of the intake air through the throttle opening also occurs at manifold vacuums above the unchoking point, in other words, in the range of about 12 to 24 in. Hg. during normal operation.
  • the fuel is typically introduced through an idle jet located just below the lower side of the throttle plate when it is in the idle position.
  • an idle jet located just below the lower side of the throttle plate when it is in the idle position.
  • a rich air-fuel mixture is one that contains more than one pound of fuel for every 15.5 pounds of air and that a lean air-fuel mixture is one that contains less than one pound of fuel for every 15.5 pounds of air.
  • the principal air pollutants emanating from internal combustion engines have been identified as unburned hydrocarbons (I-IC), carbon monoxide (CO), and the oxides of nitrogen (N).
  • I-IC unburned hydrocarbons
  • CO carbon monoxide
  • N oxides of nitrogen
  • a further object of the invention is to provide a method and apparatus for mixing and modulating liquid fuel and intake air which is effective to finely divide and entrain the liquid fuel in the intake air and to form such a substantially uniform and homogeneous mixture, preferably without the fuel being completely vaporized, so that substantially complete combustion occurs each cycle in every cylinder and that, due to the nature of the mixture formed, misfire does not occur when operating at air-fuel ratios on the order of 20:1.
  • a related object of the invention is to provide a new and improved liquid fuel and intake air mixing and modulating apparatus and method of the above character which, due to the nature of the air-fuel mixture formed, results in operation of the engine with combustion taking place at lower temperatures and possibly somewhat differently to thereby reduce the production of the oxides of nitrogen at peak operating conditions and also permit a reduction in the fuel octane requirement even for high compression ratio gasoline engines.
  • Another object of the invention is to provide a method and apparatus for mixing and modulating liquid fuel and intake air which not only satisfies the foregoing objects over substantially the entire range of engine operating conditions but which also results in improved engine response and a decrease in fuel consumption for a given power output or an increase in power output for a given fuel consumption as compared with similar engines not equipped with the liquid fuel and intake air mixing and modulating apparatus of the present invention.
  • method and apparatus for producing a uniform combustible mixture of air and minute liquid fuel droplets for supply to the cylinders of an internal combustion engine.
  • Liquid fuel is introduced into a stream of intake air and uniformly distributed therein.
  • the velocity of the air and fuel mixture is substantially increased by passing it through a throat zone, and the fuel is minutely divided and uniformly entrained as droplets throughout the air at the throat zone.
  • the area of the throat zone and the quantity of fuel introduced into the stream of intake air are adjustably varied in correlation with operating demands imposed on the engine. Downstream from the throat zone, the air and fuel mixture is accelerated to supersonic velocity in a supersonic zone.
  • the mixture is decelerated to subsonic velocity in a subsonic zone to produce a shock zone where the fueldroplets are believed to be further subdivide'd and uniformly distributed throughout the combustible mixture.
  • the mixture is then supplied to the engine cylinders.
  • the supersonic and subsonic zones provide a gradually increasing cross-sectional area corresponding to that of a conical section having an apex angle in the range of about 6 to 18 degrees for efficient recovery of the kinetic energy of the supersonic velocity air and fuel mixture as static pressure.
  • the quantity of fuel delivered into the air stream may be controlled to provide a substantially constant air-tofuel ratio of the mixture over a wide range of engine conditions. Since the air flow is maintained at sonic velocity through the throat zone over a wide range of engine conditions, the mass flow rate of air being supplied to the engine is directly proportional to the crosssectional area of the throat zone. Thus, by controlling the rate of fuel delivered to the air stream in direct proportion to the area of the throat zone, the air-to-fuel ratio of the mixture supplied to the engine remains substantially constant.
  • FIG. 1A is a schematic perspective of the liquid fuel and intake air mixing and modulating device of the present invention installed on the intake manifold of a gasoline engine, illustrated here in phantom;
  • FIG. 1B is a diagrammatic view of the liquid and intake air mixing and modulating device of the present invention.
  • FIGS. 2A and B are somewhat exaggerated schematic illustrations of alternate throat sections for the liquid fuel and air mixing and modulating device shown in FIG. 1;
  • FIG. 3 is a vertical cross-section through one form of the liquid fuel and intake air mixing and modulating device of the present invention
  • FIGS. 4 and 5 are cross-sections substantially as seen along lines 44 and 5-5, respectively, in FIG. 3;
  • FIG. 6 is a vertical cross-section similar to FIG. 3 of a modified form of the liquid fuel and intake air mixing and modulating device of the present invention
  • FIGS. 7 and 8 are cross-sections substantially as seen along lines 7-7 and 88, respectively, in FIG. 6;
  • FIG. 9 is a plan view, with certain portions in sections, of another form of the liquid fuel and intake air mixing and modulating device of the present invention.
  • FIG. 10 is a front elevation, partially in section, of the device shown in FIG. 9;
  • FIGS. 11 and 12 are vertical cross-sections substantially as seen along lines 11-11 and 1212, respectively, in FIG. 9;
  • FIG. 13 is a view of the bottom of the device shown in FIG. 9;
  • FIG. 14 is a vertical cross-section, similar to FIG. 11, of an alternative embodiment of the present invention.
  • FIG. 15 is a section substantially as seen along line 1515in FIG. 14;
  • FIG. 16 is a schematic diagram of the fuel supply sys tem of the present invention.
  • FIG. 17 is a vertical cross-section, similar to FIG. 14, illustrating certain modifications in the device
  • FIGS. 18 and 19 are graphs containing plots of vacuum profiles across the throat of two of the modified devices illustrated in FIG. 17;
  • FIG. 20 is a vertical cross-section, similar to FIG. 14, illustrating certain additional modifications of the device
  • FIGS; 21 and 22 are graphs containing plots of vacuum profiles across the throat of two of the modified devices illustrated in FIG. 20;
  • FIG. 23 is a vertical cross-section similar to FIG. 14, illustrating certain additional modifications of the device.
  • FIG. 24 is a vertical cross-section, similar to FIG. 1 1, illustrating a modificationof this device.
  • FIG. 1A a liquid fuel and intake air mixing and modulating device 20 of the present invention illustrated schematically as installed on the intake manifold 21 of a conventional gasoline engine, shown here in phantom. While the engine illustrated is an inline 6-cylinder engine, the liquid fuel and intake air mixing and modulating device 20 of the present invention is not limited for use on such an engine. Rather, it should be understood that the present invention is equally applicable for use with gasoline engines having different cylinder numbers and arrangements such as, for example, but without limitation: 2, 4, 6, 8 and 12 cylinders in inline, V, horizontally opposed, and rotary arrangements.
  • the intake manifold 21 is provided with three branches 22, each of which serves the intake ports of a respective one of the pairs of front, rear and center cylinders.
  • the invention is not limited to the illustrated manifold arrangement and the manifold may be provided with a separate branch for each cylinder, if desired.
  • the liquid fuel and intake air mixing and modulating device 20 of the present invention includes an intake air duct 25 which is provided with means for selectively constricting the flow of intake air to significantly increase the velocity thereof prior to admitting the intake air into the intake manifold 21.
  • the illustrated means for constricting or throttling the flow of intake air includes a member 26 disposed concentrically and in axially movable relation to a converging section 27 of the intake air duct 25.
  • the movable member 26 and the converging section 27 of the duct 25 are formed with generally circular cross-sections so as to define therebetween a throat an annular orifice, the cross-sectional area of which is variable as the member 26 is moved, and which defines a uniform opening around its circumference for each position of the member 26. It will be understood, of course, that other forms of throat constrictions may also be employed without departing from the present invention.
  • FIG. 1B diagrammatically illustrates a mixing device 8 of the present invention for supplying a uniform combustible mixture of minute liquid fuel droplets and air to the intake manifold of an internal combustion engine.
  • Intake air is drawn through the device 8 from a converging intake air zone 9 in response to the intake manifold vacuum. As the air travels deeper into the intake air zone 9, its velocity is increased.
  • Liquid fuel 10 from lines 11 is introduced at 12 into the intake air stream and uniformly distributed therein before the mixture passes through a throat or constricted zone 13 located between an axially movable plug or modulator 14 and the adjacent wall structure.
  • the velocity of the air is increased to sonic in the constricted zone 13 to thereby minutely divide and uniformly entrain the fuel as droplets throughout the air stream.
  • the crosssectional area of the constricted zone 13 together with the quantity of fuel 10 introduced at 12 into the stream of air are adjustably varied in correlation with operating demands imposed upon the engine to which the mixture is supplied. Adjustment of the cross-sectional area of the constricted zone 13 is accomplished by axially moving the plug or modulator 14 in response to the engine demands while the quantity of fuel introduced is controlled by suitable valving 15.
  • shock zone 18 occurs at the transition between the supersonic and subsonic zones, 16 and 17,-respectively.
  • the kinetic energy of the high velocity intake air and entrained fuel is efficiently recovered as static pressure in the subsonic zone 17.
  • the supersonic and subsonic zones share common diverging walls 19 that provide a gradually increasing cross-sectional area corresponding to that ofa conical section having an apex angle in the range of 6 to 18 degrees.
  • Such recovery enables sonic air flow through the constricted zone 13 at all manifold vacuum levels of the engine down at least to five inches mercury vacuum. Such vacuum levels represent virtually the entire operating range of the engine.
  • unlike conventional carburetors because air is maintained at sonic velocity through the constricted zone the mass flow rate of air being supplied to the engine is directly proportional to the crosssectional area of the constricted zone.
  • the air-tofuel ratio of the mixture supplied to the intake manifold remains substantially constant.
  • the engine may be operated without misfire on a relatively lean and unvarying air-to-fuel ratio substantially in excess of those normally encountered in conventional carburetors.
  • the duct 25a is provided with an upper or upstream portion 27a of converging cross-section in the downstream direction with respect to the flow of intake air.
  • the point of maximum constriction of the duct 25a is represented here by a plane 280 passing transversely through the duct 25a and below the plane 28a the duct is provided with a portion 29a of diverging cross-section.
  • the axially movable member 26a is formed with a converging lower end portion having an angle of convergence less than the angle of convergence of the portion 27a of the duct 25a. Since both the converging portion 27a of the duct and the member 26a are preferably formed with circular cross-sectional shapes, there is formed therebetween a variable area annular orifice or throat zone located in the plane 28a.
  • the duct 25b is also provided with an upper or upstream portion 27b of converging cross-section in the downstream direction but here the axially movable member 26b is formed with a converging lower end portion having an angle of convergence greater than the angle of convergence of the portion 27b.
  • This arrangement provides that the point of maximum constriction in the duct 25b lies in a movable plane 28b which passes through the widest portion of the member 26b and intermediate the ends of the converging portion 27b. It will also be seen that, due to the differing angles of convergence of the member 26b and throat portion 27b, there is formed an annular section of diverging cross-section located in the duct 25b below the plane 28b.
  • the duct 25b is also preferably formed with a portion 29b of diverging cross-section downstream of the converging portion 27b with respect to the direction of flow. While the planes 28b and 28b are both shown as defined by sharp edges, it will be understood that these planes may have some thickness, on the order of about 0.1 inch, for example.
  • the member 26 and converging section 27 cooperate to define a throat to constrict the flow of intake air drawn through the duct 25 resulting in a significant increase in velocity of the intake air prior to its admission into the intake manifold 21.
  • the pressure in the intake manifold 21 is below atmospheric, i.e., a vacuum condition exists in the manifold. Generally this vacuum ranges between 6 and 24 inches of mercury vacuum depending on the engine speed and load conditions.
  • the intake manifold vacuum may, however, fall below 6 inches Hg. during rapid acceleration and may occasionally exceed 24 inches Hg. during rapid deceleration.
  • a diffuser By gradually increasing the cross-sectional area of the intake air duct below the point of maximum constriction of the throat, i.e., below the variable area throat zone, a diffuser is formed.
  • the cross-sectional area increases with distance from the throat constriction similar to that provided by a cone having an apex angle of about 6 to 18, preferably 8 to 12.
  • Such a diffuser section is shown in exaggerated form in the embodiments illustrated in FIGS. 18, 2A and 2B.
  • the gradual increase in cross-sectional area provided by the diffuser section enables a substantial portion of the kinetic energy of the high velocity intake air to be recovered as static pressure and this substantially lowers the intake manifold vacuum unchoking point at which sonic velocity through the throat is still achieved.
  • the liquid fuel and intake air mixing and modulating device of the present invention is effective to produce sonic velocity at the throat and supersonic velocity and a shock wave in the diffuser section over substantially the entire range of intake manifold vacuum conditions encountered in normal operation of the engine.
  • diffuser is used herein as descriptive of the divergent section of gradually increasing crosssectional area below the throat constriction, those skilled in the art will recognize that, technically speaking, the initial portion of this divergent section actually functions as a supersonic nozzle under the conditions just described.
  • a supersonic zone 16 is provided immediately downstream from the throat zone 13, and the velocity of the air and fuel mixture is accelerated to supersonic velocity in the supersonic zone when the manifold vacuum is above the unchoke point.
  • the manifold vacuum is below the unchoke point, supersonic velocity no longer exists in zone 16.
  • the supersonic zone 16 connects with a subsonic zone 17 in the gradually increasing cross-sectional area 19 below the throat zone 13.
  • the transition from supersonic to subsonic velocity produces a non-turbulent shock zone 18 when the manifold vacuum is above the unchoke point, and the fuel droplets are believed to be further subdivided and distributed throughout the air as they pass through the shock zone.
  • liquid fuel is introduced substantially uniformly into the flow pathof the intake air in a fuel delivery zone at or before the point of maximum constriction of the throat of the mixing and modulating device 20.
  • the liquid fuel is finely divided and entrained in the high velocity intake air.
  • the velocity of air at the throat is at sonic velocity, a substantial and useful portionof the finely divided fuel remains entrained in the intake air as it passes through the intake manifold and into the cylinders of the engine.
  • an otherwise conventional gasoline engine fitted with the liquid fuel and intake air mixing and modulating device 20 of the present invention produces significantly lower levels of undesirable exhaust emissions than the same engine with its normal carburetor.
  • a 1963 Rambler American 220 with a six-cylinder inline engine of 197 cubic inch displacement and an 8.7:1 compression ratio was tested for exhaust emissions when equipped with its standard one barrel carburetor and when equipped with a liquid fuel and intake air mixing and modulating device of the present invention.
  • the car was tested on a standard Clayton chassis dy- 'namom'eter with a normal road load effectively applied at the rear wheels of the car.
  • Hydrocarbon exhaust emissions in parts per million were continuously monitored with a Beckman non-dispersive infra-red spectrometer sensitized to hexane.
  • the percentage of free oxygen in the exhaust was also continuously monitored with a Beckman paramagnetic oxygen analyzer.
  • the percentage of carbon monoxide in the exhaust was periodically spot checked with a Bacharach carbon monoxide analyzer.
  • a modified Saltzman solution was used to periodically detennine the oxides of nitrogen present in the exhaust in parts per million.
  • Table l for operation of the car at both 30 and 50 mph. In each case, the figures presented represent the average of several test samples.
  • the liquid fuel and intake air mixing device A of the present invention which was used on the Rambler car engine for the above tests is illustrated in more detail in FIGS. 3-5.
  • the device A generally indicated at 30, includes an intake air duct 31 having a portion 32 converging in the downstream direction with respect to the flow of intake air.
  • an axially movable throat modulator 33 is disposed coaxially in the duct 31.
  • the modulator 33 is formed with a converging lower end portion 34 which together with the lower end of the converging portion 32 form a throat in the form of a variable area annular orifice 35 (see FIG. 5).
  • Intake air is drawn into the duct 31 through an intake conduit 36 which projects tangentially through a cover 37 over the large end of the duct.
  • the intake air then flows through the duct and the converging portion 32 where the flow is constricted by the modulator 33 to substantially increase the velocity of the intake air prior to its passing through a discharge conduit 38 and into the intake manifold of the engine.
  • the duct 31 includes a diverging portion 39 located downstream of the point of maximum constriction or throat 3S and in this regard the arrangement of the device 30 is generally similar to that schematically illustrated in FIG. 2A.
  • Liquid fuel is supplied to the mixing and modulating device 30 illustrated in FIGS. 35 by means of a fuel nozzle 40.
  • the fuel nozzle 40 projects axially into the duct 31 through the cover 37 and the discharge end of the nozzle is centered in the duct well above the point of maximum constriction of the throat.
  • the liquid fuel is preferably sprayed into the duct 3l'from the discharge end of the nozzle in a substantially symmetrical pattern.
  • the illustrated nozzle 40 is of the air aspirating type and includes a baffle 41 located at right angles to the discharge end of the nozzle to symmetrically distribute the liquid fuel in a generally radial direction.
  • the nozzle was supplied with air under pressure of about 40 psi and the flow of fuel through the nozzle was regulated by a valve (not shown).
  • the duct 31 and throat 35 are preferably mounted with their axes oriented substantially vertically.
  • the liquid fuel which is sprayed from the nozzle 40 and reaches the inner wall of the duct 31, runs down the sloping wall of the converging portion in a generally uniform manner to the point of maximum constriction or throat 35 defined between the portion 32 and the modulator 33.
  • the high velocity air strips the liquid fuel film from the wall and finely divides and entrains the fuel in the intake air.
  • the modulator 33 is axially movable.
  • the modulator 33 is mounted on a control rod 45 threadably received in a boss 46 formed on the discharge conduit 38.
  • a knurled knob 47 is provided on the lower end of the rod 45 for conveniently turning the rod to raise or lower the modulator 33 relative to the throat 35 and thus increase or decrease the area of the annular orifice.
  • FIGS. 6-8 Another embodiment of the mixing and modulating device B of the present invention is illustrated in FIGS. 6-8.
  • this device B indicated generally at 50 is similar to the device A illustrated in FIGS. 3-5 and like reference numerals have been used to indicate the duct 31, the cover 37, the tangential intake passage 36 and the fuel nozzle 40.
  • the converging portion 52 and the modulator 53 of this embodiment follow the schematic arrangement shown in FIG. 28 rather than that shown in FIG. 2A.
  • the throat or point of maximum constriction, in the form of an annular orifice 54 defined between the converging portion 52 and modulator 53 is not at a fixed location as in the FIG. 3 embodiment, but rather is located in movable plane (represented by the section line 8-8 in FIG. 6) which passes through the widest portion of the tapered lower end of the modulator 53.
  • the mixing and modulating device 50 shown in FIGS. 6-8 employs a different means for raising and lowering the modulator 53 in the throat 54 than the device 30 shown in FIG. 3.
  • the raising and lowering means is in the form of a crank arm 55 from which the modulator 53 is suspended by a link 56.
  • the crank arm 55 is carried on a cross shaft 57 projecting through the duct 31 and another crank arm 58 at one end of the cross shaft is provided for regulating the movement of the modulator 53.
  • This arrangement not only permits more convenient control of the movement of the modulator 53, but also, permits the modulator position control linkage to be coupled to the fuel control valve (not shown) in order to coordinate the quantities of both liquid fuel and intake air introduced into the engine.
  • a liquid fuel and intake air mixing and modulating device B of the type illustrated in FIGS. 6-8 was also tested on the 1963 Rambler automobile discussed above. The results of these tests, which again represent the averages of several samples, are presented below in Table II.
  • liquid fuel and intake air mixing and modulating device of the present invention produces such significant reductions in the undesirable exhaust emissions is due primarily to two correlated factors, namely, the nature and the uniformity of the entrained fuel and intake air mixture produced by the device.
  • the nature and uniformity of this air-fuel mixture greatly reduces the cylinder to cylinder and cycl to cycle variations that tend to produce misfires and incomplete combustion in conventional carburetor systems.
  • the air-fuel mixture which may be utilized in the present invention is substantially leaner than those heretofore employed.
  • carburetors In order to decrease the production of unburned hydrocarbons and carbon monoxide, carburetors have recently been set to provide air-fuel mixtures close to or slightly greater than the stoichiometric ratio. While this has been effective to reduce hydrocarbon and carbon monoxide emissions due to more complete combustion of the air-fuel mixture it has also increased the production of the oxides of nitrogen as a result of the higher combustion temperatures. In fact, it has been found that production of the oxides of nitrogen are highest at slightly leaner than stoichiometric air-fuel ratios.
  • the engine can be run on air-fuel mixtures much leaner than stoichiometric without misfiring which usually results from intermittently exceeding the lean limits of the air-fuel ratio on a cylinder to cylinder or cycle to cycle basis.
  • An air-fuel ratio of 20:1 provides approximately 30 percent more oxygen for combustion than is available at the stoichiometric ratio.
  • the exhaust gas will contain about percent free oxygen.
  • this free oxygen with its associated quota of nitrogen, has been found to be associated with a reduction in the peak combustion temperature and a reduction in the formation of the oxides of nitrogen.
  • the fuel need not be vaporized outside the engine cylinders
  • the air-fuel mixture delivered'to the cylinders can be cooler, and is more dense for this reason, and also it is more dense because the finely divided liquid fuel displaces less volume than does vaporized fuel. lt will be appreciated, of course, that a denser air-fuel charge produces more power than a less dense one. Thus, the power output of the engine is increased from this factor.
  • the temperature of the air-fuel charge at the end of compression in the present invention is also lower than that in conventional engines which depend upon heating the intake air to vaporize the fuel.
  • the lower final compression temperature in the present invention is due to the lower temperature of the air-fuel mixture initially drawn into the cylinders as explained above.
  • the final compression temperature in the present invention is further reduced by virture of the use of some of the heat of compression to vaporize fuel within the cylinders.
  • the combustion temperature will also be lower in the present invention as compared to conventional system. As noted above, less oxides of nitrogen are produced at lower combustion temperatures.
  • the lower compression temperature also appears to have a bearing on the octane requirement of the fuel for a given engine. Since the compression temperature is lower, the air-fuel charge for an engine of a given compression ratio is less likely to self-ignite. Thus, the same fuel can be used in higher compression ratio engines or a lower octane fuel can be used in a given compression ratio engine. The latter, of course, permits a savings in fuel costs because the lower octane fuel is normally sold at a price below that of the higher octane premium fuel.
  • the nature of the air-fuel charge of the present invention is also believed to result in lowering the octane requirement of the fuel. Hence, this stems from a modification of the combustion process resulting from the air-fuel charge as formed by the mixing and modulating device of the present invention. It has been found for example that, in a 1963 Buick V-8 engine of 215 cubic inch displacement having a 1 1:1 compression ratie, the present invention produces excellent results both in terms of power and low exhaust emissions on unleaded regular gasoline of about 84-86 octane rating as well as regular grade leaded gasoline of about 91-93 octane rating. On the other hand, this engine when equipped with its regular 4-barrel carburetor required leaded premium grade gasoline of about 98-100 octane rating.
  • this embodiment of the device C indicated generally at 60, like the two previously described embodiments and 30, includes a throat insert 61 defining a converging portion 62 and a modulator element 63 between which there is defined a throat in the form of an annular orifice 65.
  • a throat insert 61 defining a converging portion 62 and a modulator element 63 between which there is defined a throat in the form of an annular orifice 65.
  • the modulator 63 is in its uppermost position in the insert 61 and the orifice has its greatest crosssectional area.
  • the modulator 63 is provided with a lower converging end portion 64 which has an angle of convergence more than the angle of convergence of the portion 62.
  • the respective angles of convergence of the modulator 63 and of the portion 62 are 44 and 28.
  • these two elements thus define a diffuser section to convert a substantial portion of the kinetic energy of the high velocity air to static energy thus permitting sonic air velocity through the orifice over an extended range of intake manifold vacuum conditions.
  • the throat insert 61 is V I 0 I TABLE V HC CO N01 02 Fuel p.p.m. percent p.p.m. percent A/F m.p.g.
  • the fuel was introduced into the device as a spray through the nozzle 40 with approximately 40 psi air pressure used to aspirate the fuel from the nozzle. It has been found, however, that it is not essential that the fuel be sprayed into the device. As shown below in Table VI, the Buick engine was also tested with approximately 20 hp applied at-the rear wheels to further explore the efficiency of the present invention.
  • Liquid fuel is supplied to the device 60 through a 60 conduit 68 connected to an annular body 69 in which TABLE VI HC CO NO, 0 Power Fuel p.p.m. percent p.p.m. percent HP.
  • the throat insert 61 is mounted.
  • the body 69 is formed with an annular groove 70 comlmunicating with the conduit 68 (see FIGS. 9 and 10) to distribute the fuel around the outside of the insert 61.
  • Above the groove under pressure by a pump 130 (FIG. 16) to a fuel regulating valve 100 connecting the supply line 68 to the body 69 of the device.
  • the valve 100 includes a metering orifice 101 and a tapered needle 102 which regu- 70, the body 69 is formed with an enlarged bore provid- 5 lates the flow of fuel through the orifice.
  • the needle is ing a clearance space 71 between the body 69 and the reciprocally mounted in a packing gland 103 of valve insert 61. The fuel flows from the groove 70 up through 100.
  • the high velocthe link 105 is provided with a slot 108 which receives ity ajr St l'igs tlg liguid fueljrggrthe wall and er trains a pin 109 on the control link 81 and at the other end it in finely divided form in the intake air.
  • the velocity the link has a slot 110 which receives a pin 111 secured of the intake air is then reduced substantially as it in a block 112 reciprocally mounted in a guide channel passes through the diffuser section of the device 60 and 1 13 defined in a portion of the frame 99.
  • the link 105 rotates ful portion of the finely divided fuel remains entrained bout pin 1 1 and mO eS the needle alve 102 to the in the intake air as it passes into the engine cylinders. right, decreasing the opening through the metering ori- To regulate the degree of restriction of the annular fice 101. orifice 65, the modulator 63 is mounted for axial move- To adjust the fuel flow for a given setting of the modrnent in the throat insert 61. As seen in FIGS. 941 the ulator. he thr en 10 0f he needle can be modulator 63 is centered in the throat insert 61 by a ed in Or Out O the block 106 to decrease or inweb 75 connected to the upper end of the body 69.
  • the rate modulator carries a ball bearing type nut 76 which reof change of fuel flow with changes in the Position of ceives the threaded end of an operating rod 77.
  • Rotathe hicduietcl' y also be effected y chahgihg the tion of the modulator 63 is prevented by a pin 78 excation of the Pivot P 111 about which the link 105 tending downwardly from the web 75 into an opening This is accomplished y turning a screw 115 in the upper portion of the modulator.
  • the ball nut 76 causes the modulator 63 to in an end Plate 116 cf the frame y changing the move u or dow d di on h di i Ofrotapivot point of the link 105 the amount of movement of tion of the rod, thus changing the cross-sectional area the heedie 102 is changed i'eiative to the control link of the annular orifice 65.
  • Apiston 124 in the cylmechanism 80 The shaft carries another gear 85 that inder carries a rack 125 engageable with the gear 85. meshes with a gear 86 on another shaft 87. Anoth As the vacuum at the port increases, the piston 124 gear 88 on shaft 87 in turn meshes with a gear 89 on moves the rack in a direction to lift the modulator a shaft 90 the lower end of which carries a sprocket 91 45 6 d thereby reduces the vacuum. This permits a (see FIG. 12).
  • the lower end of the control rod 77 also much O er force to be applied to the control link 81 carries a sprocket 92 which is coupled to the sprocket to adjust the Position of the modulator 91 by a suitable chain 93 (see FIG. 13).
  • the modulator IGS. 9-13 has been successfully applied to the engine 63 is moved down as seen in FIG. 11 a d vice ver 50 of a 1970 Ford Torino.
  • This engine has a displacement
  • It in- Iator are adjustably fixed b means of pins 95 nd 96 cludes a four-barrel carburetor as standard equipment on the link which abut set screws 97 and 98 on the and premium grade fuel is recommended.
  • throat insert 61d and the modulator 63d were fabricated to function in accordance with the design schematically shown in FIG. 2A.
  • the throat or point of maximum constriction in the form of an annular orifice 65d defined between the throat insert 61d and modulator 63d, is located in a fixed plane, represented by section line -15 in FIG. 14.
  • the angle of convergence of the modulator is 30 and that for the throat insert 61d is 100 above the orifice 65d and 10 below the orifice.
  • the throat insert 61d and the modulator 63d cooperate to form a diffuser section of gradually increasing cross-sectional area downstream of the throat.
  • the vacuum advance mechanism When the vacuum advance mechanism is deactivated, the ignition timing is varied with engine speed by a centrifugal advance mechanism between 4 BTDC at idle and 20 BTDC at 50 mph. As shown in Table XI deactivating the vacuum advance mechanism results in cutting the HC and NO, emissions approximately in half during the seven-mode hot cycle tests when the engine is equipped with its standard four-barrel carburetor.
  • fuel is drawn from the fuel tank by an electric fuel pump 131) set to produce a pressure of 6.5 psi in a supply line 131.
  • the fuel passes through a filter 132 connected between the supply line 131 and a fuel feed line 133.
  • a return line 134 is also connected to the filter 132 through a restriction 135 such that fuel in excess of engine demand is constantly filtered and returned to the fuel tank.
  • Branch line 136 includes a constant pressure regulator 138 set at 4.5 psi and a metering valve 139 controlled by engine manifold vacuum by a diaphragm actuator 140. Excess fuel delivered to the metering valve is returned to the fuel tank through return line 141.
  • Branch line 137 includes three constant pressure regulators 142-144 connected in series and set at 2.5 psi, 2.0 psi and 1.5 psi, respectively.
  • a bypass line 145 Connected between regulators 142 and 143 and the downstream end of branch line 137 is a bypass line 145 having a solenoid valve 146.
  • Another bypass line 147 with a solenoid valve 148 is connected between regulators 143 and 144 and the downstream end of branch line 137.
  • a temperature switch 149 and a pressure switch 150 are connected in parallel to solenoid 146 and a temperature switch 151 and pressure switch 152 are connected in parallel to solenoid valve 148.
  • the temperature switches 149 and 151 are disposed to sense cooling water in the engine jacket and are set to open at 85F and 90F, respectively.
  • the pressure switches 150 and 152 sense manifold vacuum and are set to open at 9 inches and inches of mercury vacuum, respectively.
  • An oil pressure switch 153 set to remain open until oil pressure is detected is connected in series between ground and each of the switches 149-152.
  • a source of electrical potential, such as a 12 volt battery is connected to the other end of the coil of each of the solenoid valves 146 and 148 to complete the respective electrical circuits.
  • bypass line 155 is connected between pressure regulator 138 and a point in the delivery line 68 between the needle valve 100 and the mixing and modulating unit 60.
  • the bypass 155 includes a pressure accumulator 157 and a pair of spring loaded check valves 158 and 159, one on either side ofthe accumulator.
  • the primary path of fuel flow to the unit 60 is through branch line 137 and pressure regulators 142-144 which deliver fuel to the needle valve 100.
  • branch line 137 The primary path of fuel flow to the unit 60 is through branch line 137 and pressure regulators 142-144 which deliver fuel to the needle valve 100.
  • additiorial fuel is supplied to the needle valve 100 through bypass line 145 until the engine water temperature reaches F. and then through bypass line 147 until the water temperature reaches F. Thereafter primary fuel is delivered through branch line 137, passing through all three pressure regulators 142-144.
  • a small quantity of supplementary fuel is also delivered to the modulator 60 from the accumulator 157.
  • Check valve 158 is set to open at approximately 4 psi to supply the accumulator, which is in the form of a small piston and cylinder combination, from branch line 136.
  • the other check valve 159 is set to open at approximately 6 psi so that there is no flow through the accumulator until its piston is advanced by the throttle linkage increasing the pressure within the accumulator to above 6 psi.
  • W n V In the illustrated fuel control system, additional fuel is also supplied to the unit 60 through bypass lines and 147 when the engine is under load and the manifold vacuum drops below 9 and 10 inches I-Ig., respectively.
  • the liquid fuel is supplied to the mixing and modulating device of the present invention in a fuel delivery zone at or before the point of maximum constriction defined between the throat insert and the modulator. This insures that the liquid fuel is subjected to and finely divided by the shearing action of the high velocity air flow which increases to sonic at the throat zone and supersonic just downstream of the throat in the diffuser.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Exhaust Silencers (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Control Of The Air-Fuel Ratio Of Carburetors (AREA)
  • Pressure-Spray And Ultrasonic-Wave- Spray Burners (AREA)

