US3775294A - Producing coke from hydrotreated crude oil - Google Patents
Producing coke from hydrotreated crude oil Download PDFInfo
- Publication number
- US3775294A US3775294A US00157529A US3775294DA US3775294A US 3775294 A US3775294 A US 3775294A US 00157529 A US00157529 A US 00157529A US 3775294D A US3775294D A US 3775294DA US 3775294 A US3775294 A US 3775294A
- Authority
- US
- United States
- Prior art keywords
- crude oil
- crude
- hydrotreating
- oil
- coker
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000010779 crude oil Substances 0.000 title abstract description 44
- 239000000571 coke Substances 0.000 title description 17
- 239000000047 product Substances 0.000 abstract description 24
- 238000009835 boiling Methods 0.000 abstract description 21
- 239000012263 liquid product Substances 0.000 abstract description 18
- 229910052717 sulfur Inorganic materials 0.000 abstract description 17
- 239000011593 sulfur Substances 0.000 abstract description 17
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 abstract description 16
- 239000000463 material Substances 0.000 abstract description 5
- 238000004821 distillation Methods 0.000 abstract description 4
- 238000000926 separation method Methods 0.000 abstract 1
- 239000003054 catalyst Substances 0.000 description 25
- 229910052739 hydrogen Inorganic materials 0.000 description 23
- 239000001257 hydrogen Substances 0.000 description 23
- 239000003921 oil Substances 0.000 description 22
- 238000000034 method Methods 0.000 description 19
- 230000008569 process Effects 0.000 description 19
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 18
- 239000007788 liquid Substances 0.000 description 14
- 229930195733 hydrocarbon Natural products 0.000 description 13
- 150000002430 hydrocarbons Chemical class 0.000 description 13
- 239000007789 gas Substances 0.000 description 11
- 238000004939 coking Methods 0.000 description 10
- XZMCDFZZKTWFGF-UHFFFAOYSA-N Cyanamide Chemical compound NC#N XZMCDFZZKTWFGF-UHFFFAOYSA-N 0.000 description 8
- 239000003502 gasoline Substances 0.000 description 7
- 239000004215 Carbon black (E152) Substances 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 238000005194 fractionation Methods 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 150000002431 hydrogen Chemical class 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 4
- 230000003111 delayed effect Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 150000001336 alkenes Chemical class 0.000 description 3
- 238000004517 catalytic hydrocracking Methods 0.000 description 3
- 238000005984 hydrogenation reaction Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 3
- 238000002407 reforming Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 235000013844 butane Nutrition 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000006477 desulfuration reaction Methods 0.000 description 2
- 230000023556 desulfurization Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 229910001502 inorganic halide Inorganic materials 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- DDTIGTPWGISMKL-UHFFFAOYSA-N molybdenum nickel Chemical compound [Ni].[Mo] DDTIGTPWGISMKL-UHFFFAOYSA-N 0.000 description 2
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical class CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000004523 catalytic cracking Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000001833 catalytic reforming Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 238000011033 desalting Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000011143 downstream manufacturing Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000003079 shale oil Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000000629 steam reforming Methods 0.000 description 1
- 238000004227 thermal cracking Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B57/00—Other carbonising or coking processes; Features of destructive distillation processes in general
- C10B57/04—Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B55/00—Coking mineral oils, bitumen, tar, and the like or mixtures thereof with solid carbonaceous material
Definitions
- the present invention relates generally to the field of hydrocarbon conversion processes and more specifically to hydrotreating and coking generally classified in the United States Patent Oflice, Class 208 subclass 212.
- Netherlands patent NL-6916 218-Q which claims priority of U.S. patent application 771,248, filed Oct. 28, 1968, teaches processes for converting sulfurous, hydrocarbonaceous black oils into lower boiling, normally liquid-hydrocarbon products of reduced sulfur content with an integrated process involving cracking in the presence of hydrogen and fixed bed catalytic desulfurization.
- Netherlands patent NL-6916 017-Q which claims priority of U.S. patent application Ser. No. 770,724, filed Oct. 25, 1968, teaches hydrodesulfurization of crude oil or reduced crude containing asphaltene fractions at low temperatures in the presence of a Group VI/ Group VII metal catalyst on alumina.
- the advantages of the invention include: capital cost saving by reducing number of fractionating columns and number of hydrotreating units required; reduced quantities of coke and corresponding increases in quantities of more valuable liquid products; lower sulfur content in the coke, in the C and lighter overheads and in all other liquid products; reduced corrosion due to sulfur removal before contact with crude tower, coker and subsequent downstream processing units; high throughput through the hydrotreater (the light fractions are hydrotreated in a unit no larger than that required for conventional hydrotreating of the heavier fractions only); and lower olefin contents in naphtha products, particularly gasoline.