Abstract

A combustible mixture of air and minute fuel droplets is produced for supply to the cylinders of an internal combustion engine. This mixture is formed by accurately controlling both the atomization of fuel and the mass flow rate of air over substantially the entire operating range of the engine. These controls are accomplished by introducing liquid fuel into a stream of intake air and uniformly distributing the fuel in the air followed by passing the air and fuel mixture through a constricted zone to increase the velocity of the mixture to sonic. The sonic velocity air at the constricted zone divides the fuel into minute droplets that are uniformly entrained throughout the air stream. The area of the constricted zone and the quantity of fuel introduced are adjustably varied in correlation with operating demands imposed upon the engine. Downstream from the constricted sonic zone, the air and fuel mixture is accelerated to supersonic velocity in a supersonic zone without imparting substantial turbulent flow thereto. Thereafter the mixture is decelerated to subsonic velocity in a subsonic zone to produce a shock zone where the fuel droplets entrained in the air are believed to be further subdivided and uniformly distributed throughout the combustible mixture before the mixture is supplied to the engine cylinders. The supersonic and subsonic velocities occur in a gradually increasing cross-sectional area corresponding to that of a conical section having an apex angle in the range of about 6* to 18*. Operation of the engine with such a combustible mixture results in substantially reduced levels of undesirable exhaust emissions, and also permits operation of high compression ratio engines on relatively low octane fuel with good power and fuel economy characteristics. Additionally, misfire does not occur even when the engine is operated on relatively lean air-fuel ratios.

Description

[[ States Eversole et a1.
aten [191 1 Dec. 11, 197
N.Y.; Lester P. Berriman, Irvine, Calif.
[73] Assignee: Dresser Industries, Inc., Dallas, Tex.
[22] Filed: June 9, 1971 [21] Appl. No.: 151,373
Related US. Application Data [63] Continuation-impart of Ser. No. 17,086, March 6,
1970, abandoned.
[52] U.S. Cl. 261/50 R, 261/34 A, 261/36 A, 261/39 D, 261/62, 261/69 R, 261/79 R,
261/112, 261/D1G.56, 123/119 R [51] lint. C1. lFOZm 9/12 [58] Field ofSearch ..261/DIG. 56-63, 62, 112, 811. 9.315.05 /1 R [56] References Cited UNITED STATES PATENTS 1,148,247 7/1915 Moore 261/D1G. 64 1,212,986 1/1917 Moore 261/DIG. 56 1,277,963 9/1918 Lovejoy 261/62 1,378,055 5/1921 Pusey 261/D1G. 63 1,441,992 l/l923 Meden 261/62 1,626,085 4/1927 Henriot 261/62 2,136,959 11/1938 Winfield 261/36 A 2,247,189 6/1941 De Guyon.... 261/51 2,650,081 8/1953 Rockwell 261/51 3,085,793 4/1963 Pike et al..... 261/112 3,282,572 11/1966 Karlovitz... 261/65 3,570,824 3/1971 Strohm 261/DIG. 56 3,143,401 8/1964 Lambrecht 261/76 FOREIGN PATENTS OR APPLICATIONS 359,408 6/1906 France 261/62 26,527 4/1923 France..... 261/62 453,996 9/1936 Great Britain 261/62 551,574 3/1943 Great Britain 261/112 84,114 9/1956 Netherlands.... 261/50 A 196,380 4/1923 Great Britain 261/62 197,825 5/1923 Great Britain 261162 OTHER PUBLICATIONS Mavis et al., Univ. of Iowa Studies in Engr., Bul1., No.
13, 1938, TA 7.172, Pgs. 1-7.
Primary Examiner-Tim R. Miles Att0rneyConnolly, Beck, Hazelwood, Mayer, Rubin, Sheppard [57] ABSTRACT A combustible mixture of air and minute fuel droplets is produced for supply to the cylinders of an internal combustion engine. This mixture is formed by accurately controlling both the atomization of fuel and the mass flow rate of air over substantially the entire operating range of the engine. These controls are accomplished by introducing liquid fuel into a stream of intake air and uniformly distributing the fuel in the air followed by passing the air and fuel mixture through a constricted zone to increase the velocity of the mixture to sonic. The sonic velocity air at the constricted zone divides the fuel into minute droplets that are uniformly entrained throughout the air stream. The area of the constricted zone and the quantity of fuel introduced are adjustably varied in correlation with operating demands imposed upon the engine. Downstream from the constricted sonic zone, the air and fuel mixture is accelerated to supersonic velocity in a supersonic zone without imparting substantial turbulent flow thereto. Thereafter the mixture is decelerated to subsonic velocity in a subsonic zone to produce a shock zone where the fuel droplets entrained in the air are believed to be further subdivided and uniformly distributed throughout the combustible mixture before the mixture is supplied to the engine cylinders. The supersonic and subsonic velocities occur in a gradually increasing cross-sectional area corresponding to that of a conical section having an apex angle in the range of about 6 to 18. Operation of the engine with such a combustible mixture results in substantially reduced levels of undesirable exhaust emissions, and also permits operation of high compression ratio engines on relatively low octane fuel with good power and fuel economy characteristics. Additionally, misfire does not occur even when the engine is operated on rela tively lean air-fuel ratios.
17 Claims, 26 Drawing Figures Pmimwnw w 3. Us. 038
' smear 1 or a METHOD AND APPARATUS FOR MIXING AND MODULATING LIQUID FUEL AND INTAKE AIR FOR AN INTERNAL COMBUSTION ENGINE RELATED APPLICATIONS This application is a continuation-in-part application of US. application Ser. No. 17,086, filed on Mar. 6, 1970, now abandoned.
BACKGROUND OF THE INVENTION The present invention relates generally to gasoline internal combustion engines and more particularly concerns a method and apparatus for mixing and modulating liquid fuel and intake air in order to reduce the undesirable exhaust emissions from such engines.
In nearly all gasoline engines used in automotive applications today, the fuel and air are metered and mixed by a carburetor connected to the intake manifold of the engine. While these carburetors differ considerably in detail, their overall operation is basically the same in that fuel is drawn from a float-controlled fuel reservoir through one or more small fuel jets by the pressure drop created as the air flows through a fixed venturi section formed in the throat of the carburetor. During normal operation the air flow through the carburetor and, hence, the amount of fuel drawn through the metering jets is controlled by a butterfly-valve-type throttle plate. However, because the air flow through the carburetor varies markedly during different engine operating conditions, such as: idle, acceleration, full throttle, and deceleration, conventional carburetors are commonly provided with separate idle jets, acceleration pumps, and multiple venturi sections. Even so, the metering function of the carburetor falls short of providing the desired air-fuel mixture to the engine at all operating conditions and the mixing function performed by the carburetor is even worse.
Except at idle, essentially all of the mixing in a conventional carburetor occurs as the fuel and air pass together through the throttle opening. Assuming atmospheric pressure of 29.9 inches of mercury (in. Hg.) exists at the carburetor inlet, the air flow through the throttle opening will be at sonic velocity when the pressure at the throttle opening is 53 percent of atmospheric. This is equal to a pressure of 15.6 in. Hg. and is referred to as the critical pressure. However, since it is common to measure the condition within the intake manifold in terms of inches of mercury vacuum rather than pressure, this critical pressure is equal to 14.3 in. Hg. vacuum (29.9 15.6 14.3) and this condition will be hereinafter referred to as the threshold vacuum. Moreover, due to the shapes of the carburetor throat and throttle plate, a vacuum in the intake manifold only slightly below threshold vacuum willjust produce sonic velocity through the throttle opening. This condition, which is referred to hereinafter as the unchoking point", occurs at about 12 in. Hg. for a typical carburetor. Sonic velocity of the intake air through the throttle opening also occurs at manifold vacuums above the unchoking point, in other words, in the range of about 12 to 24 in. Hg. during normal operation.
When the velocity of the intake air through the throttle opening is at sonic velocity, the high velocity air divides the liquid fuel into fine droplets. However, because the throttle plate slopes across the carburetor throat below the fuel jet, nearly all of the fuel and about half of the air flows through the lower throttle opening but only a small amount of fuel passes with the other half of the air through the upper throttle opening. Although some mixing of these two streams of fuel and air does occur below the throttle plate, the asymmetrical distribution of the fuel in the intake air is substantially never completely overcome.
At manifold vacuum conditions below the unchoking point, the mixing of fuel and air by the carburetor is even worse. This normally occurs at all manifold vacuum conditions below about 12 inches Hg. when the engine is accelerated or under load. Under these conditions, the air flow is below sonic velocity, frequently well below, and more fuel is being introduced. The fuel distribution is still asymmetric and mixing at the throttle opening and below is even less effective due to the much larger droplets which are formed by the lower velocity air. In addition, if the carburetor includes an accelerator pump, as most do, the additional squirt of fuel that it provides usually comes just when the throttle is being opened rapidly and the air velocity is falling well below sonic. Thus, a stream of liquid fuel may pass directly into the intake manifold.
During idle conditions, the fuel is typically introduced through an idle jet located just below the lower side of the throttle plate when it is in the idle position. Naturally, this results in asymmetrical fuel distribution in the intake air and although the air flow through the throttle opening is typically at sonic velocity during idling conditions, the idle fuel is not very effectively or uniformly mixed with the intake air.
Largely, as a result of these shortcomings in current carburetor arrangements, there are wide cylinder to cylinder and cycle to cycle variations in the ratio and amount of fuel and air dlivered to the engine at differ ent operating conditions. This is true evenwhen the metering function of the carburetor initially provides the desired air-fuel ratio at the manifold inlet because the mixing function of the carburetor is so poorly performed that streams of liquid fuel frequently pass into the intake manifold, wetting portions of the manifold walls and actually collecting in pools of liquid fuel in certain areas of the manifold, and some of this unmixed liquid fuel is inducted into the engine cylinders.
In an effort to overcome this situation, various arrangements have been adopted to heat the intake manifold in order to vaporize the liquid fuel prior to induction into the engine cylinders. The most common of such arrangements are hot spots and heat risers from the exhaust manifold to heat the area of the intake manifold immediately below the carburetor. A hot water path through the intake manifold is also frequently employed. Even with these arrangements, however, a completely uniform air-fuel mixture throughout the manifold is rarely achieved. Consequently, the airfuel mixture delivered to some of the cylinders is often too rich to achieve complete combustion. On the other hand, the air-fuel mixture delivered to other cylinders is at times too lean to achieve proper burning and this causes those cylinders to misfire. As used in the present application, it will be understood that a rich air-fuel mixture is one that contains more than one pound of fuel for every 15.5 pounds of air and that a lean air-fuel mixture is one that contains less than one pound of fuel for every 15.5 pounds of air.
Whether the problem is misfiring due to too lean an air-fuel mixture or incomplete combustion due to too rich a mixture, the result is that unburned fuel is exhausted from the cylinders. This is undesirable not only because of the loss in power and efficiency that results but also because these unburned or incompletely burned fuel components pass into the atmosphere as undesirable pollutants.
The principal air pollutants emanating from internal combustion engines have been identified as unburned hydrocarbons (I-IC), carbon monoxide (CO), and the oxides of nitrogen (N The desired end products of complete combustion of the fuel and air, of course, would be carbon dioxide and water with only a trace of other constituents in the presence of unreacted nitrogen.
Prior to enactment of federal and state standards on exhaust emissions, a standard automobile engine in good running condition would produce an average of about 900 ppm I-IC, 3.9 percent CO and 1075 ppm NO during normal operation. The initial federal standards, effective January, 1968, covered only I-IC and CO emissions and were stated in terms of concentrations of 275 ppm I-IC and 1.5% CO. In terms of the subsequently prescribed 7-mode cycle test which is to simulate a typical minute trip of a car from cold start through city traffic, the 1968 federal standards correspond to about 3.4 g/mi I-IC and 34 g/mi CO. Effective January 1970, these were reduced to 2.2 g/mi HC and 23 g/mi CO which correspond to concentrations of about 180 ppm I-IC and 1% CO for the average car.
The standards originally proposed for 1975 (Fed. Reg. Vol. 33, No. 108, June 4, 1968) were 0.5 g/mi (about 40 ppm) of hydrocarbon, l 1.0 gpm (about 0.5%) of CO, and 0.9 g/mi (about 240 ppm) of N0 based on the 7-mode cycle, that was adopted. In 1970, new standards for 1975 and 1976 were established along with a new driving cycle (Fed. Reg. Vol. 35, No. 219, Nov. 10, 1970). On 1975 model cars, hydrocarbon must not exceed 0.46 g/mi (about 37 ppm) and CO 4.7 g/mi (about 0.2%). On 1976 model cars, it is proposed that NO, be limited to 0.4 g/mi (about 1 10 ppm). These emissions are to be obtained using a constant volume sampling system and while driving a car through a new 22 minute driving cycle. It will be appreciated that the standards were hence reduced in two ways, by lowering the actual numbers and also by changing the analytical method.
The automobile engine manufacturers were able-with some difficulties-to meet the 1968 federal emission standards primarily by adopting one or more of the following engine modifications:
l. retarding the spark-ignition 2. recalibrating the carburetor for leaner air-fuel mixtures 3. heating the intake manifold 4. changing valve timing 5. increasing stroke to bore ratio 6. injecting air into the exhaust manifold 7. improving combustion chamber design Further improvements in these areas have also made it possible to meet the federal standards for 1970.
However, the stringent nature of the federal exhaust emission standards for 1975 are such that it is believed that even the most effective combination of all of the above measures will not be sufficient even with added catalytic or thermal reactors and, indeed, serious concern is being voiced as to whether or not the internal combustion engine can economically be made sufficiently pollution free to meet these projected standards.
SUMMARY OF THE INVENTION Accordingly, it is the primary aim of the present invention to provide a new and improved liquid fuel and intake air mixing and modulating device suitable for installation on both new and used automobile engines which, without other substantial modifications, will effect a substantial reduction of all undesirable exhaust emissions in new cars to levels well below the federal requirements originally projected for 1975 and near to those now projected for 1975-76, and which will effect a substantial reduction in such emissions in used cars to a level surpassing the projected requirements for used cars.
A further object of the invention is to provide a method and apparatus for mixing and modulating liquid fuel and intake air which is effective to finely divide and entrain the liquid fuel in the intake air and to form such a substantially uniform and homogeneous mixture, preferably without the fuel being completely vaporized, so that substantially complete combustion occurs each cycle in every cylinder and that, due to the nature of the mixture formed, misfire does not occur when operating at air-fuel ratios on the order of 20:1.
A related object of the invention is to provide a new and improved liquid fuel and intake air mixing and modulating apparatus and method of the above character which, due to the nature of the air-fuel mixture formed, results in operation of the engine with combustion taking place at lower temperatures and possibly somewhat differently to thereby reduce the production of the oxides of nitrogen at peak operating conditions and also permit a reduction in the fuel octane requirement even for high compression ratio gasoline engines.
Another object of the invention is to provide a method and apparatus for mixing and modulating liquid fuel and intake air which not only satisfies the foregoing objects over substantially the entire range of engine operating conditions but which also results in improved engine response and a decrease in fuel consumption for a given power output or an increase in power output for a given fuel consumption as compared with similar engines not equipped with the liquid fuel and intake air mixing and modulating apparatus of the present invention.
Finally, it is an object to provide a liquid fuel and intake air mixing and modulating device as characterized above which is relatively inexpensive to manufacture, install and service and which is also substantially troublefree and dependable in operation.
In accordance with the present invention, method and apparatus are provided for producing a uniform combustible mixture of air and minute liquid fuel droplets for supply to the cylinders of an internal combustion engine. Liquid fuel is introduced into a stream of intake air and uniformly distributed therein. The velocity of the air and fuel mixture is substantially increased by passing it through a throat zone, and the fuel is minutely divided and uniformly entrained as droplets throughout the air at the throat zone. The area of the throat zone and the quantity of fuel introduced into the stream of intake air are adjustably varied in correlation with operating demands imposed on the engine. Downstream from the throat zone, the air and fuel mixture is accelerated to supersonic velocity in a supersonic zone. Thereafter the mixture is decelerated to subsonic velocity in a subsonic zone to produce a shock zone where the fueldroplets are believed to be further subdivide'd and uniformly distributed throughout the combustible mixture. The mixture is then supplied to the engine cylinders.
The air flows through the throat zone at sonic velocity throughout substantially the entire range of engine operation. Moreover, the supersonic and subsonic zones provide a gradually increasing cross-sectional area corresponding to that of a conical section having an apex angle in the range of about 6 to 18 degrees for efficient recovery of the kinetic energy of the supersonic velocity air and fuel mixture as static pressure.
The quantity of fuel delivered into the air stream may be controlled to provide a substantially constant air-tofuel ratio of the mixture over a wide range of engine conditions. Since the air flow is maintained at sonic velocity through the throat zone over a wide range of engine conditions, the mass flow rate of air being supplied to the engine is directly proportional to the crosssectional area of the throat zone. Thus, by controlling the rate of fuel delivered to the air stream in direct proportion to the area of the throat zone, the air-to-fuel ratio of the mixture supplied to the engine remains substantially constant.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A is a schematic perspective of the liquid fuel and intake air mixing and modulating device of the present invention installed on the intake manifold of a gasoline engine, illustrated here in phantom;
FIG. 1B is a diagrammatic view of the liquid and intake air mixing and modulating device of the present invention.
FIGS. 2A and B are somewhat exaggerated schematic illustrations of alternate throat sections for the liquid fuel and air mixing and modulating device shown in FIG. 1;
FIG. 3 is a vertical cross-section through one form of the liquid fuel and intake air mixing and modulating device of the present invention;
FIGS. 4 and 5 are cross-sections substantially as seen along lines 44 and 5-5, respectively, in FIG. 3;
FIG. 6 is a vertical cross-section similar to FIG. 3 of a modified form of the liquid fuel and intake air mixing and modulating device of the present invention;
FIGS. 7 and 8 are cross-sections substantially as seen along lines 7-7 and 88, respectively, in FIG. 6;
FIG. 9 is a plan view, with certain portions in sections, of another form of the liquid fuel and intake air mixing and modulating device of the present invention;
FIG. 10 is a front elevation, partially in section, of the device shown in FIG. 9;
FIGS. 11 and 12 are vertical cross-sections substantially as seen along lines 11-11 and 1212, respectively, in FIG. 9;
FIG. 13 is a view of the bottom of the device shown in FIG. 9;
FIG. 14 is a vertical cross-section, similar to FIG. 11, of an alternative embodiment of the present invention;
FIG. 15 is a section substantially as seen along line 1515in FIG. 14;
FIG. 16 is a schematic diagram of the fuel supply sys tem of the present invention;
FIG. 17 is a vertical cross-section, similar to FIG. 14, illustrating certain modifications in the device;
FIGS. 18 and 19 are graphs containing plots of vacuum profiles across the throat of two of the modified devices illustrated in FIG. 17;
FIG. 20 is a vertical cross-section, similar to FIG. 14, illustrating certain additional modifications of the device;
FIGS; 21 and 22 are graphs containing plots of vacuum profiles across the throat of two of the modified devices illustrated in FIG. 20;
FIG. 23 is a vertical cross-section similar to FIG. 14, illustrating certain additional modifications of the device; and,
FIG. 24 is a vertical cross-section, similar to FIG. 1 1, illustrating a modificationof this device.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Turning now to the drawings, there is shown in FIG. 1A a liquid fuel and intake air mixing and modulating device 20 of the present invention illustrated schematically as installed on the intake manifold 21 of a conventional gasoline engine, shown here in phantom. While the engine illustrated is an inline 6-cylinder engine, the liquid fuel and intake air mixing and modulating device 20 of the present invention is not limited for use on such an engine. Rather, it should be understood that the present invention is equally applicable for use with gasoline engines having different cylinder numbers and arrangements such as, for example, but without limitation: 2, 4, 6, 8 and 12 cylinders in inline, V, horizontally opposed, and rotary arrangements.
As is conventional in many 6-cylinder inline engines the intake ports of the front, rear and center pairs of cylinders (not shown) are siamesed. Accordingly, as illustrated in FIG. 1A, the intake manifold 21 is provided with three branches 22, each of which serves the intake ports of a respective one of the pairs of front, rear and center cylinders. However, the invention is not limited to the illustrated manifold arrangement and the manifold may be provided with a separate branch for each cylinder, if desired.
In accordance with the present invention, the liquid fuel and intake air mixing and modulating device 20 of the present invention includes an intake air duct 25 which is provided with means for selectively constricting the flow of intake air to significantly increase the velocity thereof prior to admitting the intake air into the intake manifold 21. As shown in FIG. 1, the illustrated means for constricting or throttling the flow of intake air includes a member 26 disposed concentrically and in axially movable relation to a converging section 27 of the intake air duct 25. In the preferred embodiment, the movable member 26 and the converging section 27 of the duct 25 are formed with generally circular cross-sections so as to define therebetween a throat an annular orifice, the cross-sectional area of which is variable as the member 26 is moved, and which defines a uniform opening around its circumference for each position of the member 26. It will be understood, of course, that other forms of throat constrictions may also be employed without departing from the present invention.
FIG. 1B diagrammatically illustrates a mixing device 8 of the present invention for supplying a uniform combustible mixture of minute liquid fuel droplets and air to the intake manifold of an internal combustion engine. Intake air is drawn through the device 8 from a converging intake air zone 9 in response to the intake manifold vacuum. As the air travels deeper into the intake air zone 9, its velocity is increased. Liquid fuel 10 from lines 11 is introduced at 12 into the intake air stream and uniformly distributed therein before the mixture passes through a throat or constricted zone 13 located between an axially movable plug or modulator 14 and the adjacent wall structure. The velocity of the air is increased to sonic in the constricted zone 13 to thereby minutely divide and uniformly entrain the fuel as droplets throughout the air stream. The crosssectional area of the constricted zone 13 together with the quantity of fuel 10 introduced at 12 into the stream of air are adjustably varied in correlation with operating demands imposed upon the engine to which the mixture is supplied. Adjustment of the cross-sectional area of the constricted zone 13 is accomplished by axially moving the plug or modulator 14 in response to the engine demands while the quantity of fuel introduced is controlled by suitable valving 15.