- the present invention provides coke, particularly low sulfur coke which is of special value in the production of electrodes, e.g., for the electrolytic production of aluminum, and also produces low-sulfur liquid products which can be refined into naphthas, particularly gasoline having lower olefin contents.
- FIG. 1 is a schematic drawing of a refinery system hydrotreating whole crude oil of the present invention.
- FIG. 2 shows a schematic diagram of a process for hydrotreating topped crude oil according to the invention.
- Hydrocarbons It is an important aspect of the present invention that whole crude oil is hydrotreated. Previous processes have hydrotreated residual, e.g., 650 F. plus portions without achieving the advantages of the present invention as is demonstrated by a comparison of Examples HI and V. Crudes which are partially useful for the practice of the invention are those which are relatively high in sulfur content but low in asphaltene and heavy metals content. Sour West Texas crude is a good example of this type of crude.
- Topped crudes e.g., those having the portion boiling below about 400 F. fractioned out, can be utilized in place of the whole crude oil.
- Residual fraction the preferred residual fraction for coking according to the present invention is the fraction generally boiling above about 900 F., more preferably above about 1000 F., and most preferably above about 1050 F.
- Coker liquid products the coker liquid products selected for recycle will generally consist of the entire liquid product from C or C up through the highest boiling liquid products produced.
- the lower molecular weight material, particularly the C C and perhaps C portion are advantageously separated for olefin recovery. Any other portions of the coker liquid product may also be separated for separate use, if desired. From about 1 to about 100, more preferably from 50 to about 100, and most preferably from 75 to about 100 volume percent of liquid (C -plus) products from the coker will be mixed with the whole crude entering the hydrotreating process.
- the remaining coker liquids, if any, can be utilized for conventional purposes, e.g., for gasoline and heavier fuels.
- the hydrogen utilized with the present invention can be of commercial purity such as that derived from the reforming of naphtha as by any of the reforming processes described on pp. 184-193 of the September 1970 issue of Hydrocarbon Processing or can be manufactured specially for the purpose such as by steam reforming or partial oxidation of hydrocarbons (ibid. pp. 269-270). From about 1000 to about 6000, more preferably about 2000 to about 5000, and most preferably from about 2500 to about 4000 standard cubic feet of hydrogen will be contacted with each barrel of crude oil.
- Catalyst A wide variety of hydrogenation catalysts, especially those containing metals selected from the group nickel, molybdenum, cobalt and tungsten, or compounds containing such metals, can be employed including those marketed by the Girdler Division of Chemetron Corp. under the trade name Girdler G-51, Girdler G-76; those marketed by Union Oil Company of California under the trade name N-12; those marketed by American Cyanamid Company under the trade name Cyanamid HDS-ZA and Cyanamid EDS-1450, Cyanamid HTS- 1441, Cyanamid HDS-9A, and Cyanamid HDS-BA; those marketed by the Davison Chemical Company, Division of W. R. Grace & Co.
- nickel-molybdenum catalysts e.g., American Cyanamid HDS-3, EDS-9A and Nalco NM-502 are most preferred.
- Catalyst support The preferred catalyst supports are alumina, silica, magnesia or combinations thereof. In general, the support should not be sufficiently acidic so as to cause extensive hydrocracking of the oil under the preferred reaction conditions.
- a catalyst in the form of an extrudate, pellet or sphere of such size as to avoid excessive pressure drop through the catalyst bed but small enough to provide good transport of the oil into the center of the catalyst particle is used. Sizes from about /s to 1 inch are generally preferred. In a moving or ebulating bed hydrotreating reactor, inch or smaller extrudates or other shaped particles can be used to advantage.
- the temperature during the hydrotreating reaction should be from 600 to about 850 F., more preferably from 650 to about 800 F., and most preferably from 675 to about 775 F.
- the temperature used will depend on the relative hydrodesulfurization and hydrocracking activities of the particular catalyst used and will normally be increased during a run to compensate for catalyst deactivation.
- pressure during the hydrotreating reaction should be from about 250 to about 5000, more preferably from about 600 to about 2500 and most preferably from 800 to about 2000 p.s.1.g.
- Liquid hourly space velocity will generally be in the range of from about 4 0.5 to about 6, more preferably 0.5 to about 4, and most preferably 1 to about 3 volumes of liquid per volume of hydrotreating catalyst per hour.