As the air and fuel mixture passes downstream from the constricted zone 13 the velocity thereof is accelerated to supersonic velocity in a supersonic zone 16 without substantial turbulent flow therein. Immediately thereafter the mixture is decelerated to subsonic velocity in a subsonic zone 17 to produce shock zone 18 where the fuel droplets entrained in the air are believed to be further subdivided and uniformly distributed throughout the combustible mixture. The shock zone 18 occurs at the transition between the supersonic and subsonic zones, 16 and 17,-respectively.
It is significant that the kinetic energy of the high velocity intake air and entrained fuel is efficiently recovered as static pressure in the subsonic zone 17. For efficient energy recovery, the supersonic and subsonic zones share common diverging walls 19 that provide a gradually increasing cross-sectional area corresponding to that ofa conical section having an apex angle in the range of 6 to 18 degrees. Such recovery enables sonic air flow through the constricted zone 13 at all manifold vacuum levels of the engine down at least to five inches mercury vacuum. Such vacuum levels represent virtually the entire operating range of the engine. At the same time, unlike conventional carburetors, because air is maintained at sonic velocity through the constricted zone the mass flow rate of air being supplied to the engine is directly proportional to the crosssectional area of the constricted zone. Thus, by controlling the rate of fuel delivered to the air in direct proportion to the area of the constricted zone, the air-tofuel ratio of the mixture supplied to the intake manifold remains substantially constant. Moreover, the engine may be operated without misfire on a relatively lean and unvarying air-to-fuel ratio substantially in excess of those normally encountered in conventional carburetors.
Referring now to the schematic illustrations presented in FIGS. 2A and 28, there are shown two exemplary forms of the means for restricting the throat of the intake air duct 25. As shown in FIG. 2A, the duct 25a is provided with an upper or upstream portion 27a of converging cross-section in the downstream direction with respect to the flow of intake air. The point of maximum constriction of the duct 25a is represented here by a plane 280 passing transversely through the duct 25a and below the plane 28a the duct is provided with a portion 29a of diverging cross-section. In this embodiment, the axially movable member 26a is formed with a converging lower end portion having an angle of convergence less than the angle of convergence of the portion 27a of the duct 25a. Since both the converging portion 27a of the duct and the member 26a are preferably formed with circular cross-sectional shapes, there is formed therebetween a variable area annular orifice or throat zone located in the plane 28a.
In the embodiment schematically illustrated in FIG. 2B, the duct 25b is also provided with an upper or upstream portion 27b of converging cross-section in the downstream direction but here the axially movable member 26b is formed with a converging lower end portion having an angle of convergence greater than the angle of convergence of the portion 27b. This arrangement provides that the point of maximum constriction in the duct 25b lies in a movable plane 28b which passes through the widest portion of the member 26b and intermediate the ends of the converging portion 27b. It will also be seen that, due to the differing angles of convergence of the member 26b and throat portion 27b, there is formed an annular section of diverging cross-section located in the duct 25b below the plane 28b. The duct 25b is also preferably formed with a portion 29b of diverging cross-section downstream of the converging portion 27b with respect to the direction of flow. While the planes 28b and 28b are both shown as defined by sharp edges, it will be understood that these planes may have some thickness, on the order of about 0.1 inch, for example.
Returning to FIG. 1A, the member 26 and converging section 27 cooperate to define a throat to constrict the flow of intake air drawn through the duct 25 resulting in a significant increase in velocity of the intake air prior to its admission into the intake manifold 21. It will also be understood that during normal operation of the engine, the pressure in the intake manifold 21 is below atmospheric, i.e., a vacuum condition exists in the manifold. Generally this vacuum ranges between 6 and 24 inches of mercury vacuum depending on the engine speed and load conditions. The intake manifold vacuum may, however, fall below 6 inches Hg. during rapid acceleration and may occasionally exceed 24 inches Hg. during rapid deceleration.
As the flow of intake air is constricted in the variable area throat zone between the member 26 and converging throat 27, the air velocity at the throat constriction increases and the air pressure decreases. When the pressure at the constriction is at the critical pressure of 53 percent of atmospheric pressure, the flow of intake air at the constriction is at sonic velocity. Since the pressure at the constriction is always critical when the manifold pressure is equal to or less than the critical pressure, sonic velocity at the constriction is obtained at all manifold vacuum conditions above the threshold vacuum of 14.3 inches Hg. In other words, in the range of 14.3 24 inches of Hg. vacuum.
By gradually increasing the cross-sectional area of the intake air duct below the point of maximum constriction of the throat, i.e., below the variable area throat zone, a diffuser is formed. The cross-sectional area increases with distance from the throat constriction similar to that provided by a cone having an apex angle of about 6 to 18, preferably 8 to 12. Such a diffuser section is shown in exaggerated form in the embodiments illustrated in FIGS. 18, 2A and 2B. The gradual increase in cross-sectional area provided by the diffuser section enables a substantial portion of the kinetic energy of the high velocity intake air to be recovered as static pressure and this substantially lowers the intake manifold vacuum unchoking point at which sonic velocity through the throat is still achieved. In addition, with an efficient diffuser section and sonic velocity at the throat, at all manifold vacuums above the unchoke point, the flow of intake air just downstream of the throat is accelerated to supersonic velocity and then the air passes through a shock zone as the velocity is abruptly reduced below sonic and the pressure returns to the pressure prevailing within the manifold. As will be described hereinafter, the liquid fuel and intake air mixing and modulating device of the present invention is effective to produce sonic velocity at the throat and supersonic velocity and a shock wave in the diffuser section over substantially the entire range of intake manifold vacuum conditions encountered in normal operation of the engine.
While the term diffuser is used herein as descriptive of the divergent section of gradually increasing crosssectional area below the throat constriction, those skilled in the art will recognize that, technically speaking, the initial portion of this divergent section actually functions as a supersonic nozzle under the conditions just described.
Thus, with reference to FIG. 13, a supersonic zone 16 is provided immediately downstream from the throat zone 13, and the velocity of the air and fuel mixture is accelerated to supersonic velocity in the supersonic zone when the manifold vacuum is above the unchoke point. On the other hand, when the manifold vacuum is below the unchoke point, supersonic velocity no longer exists in zone 16. The supersonic zone 16 connects with a subsonic zone 17 in the gradually increasing cross-sectional area 19 below the throat zone 13. The transition from supersonic to subsonic velocity produces a non-turbulent shock zone 18 when the manifold vacuum is above the unchoke point, and the fuel droplets are believed to be further subdivided and distributed throughout the air as they pass through the shock zone.
Pursuant to the present invention, liquid fuel is introduced substantially uniformly into the flow pathof the intake air in a fuel delivery zone at or before the point of maximum constriction of the throat of the mixing and modulating device 20. As the intake air and fuel pass together through the fuel delivery zone and then through the throat constriction, or zone, the liquid fuel is finely divided and entrained in the high velocity intake air. Moreover, when the velocity of air at the throat is at sonic velocity, a substantial and useful portionof the finely divided fuel remains entrained in the intake air as it passes through the intake manifold and into the cylinders of the engine. With an efficient diffuser section, after the fuel is divided and entrained at the throat, the velocity of the intake air increases to a supersonic peak velocity in the diffuser section and then abruptly shocks down to subsonic velocity and the pressure condition prevailing generally in the intake manifold. This rapid rise and fall in intake air velocity subjects the larger entrained liquid fuel droplets to high shear forces in successive forward and reverse directions and breaks this fuel up into even finer droplet form than that previously formed in the fuel delivery and throat zones.
it has been found that an otherwise conventional gasoline engine fitted with the liquid fuel and intake air mixing and modulating device 20 of the present invention produces significantly lower levels of undesirable exhaust emissions than the same engine with its normal carburetor. For example, a 1963 Rambler American 220 with a six-cylinder inline engine of 197 cubic inch displacement and an 8.7:1 compression ratio was tested for exhaust emissions when equipped with its standard one barrel carburetor and when equipped with a liquid fuel and intake air mixing and modulating device of the present invention.
The car was tested on a standard Clayton chassis dy- 'namom'eter with a normal road load effectively applied at the rear wheels of the car. Hydrocarbon exhaust emissions in parts per million were continuously monitored with a Beckman non-dispersive infra-red spectrometer sensitized to hexane. The percentage of free oxygen in the exhaust was also continuously monitored with a Beckman paramagnetic oxygen analyzer. The percentage of carbon monoxide in the exhaust was periodically spot checked with a Bacharach carbon monoxide analyzer. A modified Saltzman solution was used to periodically detennine the oxides of nitrogen present in the exhaust in parts per million. A comparison of the exhaust emissions of the car with its regular carburetor and with the mixing and modulating device of the present invention is presented in Table l for operation of the car at both 30 and 50 mph. In each case, the figures presented represent the average of several test samples.
TABLE I Speed 30 MPH Below the 30 ppm at which hydrocarbons could be reliably detected with the test instrument.
As can be seen from the above table, the undesirable emissions of HC, CO, and NO were significantly reduced and the percentage of free oxygen in the exhaust was greatly increased during the 5O mph test when the car was equipped with the mixing and modulating device of the present invention. The levels of HC and NO were also substantially reduced when the car was operated with the device of the present invention at 30 mph.
The liquid fuel and intake air mixing device A of the present invention which was used on the Rambler car engine for the above tests is illustrated in more detail in FIGS. 3-5. As shown here, the device A, generally indicated at 30, includes an intake air duct 31 having a portion 32 converging in the downstream direction with respect to the flow of intake air. To constrict or throttle the flow of intake air through the portion 32 an axially movable throat modulator 33 is disposed coaxially in the duct 31. The modulator 33 is formed with a converging lower end portion 34 which together with the lower end of the converging portion 32 form a throat in the form of a variable area annular orifice 35 (see FIG. 5).
Intake air is drawn into the duct 31 through an intake conduit 36 which projects tangentially through a cover 37 over the large end of the duct. The intake air then flows through the duct and the converging portion 32 where the flow is constricted by the modulator 33 to substantially increase the velocity of the intake air prior to its passing through a discharge conduit 38 and into the intake manifold of the engine. It will also be noted that the duct 31 includes a diverging portion 39 located downstream of the point of maximum constriction or throat 3S and in this regard the arrangement of the device 30 is generally similar to that schematically illustrated in FIG. 2A.
Liquid fuel is supplied to the mixing and modulating device 30 illustrated in FIGS. 35 by means of a fuel nozzle 40. In the illustrated embodiment, the fuel nozzle 40 projects axially into the duct 31 through the cover 37 and the discharge end of the nozzle is centered in the duct well above the point of maximum constriction of the throat. The liquid fuel is preferably sprayed into the duct 3l'from the discharge end of the nozzle in a substantially symmetrical pattern. To this end, the illustrated nozzle 40 is of the air aspirating type and includes a baffle 41 located at right angles to the discharge end of the nozzle to symmetrically distribute the liquid fuel in a generally radial direction. For the tests tabulated above, the nozzle was supplied with air under pressure of about 40 psi and the flow of fuel through the nozzle was regulated by a valve (not shown).
To insure that the liquid fuel is introduced substantially symmetrically into the path of the high velocity intake air flowing through the constricted throat 35, the duct 31 and throat 35 are preferably mounted with their axes oriented substantially vertically. With this arrangement, the liquid fuel, which is sprayed from the nozzle 40 and reaches the inner wall of the duct 31, runs down the sloping wall of the converging portion in a generally uniform manner to the point of maximum constriction or throat 35 defined between the portion 32 and the modulator 33. At or before the point of maximum constriction (represented by the section line 5-5 in FIG. 3) the high velocity air strips the liquid fuel film from the wall and finely divides and entrains the fuel in the intake air.
For controlling the degree of constriction at the throat and thus modulating the flow of intake air therethrough the modulator 33 is axially movable. In the embodiment illustrated in FIG. 3, the modulator 33 is mounted on a control rod 45 threadably received in a boss 46 formed on the discharge conduit 38. A knurled knob 47 is provided on the lower end of the rod 45 for conveniently turning the rod to raise or lower the modulator 33 relative to the throat 35 and thus increase or decrease the area of the annular orifice.
Another embodiment of the mixing and modulating device B of the present invention is illustrated in FIGS. 6-8. In general this device B indicated generally at 50 is similar to the device A illustrated in FIGS. 3-5 and like reference numerals have been used to indicate the duct 31, the cover 37, the tangential intake passage 36 and the fuel nozzle 40. It will be noted, however, that the converging portion 52 and the modulator 53 of this embodiment follow the schematic arrangement shown in FIG. 28 rather than that shown in FIG. 2A. In other words, the throat or point of maximum constriction, in the form of an annular orifice 54 defined between the converging portion 52 and modulator 53 is not at a fixed location as in the FIG. 3 embodiment, but rather is located in movable plane (represented by the section line 8-8 in FIG. 6) which passes through the widest portion of the tapered lower end of the modulator 53.
It will also be noted that the mixing and modulating device 50 shown in FIGS. 6-8 employs a different means for raising and lowering the modulator 53 in the throat 54 than the device 30 shown in FIG. 3. Here, the raising and lowering means is in the form of a crank arm 55 from which the modulator 53 is suspended by a link 56. The crank arm 55 is carried on a cross shaft 57 projecting through the duct 31 and another crank arm 58 at one end of the cross shaft is provided for regulating the movement of the modulator 53. This arrangement not only permits more convenient control of the movement of the modulator 53, but also, permits the modulator position control linkage to be coupled to the fuel control valve (not shown) in order to coordinate the quantities of both liquid fuel and intake air introduced into the engine.
A liquid fuel and intake air mixing and modulating device B of the type illustrated in FIGS. 6-8 was also tested on the 1963 Rambler automobile discussed above. The results of these tests, which again represent the averages of several samples, are presented below in Table II.
TABLE II 1963 Rambler 220 with Mixing and Modulating Device B Speed HC ppm CO% N0 ppm 0 15 30 0.1m l5 6.8 20 0 0.10" 10 5.8 35 0 0.10 58 5.6 45 0 0.10 no 5.8
Below the 30 ppm at which hydrocarbons could be reliably detected with the test instrument.
The CO values all fell between 0.05 and 015%.
Since the speeds at which the car was tested when equipped with the B type mixing and modulating device 50 illustrated in FIGS. 6-8 were not the same as the tests of the A type device 30 illustrated in FIGS. 3-5, a direct comparison of the results cannot be made. However, it will be observed that, in general, the exhaust emissions for the engine with the B type device 50 were even lower than the ones with the A type device 30.
As a further test of the B type device 50, it was compared with the Rambler when equipped with its regular carburetor at 35 mph. and with the dynamometer adjusted to apply approximately 20 road horsepower at the rear wheels of the car to simulate a power run. The results of this test are presented in Table III which further illustrates the significant reductions in exhaust emissions with the use of the present invention.
TABLE III 1963 Rambler at 35 MPH and 20 road load hp HC ppm CO% NO, ppm 0% Reg. Carb. 0.49 3360 4.0 Mixing & 0* 0.15 650 6.2 Mod. Device B Below the 30 ppm at which hydrocarbons could be reliably detected with the test instrument.
The reason that the liquid fuel and intake air mixing and modulating device of the present invention produces such significant reductions in the undesirable exhaust emissions is due primarily to two correlated factors, namely, the nature and the uniformity of the entrained fuel and intake air mixture produced by the device. First, by finely dividing, thoroughly mixing and substantially completely entraining the liquid fuel in the intake air, an essentially uniform air-fuel mixture is delivered to each cylinder on every cycle. The nature and uniformity of this air-fuel mixture greatly reduces the cylinder to cylinder and cycl to cycle variations that tend to produce misfires and incomplete combustion in conventional carburetor systems. As a consequence, the air-fuel mixture which may be utilized in the present invention is substantially leaner than those heretofore employed.
It is,.of course, well known that theoretically complete combustion should occur at a stoichiometric airfuel ratio, namely 15.5: 1. It is also well understood that in practice this theoretically ideal condition does not exist in the cylinders of a conventionally equipped engine and that as a consequence carburetors in the past have been set to deliver air-fuel mixtures richer than stoichiometric. However, at such rich air-fuel ratios complete combustion cannot take place and substantial emissions of unburned hydrocarbons and carbon monoxide occur. Also, because the combustion is incomplete with these fuel rich mixtures and because of the excess fuel in the engine cylinders, the final temperature of combustion is lower than when the fuel and air are burned at the stoichiometric ratio. This, in turn, tends to reduce the production of the oxides of nitrogen since their formation is promoted by high combustion temperatures.
In order to decrease the production of unburned hydrocarbons and carbon monoxide, carburetors have recently been set to provide air-fuel mixtures close to or slightly greater than the stoichiometric ratio. While this has been effective to reduce hydrocarbon and carbon monoxide emissions due to more complete combustion of the air-fuel mixture it has also increased the production of the oxides of nitrogen as a result of the higher combustion temperatures. In fact, it has been found that production of the oxides of nitrogen are highest at slightly leaner than stoichiometric air-fuel ratios.
It is one important aspect of the present invention that due to the nature and greatly improved uniformity of the air-fuel mixture produced by the instant devices, the engine can be run on air-fuel mixtures much leaner than stoichiometric without misfiring which usually results from intermittently exceeding the lean limits of the air-fuel ratio on a cylinder to cylinder or cycle to cycle basis. An air-fuel ratio of 20:1 provides approximately 30 percent more oxygen for combustion than is available at the stoichiometric ratio. Thus, even when complete combustion of the fuel takes place, the exhaust gas will contain about percent free oxygen. Significantly, this free oxygen, with its associated quota of nitrogen, has been found to be associated with a reduction in the peak combustion temperature and a reduction in the formation of the oxides of nitrogen. In this connection, it will be recalled that one of the exhaust emission control measures in current use today involves injecting free air into the exhaust manifold. The present invention, however, differs from these arrangements in a very important respect. Here, the excess oxygen is introduced with the fuel as a result of using an air-fuel ratio on the order of 20:1 and, thus excess oxygen is present and available during the entire combustion process.
Turning now to the second important factor of the invention, i.e., the nature of the air-fuel mixture, it is believed that it plays an equal, if not greater, role in the reduction of undesirable exhaust emissions from engines utilizing the present devices.
By bringing the fuel into contact with the high velocity intake air passing through the constricted throat of the mixing and modulating device, the liquid fuel is broken up into finely divided droplets and entrained in the intake air. It has also been'found that vaporization of the entrained fuel in the manifold is to be avoided to the extent practical. This can be achieved by decreasing the heat supplied to the manifold by such methods as: blocking the heat riser, using a lower temperature thermostat and insulating the manifold. This leads to significant improvements over present air-fuel induction systems which require a high degree of fuel vaporization in order to achieve reasonable results.
Because in the present invention, the fuel need not be vaporized outside the engine cylinders, the air-fuel mixture delivered'to the cylinders can be cooler, and is more dense for this reason, and also it is more dense because the finely divided liquid fuel displaces less volume than does vaporized fuel. lt will be appreciated, of course, that a denser air-fuel charge produces more power than a less dense one. Thus, the power output of the engine is increased from this factor.
The temperature of the air-fuel charge at the end of compression in the present invention is also lower than that in conventional engines which depend upon heating the intake air to vaporize the fuel. In part, the lower final compression temperature in the present invention is due to the lower temperature of the air-fuel mixture initially drawn into the cylinders as explained above. However, the final compression temperature in the present invention is further reduced by virture of the use of some of the heat of compression to vaporize fuel within the cylinders. Moreover, since the final compression temperature is lower, the combustion temperature will also be lower in the present invention as compared to conventional system. As noted above, less oxides of nitrogen are produced at lower combustion temperatures.
The lower compression temperature also appears to have a bearing on the octane requirement of the fuel for a given engine. Since the compression temperature is lower, the air-fuel charge for an engine of a given compression ratio is less likely to self-ignite. Thus, the same fuel can be used in higher compression ratio engines or a lower octane fuel can be used in a given compression ratio engine. The latter, of course, permits a savings in fuel costs because the lower octane fuel is normally sold at a price below that of the higher octane premium fuel.
The nature of the air-fuel charge of the present invention is also believed to result in lowering the octane requirement of the fuel. Apparently, this stems from a modification of the combustion process resulting from the air-fuel charge as formed by the mixing and modulating device of the present invention. It has been found for example that, in a 1963 Buick V-8 engine of 215 cubic inch displacement having a 1 1:1 compression ratie, the present invention produces excellent results both in terms of power and low exhaust emissions on unleaded regular gasoline of about 84-86 octane rating as well as regular grade leaded gasoline of about 91-93 octane rating. On the other hand, this engine when equipped with its regular 4-barrel carburetor required leaded premium grade gasoline of about 98-100 octane rating.
The results of the tests on the high compression 1963 Buick V-8 engines comparing the regular carburetor with the type B mixing and modulating device 50 of the present invention are presented below in Table IV. Again the same test equipment and procedures as used with the Rambler were employed.
Actually, under power conditions the B type device without air pressure at the nozzle reduced the production of oxides of nitrogen compared to when the nozzle was supplied with air pressure.
This latter circumstance prompted the design of the liquid fuel and intake air mixing and modulating device C illustrated in FIGS. 9-13 of the drawings. Referring first to FIG. 11, it will be seen that this embodiment of the device C, indicated generally at 60, like the two previously described embodiments and 30, includes a throat insert 61 defining a converging portion 62 and a modulator element 63 between which there is defined a throat in the form of an annular orifice 65. As shown TABLE IV HC CO NO r 0 Fuel p.p.m. percent p.p.m. percent A/F m.p.g.
Reg. Carb., idle Premium 310 3.6 60 1.3 Mixing& Mod., idle... 120 0.15 11 4.6 4 Device 13, idle .15 0 4.7 Reg. Carb., m.p.h... 350 .40 1,200 2.2 Mixing & Mod., 35 0 .15 15 6.8
m.p.h. Device B, 35 m.p.h... 15 .15 35 5.4 Reg. Carb., m.p.h... Premium.... 300 1.20 1.450 1.6 Mixing 8L Mod., 45 Regular... 0 .15 135 8.5
m.p.h. Device B, 45 m.p.h... Unleaded 0 .15 180 5.0
Below the 30 ppm at which hydrocarbons could be reliably detected with the test instrument.
From Table IV, it will again be seen that significant reductions in exhaust emissions result from the use of the present invention. It will also be noted from the 35 and 45 mph tests that mixing and modulating device of the present invention allows the engine to operate at significantly higher air-fuel ratios and with somewhat lower fuel consumption.
After noting the foregoing results, the Buick engine as equipped with the type B device was run at 40 mph with normal road load and the air-fuel ratio was further increased. These results are shown in Table V and further confirm the improvement in engine efficiency and its ability to run on unleaded gasoline as well as the reduction in exhaust emissions.
in FIG. 11 the modulator 63 is in its uppermost position in the insert 61 and the orifice has its greatest crosssectional area.
The modulator 63 is provided with a lower converging end portion 64 which has an angle of convergence more than the angle of convergence of the portion 62. In the illustrated embodiment, the respective angles of convergence of the modulator 63 and of the portion 62 are 44 and 28. As previously explained, these two elements thus define a diffuser section to convert a substantial portion of the kinetic energy of the high velocity air to static energy thus permitting sonic air velocity through the orifice over an extended range of intake manifold vacuum conditions. The throat insert 61 is V I 0 I TABLE V HC CO N01 02 Fuel p.p.m. percent p.p.m. percent A/F m.p.g.
- Mixing & Mod Regular 15 0.07 11.2 27.8/1 32.6 Unit B Unleaded 0 .05 260 12.1 31.2/1 37.7
' Below the 30 p.p.m at which hydrocarbons could be reliably detected with the test instrument.
In all of the 'fbr biiiiiig, the fuel was introduced into the device as a spray through the nozzle 40 with approximately 40 psi air pressure used to aspirate the fuel from the nozzle. It has been found, however, that it is not essential that the fuel be sprayed into the device. As shown below in Table VI, the Buick engine was also tested with approximately 20 hp applied at-the rear wheels to further explore the efficiency of the present invention.
also formed with a diverging lower end portion 66 to further extend the length of the diffuser section. The similarity of this arrangement with that schematically 55 illustrated in FIG. 28 will also be apparent in view of the maximum throat constriction between the throat insert 61 and modulator 63 being located in a movable plane.
Liquid fuel is supplied to the device 60 through a 60 conduit 68 connected to an annular body 69 in which TABLE VI HC CO NO, 0 Power Fuel p.p.m. percent p.p.m. percent HP.
Reg. Carb Premium 1.1 2,200 2.0 24 Device B:
40 p.s.i.air..... Regular.. 0 0.15 1.020 7.0 23 without air Regular.. 15 0.15 270 6.9 23
the throat insert 61 is mounted. The body 69 is formed with an annular groove 70 comlmunicating with the conduit 68 (see FIGS. 9 and 10) to distribute the fuel around the outside of the insert 61. Above the groove under pressure by a pump 130 (FIG. 16) to a fuel regulating valve 100 connecting the supply line 68 to the body 69 of the device. The valve 100 includes a metering orifice 101 and a tapered needle 102 which regu- 70, the body 69 is formed with an enlarged bore provid- 5 lates the flow of fuel through the orifice. The needle is ing a clearance space 71 between the body 69 and the reciprocally mounted in a packing gland 103 of valve insert 61. The fuel flows from the groove 70 up through 100.
the annular clearance space 711 and over a lip 72 at the Coordination of the valve 100 with the modulator 63 upper end of the throat insert 61. is achieved through a link 105 interconnecting the op- With the modulator in its uppermost position as l0 erating link 81 and the valve needle 102. The link 105 shown in FIG. 11, the fuel flowing over the lip 72 is imis pinned intermediate its ends to a block 106 which remediatelysubjected to the high velocity intake air flowceives the threaded end 107 of the needle. At one end ing through the constricted orifice 65. The high velocthe link 105 is provided with a slot 108 which receives ity ajr St l'igs tlg liguid fueljrggrthe wall and er trains a pin 109 on the control link 81 and at the other end it in finely divided form in the intake air. The velocity the link has a slot 110 which receives a pin 111 secured of the intake air is then reduced substantially as it in a block 112 reciprocally mounted in a guide channel passes through the diffuser section of the device 60 and 1 13 defined in a portion of the frame 99. As the control into the intake manifold such that a substantial and userod is shifted to the right in FIG. 9, the link 105 rotates ful portion of the finely divided fuel remains entrained bout pin 1 1 and mO eS the needle alve 102 to the in the intake air as it passes into the engine cylinders. right, decreasing the opening through the metering ori- To regulate the degree of restriction of the annular fice 101. orifice 65, the modulator 63 is mounted for axial move- To adjust the fuel flow for a given setting of the modrnent in the throat insert 61. As seen in FIGS. 941 the ulator. he thr en 10 0f he needle can be modulator 63 is centered in the throat insert 61 by a ed in Or Out O the block 106 to decrease or inweb 75 connected to the upper end of the body 69. The e s the e flo through he Or fice The rate modulator carries a ball bearing type nut 76 which reof change of fuel flow with changes in the Position of ceives the threaded end of an operating rod 77. Rotathe hicduietcl' y also be effected y chahgihg the tion of the modulator 63 is prevented by a pin 78 excation of the Pivot P 111 about which the link 105 tending downwardly from the web 75 into an opening This is accomplished y turning a screw 115 in the upper portion of the modulator. As the rod 77 is which is carried y the slide 112 and threadiy received rotated, the ball nut 76 causes the modulator 63 to in an end Plate 116 cf the frame y changing the move u or dow d di on h di i Ofrotapivot point of the link 105 the amount of movement of tion of the rod, thus changing the cross-sectional area the heedie 102 is changed i'eiative to the control link of the annular orifice 65.
In the illustrated embodiment, rotation of the rod 77 To compensate r th uum n the intake maniis effected by a rack and pinion mechanism indicated fold which tends to draw the u ato 63 dOWn into generally at 80. As seen in FIG. 9, a r i roc ti the throat insert 61, the device is provided with a trol link 81 is fitted with a rack portion 82 at one end. vacuum fee b ck n A um p r 120 is locate The rack 82 engages a pinion gear 83 mounted on a in the base 121 of the unit and a vacuum line 122 conshaft 84 journalled in bearing in the body 69 of the 40 nects the port toacylinder 123. Apiston 124 in the cylmechanism 80. The shaft carries another gear 85 that inder carries a rack 125 engageable with the gear 85. meshes with a gear 86 on another shaft 87. Anoth As the vacuum at the port increases, the piston 124 gear 88 on shaft 87 in turn meshes with a gear 89 on moves the rack in a direction to lift the modulator a shaft 90 the lower end of which carries a sprocket 91 45 6 d thereby reduces the vacuum. This permits a (see FIG. 12). The lower end of the control rod 77 also much O er force to be applied to the control link 81 carries a sprocket 92 which is coupled to the sprocket to adjust the Position of the modulator 91 by a suitable chain 93 (see FIG. 13). As the control The mixing and modulating device 60 illustrated in link 81 is moved to the right in FIG. 9, the modulator IGS. 9-13 has been successfully applied to the engine 63 is moved down as seen in FIG. 11 a d vice ver 50 of a 1970 Ford Torino. This engine has a displacement The maximum upper and lower positions of th oduof 351 cu. in. and a 10.7:1 compression ratio. It in- Iator are adjustably fixed b means of pins 95 nd 96 cludes a four-barrel carburetor as standard equipment on the link which abut set screws 97 and 98 on the and premium grade fuel is recommended.
framework 99 of the device 60. The same test equipment and procedure described Control of the fuel admitted to the device 60 is also 55 above in connection with the Rambler and Buick encoordinated with the constriction in the throat insert61 gines was employed with the Ford engine and the reby the modulator 63. To this end, the fuel is supplied suits are summarized in Table Vll.
TABLE VII l-lC CO NO, 02 Fuel Octane p.p.m. percent p.p.m. percent Reg. Carb., idle Premium............... 98 300 4.25 25 0 Mixing& Mod.,i e... Regular..... 92 48 0.68 6.0 Device C,idle Unleaded. 87 15 .50 4.6 Reg. Carb.,45 m.p.h... Premium... 98 .45 2,600 0.7 Mixing & Mod., 45 Regular 92 30 .25 480 6.5 o ifi 'e o is m.p.h... Unleaded s7 15 220 7.0 Do White gas 58 15 .30 40 7.0
i No reading taken. 7
The results presented in Table VII again demonstrated the significant reduction in exhaust emissions achieved by use of the liquid fuel and intake air mixing and modulating device and method of the present invention. At the same time the octane requirement of the engine is substantially reduced and the fuel economy is improved.
In order to permit simultaneous testing of additional automobiles on the road as well as on the dynamometer, several more liquid fuel and intake air mixing and modulating devices were built. Also, a new chassis dynamometer stand togetherwith more sensitive continuous recording instrumentation was installed at the test facility.
These additional mixing and modulating devices D are essentially the same as the one shown in FIGS. 9-13 except that the throat insert 61d and the modulator 63d were fabricated to function in accordance with the design schematically shown in FIG. 2A. In other words, the throat or point of maximum constriction, in the form of an annular orifice 65d defined between the throat insert 61d and modulator 63d, is located in a fixed plane, represented by section line -15 in FIG. 14. In the illustrated embodiment, the angle of convergence of the modulator is 30 and that for the throat insert 61d is 100 above the orifice 65d and 10 below the orifice. Thus, it will be seen that the throat insert 61d and the modulator 63d cooperate to form a diffuser section of gradually increasing cross-sectional area downstream of the throat.
One of these mixing and modulating devices D with a 1.92 inch diameter throat was installed on a 1970 Dodge automobile with a 318 cubic inch displacement engine having an 8.821 compression ratio. The improvement in exhaust emissions of this combination, and its ability to tolerate low octane unleaded fuel and even kerosene, as compared to the engine equipped with its standard carburetor is shown in Table VIII.
TABLE VIII 50 MPH Fuel HC ppm CO%NO ppm Reg. Carb. I00 0.20 3800 Mixing & 87 octane 35 0.20 270 Mod. 85 octane 25 0.06 170 Device D 65 octane 35 0.10 120 Device D Kerosene 90 0.l4 225 Similar results were also obtained with one of the mixing and modulating devices D having a 2.21 inch diameter throat installed on a 1970 Chevrolet having a 350 cubic inch V-8 engine with a 10.2511 compression ratio. As originally equipped, this engine has a fourbarrel carburetor and requires premium grade fuel. A comparison of the exhaust emissions produced by this engine with its normal carburetor and with the mixing and modulating device D of the present invention is presented in Table IX.
TABLE IX IDLE Fuel HC ppm CC /0N0, ppm Reg. Carb. Premium 200 3.0 I00 Mixing & Unleaded 55 0.l2 73 Mod. Regular Device D 50 MPH Reg. Carb. Premium I00 0.20 3800 Mixing 81. Unleaded 35 0.20 270 Mod. Regular Device D Further tests were also conducted with the mixing and modulating device D installed on the engine of a 1958 Cadillac having a 365 cubic inch displacement and a 10.25:! compression ratio. The results of these tests are summarized in Table X.
TABLE X IDLE Fuel HC ppm CO3I*NO ppm Reg. Carb. Premium 500 2.5 Mixing & Unleaded H8 0. l0 40 Mod. Regular Device D 50 MPH Reg. Carb. Premium I00 1.2 I800 Mixing & Unleaded l6 0.l2 I68 Mod. Regular Device D Again, the liquid fuel and intake air mixing and modulating device D of the present invention produced a substantial reduction in exhaust emissions and also permitted operation of the engine on lead-free regular grade gasoline.
It should be appreciated that the data presented in Tables I-X was obtained during substantially steady state conditions. However, the liquid fuel and intake air mixing and modulating device of the present invention has also been found to provide substantial reductions in exhaust pollutants when operated pursuant to the current seven-mode cycle test. (See Fed. Reg. Vol. 33, No. 108, June- 4, 1968) Basically, this test requires closely controlled operation of the engine on the dynamometer at certain specified speeds during specified time intervals. The exhaust emissions produced during the seven-mode cycle are then computed according to a weighted formula. Although the seven-mode cycle tests prescribed by the Federal Regulations require a cold start after at least a 12 hour waiting period, the test results presented hereinafter are I-Iot Cycles" conducted without the engine returning to ambient temperature. In all of the seven-mode cycle tests reported herein, the heat cross-over in the intake manifold was blocked to reduce the intake manifold temperature.
One of the liquid fuel and intake air mixing and modulating devices D having a throat and modulator as shown in FIGS. 14 and 15 was installed on the 1970 Chevrolet engine mentioned above and was operated pursuant to the foregoing seven-mode hot cylce test. Before presenting the results of these tests, it should be noted that changes in ignition timing of this engine (as well as most others) has a significant influence on the emission results under the seven-mode cycle test. As normally equipped, this engine has a transmission controlled vacuum actuated advance mechanism coupled to the distributor (spark ignition device) which advances the ignition timing up to 35-40 before top dead center (BTDC) of the pistons at cruising conditions in high gear. When the vacuum advance mechanism is deactivated, the ignition timing is varied with engine speed by a centrifugal advance mechanism between 4 BTDC at idle and 20 BTDC at 50 mph. As shown in Table XI deactivating the vacuum advance mechanism results in cutting the HC and NO, emissions approximately in half during the seven-mode hot cycle tests when the engine is equipped with its standard four-barrel carburetor.
TABLE XI Seven-Mode Hot Cycles Fuel Vac. HC ppm CO% I\IO Reg. Adv. Carb. Premium Yes US 0.19 1 147 Reg. Carb. Premium No 66 0.23 41 I Reg. Carb. lead Free Yes lll 0.22 1039 Reg. Carb. Lead Free No 68 0.27 434 Substantial improvements in the above results were achieved when the Chevrolet engine was equipped with a mixing and modulating device D of the type shown in F I 4 a d claslna w ss iaT X TABLE XII Seven-Mode I-Iot Cycles Fuel Timing HC ppm CO% NO, Mixing & Reg. 4"-14 33 0.18 180 Mod. Unleaded Device It was noted during both road testing and dynamometer testing of the 1970 Chevrolet with the mixing and modulating device of the present invention that it was quite sensitive to changes in engine temperature and intake manifold vacuum conditions. In order to compensate for these changing conditions and to achieve the results of the seven-mode cycle tests presented above, a more elaborate fuel control system than had been used on the foregoing steady state tests was adopted. One fuel control system, which is illustrative only, is shown schematically in FIG. 16.
When the ignition switch 129 is turned on, fuel is drawn from the fuel tank by an electric fuel pump 131) set to produce a pressure of 6.5 psi in a supply line 131. The fuel passes through a filter 132 connected between the supply line 131 and a fuel feed line 133. A return line 134 is also connected to the filter 132 through a restriction 135 such that fuel in excess of engine demand is constantly filtered and returned to the fuel tank.
From the feed line 133, the fuel is directed to the needle valve 100 through parallel branch lines 136 and 137. Branch line 136 includes a constant pressure regulator 138 set at 4.5 psi and a metering valve 139 controlled by engine manifold vacuum by a diaphragm actuator 140. Excess fuel delivered to the metering valve is returned to the fuel tank through return line 141.
Branch line 137 includes three constant pressure regulators 142-144 connected in series and set at 2.5 psi, 2.0 psi and 1.5 psi, respectively. Connected between regulators 142 and 143 and the downstream end of branch line 137 is a bypass line 145 having a solenoid valve 146. Another bypass line 147 with a solenoid valve 148 is connected between regulators 143 and 144 and the downstream end of branch line 137. A temperature switch 149 and a pressure switch 150 are connected in parallel to solenoid 146 and a temperature switch 151 and pressure switch 152 are connected in parallel to solenoid valve 148.
The temperature switches 149 and 151 are disposed to sense cooling water in the engine jacket and are set to open at 85F and 90F, respectively. The pressure switches 150 and 152 sense manifold vacuum and are set to open at 9 inches and inches of mercury vacuum, respectively. An oil pressure switch 153 set to remain open until oil pressure is detected is connected in series between ground and each of the switches 149-152. A source of electrical potential, such as a 12 volt battery is connected to the other end of the coil of each of the solenoid valves 146 and 148 to complete the respective electrical circuits.
Another bypass line 155 is connected between pressure regulator 138 and a point in the delivery line 68 between the needle valve 100 and the mixing and modulating unit 60. The bypass 155 includes a pressure accumulator 157 and a pair of spring loaded check valves 158 and 159, one on either side ofthe accumulator.
The primary path of fuel flow to the unit 60 is through branch line 137 and pressure regulators 142-144 which deliver fuel to the needle valve 100. During initial operation, when the engine is cold, additiorial fuel is supplied to the needle valve 100 through bypass line 145 until the engine water temperature reaches F. and then through bypass line 147 until the water temperature reaches F. Thereafter primary fuel is delivered through branch line 137, passing through all three pressure regulators 142-144.
As the throttle linkage is moved to open the throat of the modulator 60, a small quantity of supplementary fuel is also delivered to the modulator 60 from the accumulator 157. Check valve 158 is set to open at approximately 4 psi to supply the accumulator, which is in the form of a small piston and cylinder combination, from branch line 136. The other check valve 159 is set to open at approximately 6 psi so that there is no flow through the accumulator until its piston is advanced by the throttle linkage increasing the pressure within the accumulator to above 6 psi. W n V In the illustrated fuel control system, additional fuel is also supplied to the unit 60 through bypass lines and 147 when the engine is under load and the manifold vacuum drops below 9 and 10 inches I-Ig., respectively. Progressively more fuel is then supplied through branch line 136 and metering valve 139 when the manifold vacuum drops below 9 inches Hg. It should be appreciated, of course, that the foregoing temperature and pressure conditions are only exemplary and that various other changes and modifications can be made in the fuel control system without departing from the Pre nt iona is As previously mentioned herein, the liquid fuel is supplied to the mixing and modulating device of the present invention in a fuel delivery zone at or before the point of maximum constriction defined between the throat insert and the modulator. This insures that the liquid fuel is subjected to and finely divided by the shearing action of the high velocity air flow which increases to sonic at the throat zone and supersonic just downstream of the throat in the diffuser. Shortly thereafter, the intake air and entrained fuel droplets pass through a sonic shock front or zone in the diffuser and the air abruptly decreases in velocity and the fuel droplets which continue at high velocity relative to the air ar then ec e t d i p a shss aaes m- A series of experiments have been conducted to investigate the results of introducing the liquid fuel at various points above and below the maximum throat insert constriction. The throat of one of the mixing and modulating devices of the present invention as shown in FIG. 14 was modified as shown in FIG. 17 to provide an annular fuel feed slot approximately 34 inch below the maximum throat constriction indicated by dash-line 171. This unit was installed on the same 1970 Chevrolet, previously referred to and tested on the

Claims (17)

1. A method for producing a combustible mixture of air and minute liquid fuel droplets uniformly distributed therethrough for delivery to an internal combustion engine comprising the steps of introducing liquid fuel into a stream of intake air, passing the air and fuel mixture in a substantially uniform distribution through a constricted zone to increase its velocity to sonic and thereby minutely divide and uniformly entrain the fuel as droplets throughout the air stream, varying the area of the constricted zone together with the quantity of fuel introduced into the intake air stream in correlation with operating demands imposed upon the engine for which mixture is produced, further increasing the velocity of the air and fuel mixture to supersonic immediately downstream from the constricted zone without imparting substantial turbulent flow to the air and fuel mixture, and then abruptly decreasing the velocity of the air and fuel mixture from supersonic to subsonic in a shock zone, and wherein the supersonic and subsonic velocities occur in a gradually increasing cross-sectional area corresponding to that of a conical section having an apex angle in the range of about 6* to 18*.
2. A method as in claim 1 including the step of maintaining the air flow through the constricted zone at sonic velocity throughout substantially The entire operating range of the engine.
3. A method as in claim 2 including maintaining a substantially constant air-to-fuel ratio throughout substantially the entire operating range of the engine.
4. A method as in claim 2 wherein the sonic velocity at the constricted zone is maintained in the engine operating range down at least to about 5 inches mercury vacuum.
5. A method as in claim 1 wherein the air and fuel mixture downstream from the constricted zone flows through a gradually increasing cross-sectional area corresponding to that of a conical section having an apex angle in the range of about 8* to 12*.
6. A method as in claim 1 wherein the liquid fuel is introduced into the stream of intake air in a substantially annular pattern with the intake air flowing concentrically through the annular pattern of fuel.
7. A method as in claim 1 wherein the liquid fuel is introduced into the stream of intake air from a location generally concentric with the stream.
8. A device for producing a uniform combustible mixture of air and minute liquid fuel droplets for delivery to an internal combustion engine comprising, in combination, means defining an intake air zone connecting with means defining a throat zone for constricting the flow of air to increase the velocity thereof, means for introducing liquid fuel into the air and uniformly distributing the fuel at or before the throat zone to minutely divide and uniformly entrain fuel as droplets in the air flowing through the throat zone, means for adjustably varying the area of the throat zone and controlling the rate of liquid fuel introduction in correlation with operating demands imposed upon the engine for which the mixture is produced, means defining a supersonic zone immediately downstream from the throat zone in which the mixture is accelerated to supersonic velocity, means defining a subsonic zone downstream from the supersonic zone in which the mixture is decelerated to subsonic velocity, and means defining a shock zone between the supersonic and subsonic zones, and wherein the means defining the supersonic and subsonic zones provide a gradually increasing cross-sectional area corresponding to that of a conical section having an apex angle in the range of about 6* to 18* whereby the kinetic energy of the air and fuel mixture is efficiently recovered as static pressure.
9. A device as in claim 8 wherein the throat zone is substantially in the form of a uniform annular orifice.
10. A device as in claim 9 wherein the inside circumference of the orifice is defined by an axially movable member having a substantially circular cross-section located concentrically in the intake air zone.
11. A device as in claim 9 wherein the means for introducing liquid fuel includes means for distributing liquid fuel in a substantially uniform annular pattern.
12. A device as in claim 11 wherein the means for introducing liquid fuel includes an annular opening in the intake air zone upstream of the throat zone.
13. A device as in claim 10 wherein the means for introducing liquid fuel includes a movable valve element operative concomitantly with the means for adjustably varying the area of the throat zone.
14. A device as in claim 13 wherein the means for introducing a liquid fuel includes means for adjusting the quantity of fuel introduced for a given position of the axially movable member.
15. A device as in claim 8 wherein the means defining the supersonic and subsonic zones provide a gradually increasing cross-sectional area corresponding to that of a conical section having an apex angle in the range of about 8* to 12* whereby the kinetic energy of the air and fuel mixture is efficiently recovered as static pressure.
16. A device for supplying a uniform combustible mixture of liquid fuel and air to the intake manifold of an internal combustion engine comprising, in combination, means defining an intake air zone connecting with means deFining a throat zone for constricting the flow of air to increase the velocity thereof, fuel delivery means for introducing liquid fuel into the air at or above the throat zone, wall means downstream of the throat zone arranged to provide a gradually increasing cross-sectional area corresponding to that of a conical section having an apex angle in the range of about 6* to 18* for efficiently recovering a substantial portion of the kinetic energy of the high velocity air and fuel as static pressure whereby the velocity of the air through the throat zone is sonic over a wide range of intake manifold conditions, means for adjustably varying the area of the throat zone in correlation with operating demands imposed upon the engine, and means for controlling the rate of fuel delivered into the air in direct proportion to the area of the throat zone whereby the air-to-fuel ratio of the mixture supplied to the intake manifold remains substantially constant over a wide range of intake manifold conditions.
17. A device as in claim 16 wherein the wall means provides a gradually increasing cross-sectional area corresponding to that of a conical section having an apex angle in the range of about 8* to 12* degrees whereby the kinetic energy of the air and fuel mixture is efficiently recovered as static pressure.
US00151373A 1970-03-06 1971-06-09 Method and apparatus for mixing and modulating liquid fuel and intake air for an internal combustion engine Expired - Lifetime US3778038A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US1708670A 1970-03-06 1970-03-06
US15137371A 1971-06-09 1971-06-09

Publications (1)

Publication Number Publication Date
US3778038A true US3778038A (en) 1973-12-11

Family

ID=26689434

Family Applications (1)

Application Number Title Priority Date Filing Date
US00151373A Expired - Lifetime US3778038A (en) 1970-03-06 1971-06-09 Method and apparatus for mixing and modulating liquid fuel and intake air for an internal combustion engine

Country Status (9)

Country Link
US (1) US3778038A (en)
AR (1) AR194824A1 (en)
AU (1) AU463361B2 (en)
CA (1) CA940788A (en)
CH (1) CH552136A (en)
DE (1) DE2153816C2 (en)
FR (2) FR2084292A5 (en)
GB (2) GB1343311A (en)
NL (1) NL7112168A (en)

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3868936A (en) * 1971-03-19 1975-03-04 Renault Fuel injection systems
DE2457425A1 (en) * 1974-01-04 1975-07-17 Dresser Investments VARIABLE VENTURIM MIXING TUBE FOR MIXING AND REGULATING LIQUID FUEL WITH THE INLET AIR OF A COMBUSTION MACHINE
US3903215A (en) * 1973-08-31 1975-09-02 Gen Motors Corp Sonic throttle carburetor
US3911063A (en) * 1974-07-18 1975-10-07 Dresser Ind Variable throat venturi apparatus for mixing and modulating liquid fuel and intake air to an internal combustion engine
US3931368A (en) * 1974-02-04 1976-01-06 Ford Motor Company Fuel flow proportioning valve
US3931814A (en) * 1972-09-28 1976-01-13 Regie Nationale Des Usines Renault Cylinder-induction responsive electronic fuel feed control carburetors
DE2529752A1 (en) * 1974-07-03 1976-01-22 Dresser Investments FLUID FLOW DEVICE AND MEASURING A LIQUID
US3942553A (en) * 1974-01-10 1976-03-09 Process Systems, Inc. Digital fluid flow control system with trim adjustment
US3953548A (en) * 1973-09-13 1976-04-27 Robert Bosch Gmbh Fuel injection system
US3987132A (en) * 1974-07-03 1976-10-19 Dresser Industries, Inc. Fluid flow regulation
US4000225A (en) * 1976-01-15 1976-12-28 Ford Motor Company Sonic flow variable area venturi carburetor
US4021511A (en) * 1976-02-12 1977-05-03 Ford Aerospace & Communications Fuel distributor apparatus for plug-type carburetor
US4021512A (en) * 1976-02-12 1977-05-03 Aeronutronic Ford (Now Ford Aerospace And Communications) Carburetor air turbine fuel distributor
US4049758A (en) * 1973-07-30 1977-09-20 Dresser Industries, Inc. Fuel introduction device for internal combustion engine
US4053544A (en) * 1974-04-15 1977-10-11 J. C. Moore Research, Inc. Fuel induction system for internal combustion engines
US4056583A (en) * 1975-02-07 1977-11-01 Toyota Jidosha Kogyo Kabushiki Kaisha Variable venturi carburetor
US4056085A (en) * 1976-06-18 1977-11-01 Ford Motor Company Engine positive crankcase ventilation valve assembly
US4059415A (en) * 1975-05-28 1977-11-22 Nissan Motor Co., Ltd. Apparatus for reforming combustible into gaseous fuel by reaction with decomposition product of hydrogen peroxide
US4065526A (en) * 1976-02-23 1977-12-27 Dresser Industries, Inc. Fuel introduction device for internal combustion engine
US4070279A (en) * 1976-09-13 1978-01-24 Armstrong Edward T Eductor for dissolving gases in liquids
US4087493A (en) * 1975-02-13 1978-05-02 Carbo-Economy, S.A. Apparatus for providing a uniform combustible air-fuel mixture
US4109862A (en) * 1977-04-08 1978-08-29 Nathaniel Hughes Sonic energy transducer
US4139581A (en) * 1976-09-16 1979-02-13 Swanson Wilbur M Carburetor
US4152375A (en) * 1977-04-19 1979-05-01 Pierburg Gmbh & Co. Kg Fuel supply apparatus for externally ignited combustion engines with continuous fuel addition to the suction pipe
US4187805A (en) * 1978-06-27 1980-02-12 Abbey Harold Fuel-air ratio controlled carburetion system
US4189101A (en) * 1977-04-08 1980-02-19 Nathaniel Hughes Stable vortex generating device
US4198357A (en) * 1978-12-08 1980-04-15 Dresser Industries, Inc. Flow device and method
US4206158A (en) * 1976-04-05 1980-06-03 Ford Motor Company Sonic flow carburetor with fuel distributing means
US4215535A (en) * 1978-01-19 1980-08-05 United Technologies Corporation Method and apparatus for reducing nitrous oxide emissions from combustors
US4230273A (en) * 1978-02-07 1980-10-28 The Bendix Corporation Fuel injection valve and single point system
US4231971A (en) * 1979-04-11 1980-11-04 Dresser Industries, Inc. Flow method and device
US4234522A (en) * 1975-12-03 1980-11-18 Regie Nationale Des Usines Renault Variable diffuser for carburetors
US4234527A (en) * 1979-08-21 1980-11-18 Anderson Richard D Evaporative carburetor for combustion engines
US4235375A (en) * 1978-02-07 1980-11-25 The Bendix Corporation Fuel injection valve and single point system
US4250856A (en) * 1980-01-25 1981-02-17 Abbey Harold Fuel-air ratio automatic control system using variable venturi structure
US4280969A (en) * 1976-09-16 1981-07-28 Swanson Wilbur M Carburetor
US4322376A (en) * 1980-10-20 1982-03-30 Hammons Carl A Carburetor
US4373502A (en) * 1980-10-16 1983-02-15 Miletech, Inc. Fuel control system
US4420438A (en) * 1981-12-09 1983-12-13 Goosen Carl C Carburetor throttle valve method and apparatus
US4526729A (en) * 1983-01-26 1985-07-02 Braun Alfred J Vortex carburetor
EP0152202A2 (en) * 1984-01-24 1985-08-21 The BOC Group plc Dissolving gas in a liquid
EP0152201A2 (en) * 1984-01-24 1985-08-21 The BOC Group plc Dissolving gas in liquid
DE3409934A1 (en) * 1984-03-17 1985-09-19 Peter Graf von 8000 München Ingelheim Devices working according to the injector principle and use of such devices in centrifugal pumps, turbines and in particular hydrodynamic transmissions
US4861352A (en) * 1987-12-30 1989-08-29 Union Carbide Corporation Method of separating a gas and/or particulate matter from a liquid
US4867918A (en) * 1987-12-30 1989-09-19 Union Carbide Corporation Gas dispersion process and system
US4931225A (en) * 1987-12-30 1990-06-05 Union Carbide Industrial Gases Technology Corporation Method and apparatus for dispersing a gas into a liquid
US5302325A (en) * 1990-09-25 1994-04-12 Praxair Technology, Inc. In-line dispersion of gas in liquid
US5942159A (en) * 1997-09-03 1999-08-24 Peterson; Lonn Carburetor throttle valve flow optimizer
US6244573B1 (en) * 1998-03-18 2001-06-12 Lytesyde, Llc Fluid processing system
US6290215B1 (en) 2000-02-10 2001-09-18 Michael Pinsker Carburetor with pressurized fuel injectors
EP1295028A1 (en) * 2000-06-30 2003-03-26 Orbital Engine Company (Australia) Pty. Ltd. Shockwave injector nozzle
US20030201552A1 (en) * 2002-04-30 2003-10-30 Chuang Shuo Wei Adjustable bubble generator practical for use as a relief valve
US6786475B2 (en) * 2002-05-17 2004-09-07 Salter Labs Bubble humidifier with improved diffuser and pressure relief device
US20050035219A1 (en) * 2003-08-15 2005-02-17 Rock Kelly P. Fuel processor apparatus and method
US20050257428A1 (en) * 2004-05-24 2005-11-24 Glew Wayne K Fuel conditioning apparatus
US20070169773A1 (en) * 2006-01-23 2007-07-26 Lytesyde, Llc Medical liquid processor apparatus and method
US20070169760A1 (en) * 2006-01-23 2007-07-26 Rock Kelly P Fuel processor apparatus and method
US20070189114A1 (en) * 2004-04-16 2007-08-16 Crenano Gmbh Multi-chamber supercavitation reactor
US7441753B1 (en) * 2007-05-03 2008-10-28 Borch Corporation Carburetor
US20090038582A1 (en) * 2007-08-07 2009-02-12 Lytesyde, Llc Fuel Processor Apparatus and Method
GB2505238A (en) * 2012-08-24 2014-02-26 Lars Roland Stenudd Wahl Haukaas Variable area carburettor throat
US20140216400A1 (en) * 2013-02-07 2014-08-07 Thrival Tech, LLC Fuel Treatment System and Method
US9126176B2 (en) 2012-05-11 2015-09-08 Caisson Technology Group LLC Bubble implosion reactor cavitation device, subassembly, and methods for utilizing the same
US9272817B2 (en) * 2012-09-28 2016-03-01 Nicholas Becker Liquid-dispensing systems with integrated aeration
WO2018085084A1 (en) * 2016-11-02 2018-05-11 Dow Global Technologies Llc Fluid catalytic reactors which include flow directors
US10507448B2 (en) 2016-11-02 2019-12-17 Dow Global Technologies Llc Methods for designing scaled-up fluid catalytic reactors
US20220025836A1 (en) * 2020-07-21 2022-01-27 Andreas Stihl Ag & Co. Kg Fuel supply device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1145131B (en) * 1981-11-20 1986-11-05 Fiat Auto Spa ELECTRONIC INJECTION COUPLED TO A SONIC VARIABLE-PART AIR DIFFUSER
DE3913334A1 (en) * 1989-04-22 1990-10-25 Caldyn Apparatebau Gmbh DEVICE FOR SPRAYING LIQUID OR FOR SPRAYING GAS INTO SMALL BUBBLES

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR359408A (en) * 1904-11-19 1906-03-26 John Arthur Torrens Improvements in carburettors for internal combustion machines
US1148247A (en) * 1914-03-31 1915-07-27 William J P Moore Carbureter.
US1212986A (en) * 1915-04-02 1917-01-16 William J P Moore Carbureter.
US1277963A (en) * 1914-10-22 1918-09-03 Ralph M Lovejoy Carbureter.
US1378055A (en) * 1919-07-16 1921-05-17 Pusey Howard Carroll Carbureter
US1441992A (en) * 1917-12-05 1923-01-09 American Gasaccumulator Co Carburetor
GB196380A (en) * 1922-01-23 1923-04-23 Benjamin Elston Improvements in spray carburettors
GB197825A (en) * 1922-05-01 1923-05-24 Georges Soulage Improvements in or relating to carburettors
FR26527E (en) * 1922-05-18 1924-01-11 Jet-less carburettor with or without constant level
US1626085A (en) * 1923-03-19 1927-04-26 Henriot Louis Carburetor
GB453996A (en) * 1935-03-30 1936-09-22 Eugen Ludwig Mueller Improvements in carburetting in internal combustion engines
US2136959A (en) * 1934-10-26 1938-11-15 Edward A Winfield Fuel supply system
US2247189A (en) * 1940-07-23 1941-06-24 Guyon Clement De Carburetor
GB551574A (en) * 1941-12-17 1943-03-01 Charles Alfred Payne Improvements in water cooling towers and similar apparatus
US2650081A (en) * 1948-10-02 1953-08-25 Edward A Rockwell System of auxiliary carburetion for internal-combustion engines
US3085793A (en) * 1960-10-26 1963-04-16 Chemical Construction Corp Apparatus for scrubbing solids from gas streams
US3143401A (en) * 1961-08-17 1964-08-04 Gen Electric Supersonic fuel injector
US3282572A (en) * 1965-08-24 1966-11-01 Comb And Explosives Res Inc Method and apparatus for supplying fuel-air mixtures to internal combustion engines
US3570824A (en) * 1968-07-19 1971-03-16 Inq H C F Porsche Kg Fa Dr Electronically controlled carburetor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR466641A (en) * 1913-03-08 1914-05-19 Leon Turcat Improvements to the intake pipes of internal combustion engines
DE385425C (en) * 1921-07-16 1923-11-23 Alf James Rudolf Lysholm Injection carburetor
DE830265C (en) * 1949-09-07 1952-02-04 S U Carburetter Company Ltd Carburetors for internal combustion engines
FR91955E (en) * 1966-04-26 1968-09-06 Inst Francais Du Petrole Process for the combustion of globally lean mixtures in positive-ignition engines and devices for its implementation

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR359408A (en) * 1904-11-19 1906-03-26 John Arthur Torrens Improvements in carburettors for internal combustion machines
US1148247A (en) * 1914-03-31 1915-07-27 William J P Moore Carbureter.
US1277963A (en) * 1914-10-22 1918-09-03 Ralph M Lovejoy Carbureter.
US1212986A (en) * 1915-04-02 1917-01-16 William J P Moore Carbureter.
US1441992A (en) * 1917-12-05 1923-01-09 American Gasaccumulator Co Carburetor
US1378055A (en) * 1919-07-16 1921-05-17 Pusey Howard Carroll Carbureter
GB196380A (en) * 1922-01-23 1923-04-23 Benjamin Elston Improvements in spray carburettors
GB197825A (en) * 1922-05-01 1923-05-24 Georges Soulage Improvements in or relating to carburettors
FR26527E (en) * 1922-05-18 1924-01-11 Jet-less carburettor with or without constant level
US1626085A (en) * 1923-03-19 1927-04-26 Henriot Louis Carburetor
US2136959A (en) * 1934-10-26 1938-11-15 Edward A Winfield Fuel supply system
GB453996A (en) * 1935-03-30 1936-09-22 Eugen Ludwig Mueller Improvements in carburetting in internal combustion engines
US2247189A (en) * 1940-07-23 1941-06-24 Guyon Clement De Carburetor
GB551574A (en) * 1941-12-17 1943-03-01 Charles Alfred Payne Improvements in water cooling towers and similar apparatus
US2650081A (en) * 1948-10-02 1953-08-25 Edward A Rockwell System of auxiliary carburetion for internal-combustion engines
US3085793A (en) * 1960-10-26 1963-04-16 Chemical Construction Corp Apparatus for scrubbing solids from gas streams
US3143401A (en) * 1961-08-17 1964-08-04 Gen Electric Supersonic fuel injector
US3282572A (en) * 1965-08-24 1966-11-01 Comb And Explosives Res Inc Method and apparatus for supplying fuel-air mixtures to internal combustion engines
US3570824A (en) * 1968-07-19 1971-03-16 Inq H C F Porsche Kg Fa Dr Electronically controlled carburetor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Mavis et al., Univ. of Iowa Studies in Engr., Bull., No. 13, 1938, TA 7.I72, Pgs. 1 7. *

Cited By (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3868936A (en) * 1971-03-19 1975-03-04 Renault Fuel injection systems
US3931814A (en) * 1972-09-28 1976-01-13 Regie Nationale Des Usines Renault Cylinder-induction responsive electronic fuel feed control carburetors
US4049758A (en) * 1973-07-30 1977-09-20 Dresser Industries, Inc. Fuel introduction device for internal combustion engine
US3903215A (en) * 1973-08-31 1975-09-02 Gen Motors Corp Sonic throttle carburetor
US3953548A (en) * 1973-09-13 1976-04-27 Robert Bosch Gmbh Fuel injection system
DE2457425A1 (en) * 1974-01-04 1975-07-17 Dresser Investments VARIABLE VENTURIM MIXING TUBE FOR MIXING AND REGULATING LIQUID FUEL WITH THE INLET AIR OF A COMBUSTION MACHINE
US3949025A (en) * 1974-01-04 1976-04-06 Dresser Industries, Inc. Variable throat venturi apparatus for mixing and modulating liquid fuel and intake air to an internal combustion engine
DE2462819C2 (en) * 1974-01-04 1984-10-25 Dresser Investments N.V., Willemstad, Curacao Carburetors for internal combustion engines
US3942553A (en) * 1974-01-10 1976-03-09 Process Systems, Inc. Digital fluid flow control system with trim adjustment
US3931368A (en) * 1974-02-04 1976-01-06 Ford Motor Company Fuel flow proportioning valve
US4053544A (en) * 1974-04-15 1977-10-11 J. C. Moore Research, Inc. Fuel induction system for internal combustion engines
US3987132A (en) * 1974-07-03 1976-10-19 Dresser Industries, Inc. Fluid flow regulation
US3965221A (en) * 1974-07-03 1976-06-22 Dresser Industries, Inc. Fluid flow device and liquid metering
DE2529752A1 (en) * 1974-07-03 1976-01-22 Dresser Investments FLUID FLOW DEVICE AND MEASURING A LIQUID
US3911063A (en) * 1974-07-18 1975-10-07 Dresser Ind Variable throat venturi apparatus for mixing and modulating liquid fuel and intake air to an internal combustion engine
US4056583A (en) * 1975-02-07 1977-11-01 Toyota Jidosha Kogyo Kabushiki Kaisha Variable venturi carburetor
US4087493A (en) * 1975-02-13 1978-05-02 Carbo-Economy, S.A. Apparatus for providing a uniform combustible air-fuel mixture
US4059415A (en) * 1975-05-28 1977-11-22 Nissan Motor Co., Ltd. Apparatus for reforming combustible into gaseous fuel by reaction with decomposition product of hydrogen peroxide
US4234522A (en) * 1975-12-03 1980-11-18 Regie Nationale Des Usines Renault Variable diffuser for carburetors
US4000225A (en) * 1976-01-15 1976-12-28 Ford Motor Company Sonic flow variable area venturi carburetor
US4021511A (en) * 1976-02-12 1977-05-03 Ford Aerospace & Communications Fuel distributor apparatus for plug-type carburetor
US4021512A (en) * 1976-02-12 1977-05-03 Aeronutronic Ford (Now Ford Aerospace And Communications) Carburetor air turbine fuel distributor
US4065526A (en) * 1976-02-23 1977-12-27 Dresser Industries, Inc. Fuel introduction device for internal combustion engine
US4206158A (en) * 1976-04-05 1980-06-03 Ford Motor Company Sonic flow carburetor with fuel distributing means
US4056085A (en) * 1976-06-18 1977-11-01 Ford Motor Company Engine positive crankcase ventilation valve assembly
US4070279A (en) * 1976-09-13 1978-01-24 Armstrong Edward T Eductor for dissolving gases in liquids
US4139581A (en) * 1976-09-16 1979-02-13 Swanson Wilbur M Carburetor
US4280969A (en) * 1976-09-16 1981-07-28 Swanson Wilbur M Carburetor
US4189101A (en) * 1977-04-08 1980-02-19 Nathaniel Hughes Stable vortex generating device
US4109862A (en) * 1977-04-08 1978-08-29 Nathaniel Hughes Sonic energy transducer
US4152375A (en) * 1977-04-19 1979-05-01 Pierburg Gmbh & Co. Kg Fuel supply apparatus for externally ignited combustion engines with continuous fuel addition to the suction pipe
US4215535A (en) * 1978-01-19 1980-08-05 United Technologies Corporation Method and apparatus for reducing nitrous oxide emissions from combustors
US4235375A (en) * 1978-02-07 1980-11-25 The Bendix Corporation Fuel injection valve and single point system
US4230273A (en) * 1978-02-07 1980-10-28 The Bendix Corporation Fuel injection valve and single point system
US4187805A (en) * 1978-06-27 1980-02-12 Abbey Harold Fuel-air ratio controlled carburetion system
US4198357A (en) * 1978-12-08 1980-04-15 Dresser Industries, Inc. Flow device and method
US4231971A (en) * 1979-04-11 1980-11-04 Dresser Industries, Inc. Flow method and device
US4234527A (en) * 1979-08-21 1980-11-18 Anderson Richard D Evaporative carburetor for combustion engines
US4250856A (en) * 1980-01-25 1981-02-17 Abbey Harold Fuel-air ratio automatic control system using variable venturi structure
US4373502A (en) * 1980-10-16 1983-02-15 Miletech, Inc. Fuel control system
US4322376A (en) * 1980-10-20 1982-03-30 Hammons Carl A Carburetor
US4420438A (en) * 1981-12-09 1983-12-13 Goosen Carl C Carburetor throttle valve method and apparatus
US4526729A (en) * 1983-01-26 1985-07-02 Braun Alfred J Vortex carburetor
EP0152202A3 (en) * 1984-01-24 1987-08-05 The BOC Group plc Dissolving gas in a liquid
EP0152201A2 (en) * 1984-01-24 1985-08-21 The BOC Group plc Dissolving gas in liquid
US4639340A (en) * 1984-01-24 1987-01-27 The Boc Group Plc Dissolving gas in a liquid
EP0152202A2 (en) * 1984-01-24 1985-08-21 The BOC Group plc Dissolving gas in a liquid
EP0152201A3 (en) * 1984-01-24 1987-08-05 The Boc Group Plc Dissolving gas in liquid
AU577824B2 (en) * 1984-01-24 1988-10-06 Boc Group Plc, The Dissolving gas in a liquid
DE3409934A1 (en) * 1984-03-17 1985-09-19 Peter Graf von 8000 München Ingelheim Devices working according to the injector principle and use of such devices in centrifugal pumps, turbines and in particular hydrodynamic transmissions
US4861352A (en) * 1987-12-30 1989-08-29 Union Carbide Corporation Method of separating a gas and/or particulate matter from a liquid
US4867918A (en) * 1987-12-30 1989-09-19 Union Carbide Corporation Gas dispersion process and system
US4931225A (en) * 1987-12-30 1990-06-05 Union Carbide Industrial Gases Technology Corporation Method and apparatus for dispersing a gas into a liquid
US5302325A (en) * 1990-09-25 1994-04-12 Praxair Technology, Inc. In-line dispersion of gas in liquid
US5942159A (en) * 1997-09-03 1999-08-24 Peterson; Lonn Carburetor throttle valve flow optimizer
US6082711A (en) * 1997-09-03 2000-07-04 Peterson; Lonn Carburetor throttle valve flow optimizer
US6244573B1 (en) * 1998-03-18 2001-06-12 Lytesyde, Llc Fluid processing system
US6347789B1 (en) * 1998-03-18 2002-02-19 Lytesyde, L.L.C. Fluid processing system
US6648306B2 (en) 1998-03-18 2003-11-18 Lytesyde, Llc Fluid processing system and method
US6290215B1 (en) 2000-02-10 2001-09-18 Michael Pinsker Carburetor with pressurized fuel injectors
EP1295028A4 (en) * 2000-06-30 2006-12-13 Orbital Eng Pty Shockwave injector nozzle
EP1295028A1 (en) * 2000-06-30 2003-03-26 Orbital Engine Company (Australia) Pty. Ltd. Shockwave injector nozzle
US20030201552A1 (en) * 2002-04-30 2003-10-30 Chuang Shuo Wei Adjustable bubble generator practical for use as a relief valve
US6655664B2 (en) * 2002-04-30 2003-12-02 Shuo Wei Chuang Adjustable bubble generator practical for use as a relief valve
US6786475B2 (en) * 2002-05-17 2004-09-07 Salter Labs Bubble humidifier with improved diffuser and pressure relief device
US7104528B2 (en) 2003-08-15 2006-09-12 Lytesyde, Llc Fuel processor apparatus and method
US20050035219A1 (en) * 2003-08-15 2005-02-17 Rock Kelly P. Fuel processor apparatus and method
US20070189114A1 (en) * 2004-04-16 2007-08-16 Crenano Gmbh Multi-chamber supercavitation reactor
US20050257428A1 (en) * 2004-05-24 2005-11-24 Glew Wayne K Fuel conditioning apparatus
US7287744B2 (en) * 2004-05-24 2007-10-30 Wayne Glew Fuel conditioning apparatus
US7510171B2 (en) 2004-05-24 2009-03-31 Wayne Kenneth Glew Fuel conditioning apparatus
US20070169773A1 (en) * 2006-01-23 2007-07-26 Lytesyde, Llc Medical liquid processor apparatus and method
US20070169760A1 (en) * 2006-01-23 2007-07-26 Rock Kelly P Fuel processor apparatus and method
US7681569B2 (en) 2006-01-23 2010-03-23 Lytesyde, Llc Medical liquid processor apparatus and method
US7717096B2 (en) 2006-01-23 2010-05-18 Lytesyde, Llc Fuel processor apparatus and method
US20080272505A1 (en) * 2007-05-03 2008-11-06 Ming-Ching Wang Carburetor
US7441753B1 (en) * 2007-05-03 2008-10-28 Borch Corporation Carburetor
US20090038582A1 (en) * 2007-08-07 2009-02-12 Lytesyde, Llc Fuel Processor Apparatus and Method
US8028674B2 (en) 2007-08-07 2011-10-04 Lytesyde, Llc Fuel processor apparatus and method
US9682356B2 (en) 2012-05-11 2017-06-20 Kcs678 Llc Bubble implosion reactor cavitation device, subassembly, and methods for utilizing the same
US9126176B2 (en) 2012-05-11 2015-09-08 Caisson Technology Group LLC Bubble implosion reactor cavitation device, subassembly, and methods for utilizing the same
GB2505238A (en) * 2012-08-24 2014-02-26 Lars Roland Stenudd Wahl Haukaas Variable area carburettor throat
US9272817B2 (en) * 2012-09-28 2016-03-01 Nicholas Becker Liquid-dispensing systems with integrated aeration
US9222403B2 (en) * 2013-02-07 2015-12-29 Thrival Tech, LLC Fuel treatment system and method
US20160195045A1 (en) * 2013-02-07 2016-07-07 Thrivaltech, Llc Fuel Treatment System and Method
US20140216400A1 (en) * 2013-02-07 2014-08-07 Thrival Tech, LLC Fuel Treatment System and Method
WO2018085084A1 (en) * 2016-11-02 2018-05-11 Dow Global Technologies Llc Fluid catalytic reactors which include flow directors
US20190255498A1 (en) * 2016-11-02 2019-08-22 Dow Global Technologies Llc Fluid catalytic reactors which include flow directors
US10507448B2 (en) 2016-11-02 2019-12-17 Dow Global Technologies Llc Methods for designing scaled-up fluid catalytic reactors
US10589242B2 (en) * 2016-11-02 2020-03-17 Dow Global Technologies Llc Fluid catalytic reactors which include flow directors
RU2754860C2 (en) * 2016-11-02 2021-09-08 Дау Глоубл Текнолоджиз Ллк Catalytic reactors with fluidized catalyst containing flow distributors
US20220025836A1 (en) * 2020-07-21 2022-01-27 Andreas Stihl Ag & Co. Kg Fuel supply device

Also Published As

Publication number Publication date
GB1371802A (en) 1974-10-30
AR194824A1 (en) 1973-08-24
AU463361B2 (en) 1975-07-24
CA940788A (en) 1974-01-29
DE2153816C2 (en) 1982-03-11
NL7112168A (en) 1972-12-12
FR2084292A5 (en) 1971-12-17
GB1343311A (en) 1974-01-10
DE2153816A1 (en) 1972-12-14
DE2110506A1 (en) 1971-09-16
DE2110506B2 (en) 1976-06-24
AU3284271A (en) 1973-03-08
FR2140972A6 (en) 1973-01-19
CH552136A (en) 1974-07-31

Similar Documents

Publication Publication Date Title
US3778038A (en) Method and apparatus for mixing and modulating liquid fuel and intake air for an internal combustion engine
US3393984A (en) Fuel system components
US3952776A (en) Fluid flow device
JPS581654Y2 (en) Intake system for fuel-injected internal combustion engines
US3832985A (en) Non-pollution carburetion system for engines
US1990702A (en) Method and apparatus for producing fuel mixtures
US3759499A (en) Decontamination of internal combustion engine exhaust gases and devices for the implementation of the procedures
US4231383A (en) Method for controlling mass flow rate
US3201097A (en) Carburetor fuel system
US4002704A (en) Carburetor
US4336776A (en) Swirl-inducing apparatus for internal combustion engines
US6290215B1 (en) Carburetor with pressurized fuel injectors
US4085713A (en) Torch ignition internal combustion engine
US4087493A (en) Apparatus for providing a uniform combustible air-fuel mixture
US4373500A (en) Carburetor air injection system
US3331360A (en) Anti-smog carburetor for internal combustion engines
Lindsay et al. Influence of homogeneous charge on the exhaust emissions of hydrocarbons, carbon monoxide, and nitric oxide from a multicylinder engine
Liimatta et al. Effects of mixture distribution on exhaust emissions as indicated by engine data and the hydraulic analogy
GB2043784A (en) Variable-venturi carburettor having low machine flow characteristics
Schweitzer Control of exhaust pollution through a mixture-optimizer
US3091229A (en) Means and method for improving combustion in internal combustion engines
US3223394A (en) Aspirator for a carburetor
US3707278A (en) Carburetor for internal combustion engine
US4479469A (en) Internal combustion engine
Dodd et al. Paper 17: Effect of Mixture Quality on Exhaust Emissions from Single-Cylinder Engines