- Coking The coking is carried out under conventional conditions, e.g., those described on pages -181 of the September 1970 issue of Hydrocarbon Processing and in the references therein.
- Conventional hydrotreating, distillation and coking apparatus can be employed. Though not necessary to the invention, with crude having high content of metals and/ or particulates, a conventional guard case filled with inexpensive catalyst can be provided upstream of the main hydrotreating reactor to protect the more expensive main catalyst.
- Examples I, IV and V are according to the invention.
- Examples II and III are comparative examples to illustrate the loss of advantages when the crude oil is first fractionated and the fractions separately hydrotreated.
- EXAMPLE I (Hydrotreating whole crude according to the invention) Referring to FIG. 1, whole crude 10 enters the desalter 11 of conventional design which removes inorganic halides.
- the desalted crude is heatcd in heat exchanger 12, contacted with make-up hydrogen 14 and recycle hydrogen 33 and further heated in furnace 13.
- the hot crude plus hydrogen stream is passed over a bed of nickel-molybdenum catalyst in hydrotreater 15 where hydrotreating occurs.
- the hydrotreated stream is cooled in heat exchanger 16 and fed to separator 17 which separates the gaseous from the liquid products.
- the liquid products are fed to the main distillation columns 18 where they are fractionated into product streams; gas 19 (composed primarily of C through 0.; which is sent to a conventional gas concentration facility), gasoline 20 (composed primarily of C through C fractions boiling up to about 400 F. and which is sent to blending and/or catalytic reforming).
- middle distillate 21 (which may be more than one fraction and which is composed primarily of kerosene, diesel fuel, and jet fuel)
- gas oil 22 both atmospheric and vacuum gas oil which is sent to catalytic cracking or to hydrocracking and residuals 23 which are sent to conventional delayed coker 24 to produce coke 25).
- Overhead from the coker is sent to heat exchanger 26 where it is cooled before fractionation in fractionating column 27.
- Overhead 28 from column 27 is composed primarily of C and lighter hydrocarbons and is sent to gas concentration.
- the bottoms 29 from fractionating tower 27 are composed primarily of C and heavier hydrocarbons and are recycled back to mix with the efiluent from desalter 11.
- the gaseous efiluent 30 from separator 17 is sent to scrubber 31 which removes a stream 32 consisting primarily of hydrogen sulfide and ammonia.
- the remainder of the efiluent from scrubber 31 consists primarily of hydrogen 33 which is recycled to mix with the make-up hydrogen and liquid feed to the hydrotreater 15.
- a crude oil containing 1.67 weight percent sulfur is processed according to this invention as shown in FIG. 1, to yield low sulfur liquid products and a delayed coke of reduced sulfur content.
- the sulfur contents of various fractions of the raw crude oil are shown in the table below.
- the hydrotreater 15 is operatedat 700 C. and 1500 p.s.i.g. with a total hydrogen feed of 3350 standard cubic feet per barrel of. oil.
- the oil is fed at a liquid hourly space velocity of 1.7 hr.”
- the catalyst used is American Cyanamid HDS-3A.
- the feed to thecoking unit 24 consists of residual boiling-iabove about 975 F. from column 18.
- the delayed coking unit 24 is Operated at a 925 F. bed temperature .and inlet feed temperature of 1000 F.
- the oil to steam feedratio is 20.5 volume of oil to volume of water. Cokingtime is 9 hours.
- the total charge to the hydrotreating unit 15 is 1185 bbl. per day.
- the additional charge rate of 185 bbl. per day is the recycled coker condensate 29.
- EXAMPLE II V (Conventionally fractionating and coking without hydrotreating) The same crude oil used in Example I is conventionally distilled and the residual fraction is coked under the conditions of Example I. Yields and sulfur contents of the products are tabulated below.
- the portion of the crude oil of Example I boiling above 400 F. is hydrotreated over the catalyst of Example III under substantially identical conditions except that the liquid hourly space velocity of the total feed is increased such that the space velocity of just the 630 F. plus portion of the feed is substantially the same as in Example 111.
- the lower sulfur contents of the 600-l050 F. and residual (1050 F. plus) fractions of the product of Example IV show the advantage of processing the. 400-600 F. portion of the crude oil together with the atmospheric residual (630 F. plus) fraction. No increase in hydrotreating reactor size is required since the space velocity can be increased sufficiently to include this additional material and still obtain improved desulfurization of the residual. Only a small amount of product boiling below 400 F. is obtained.
- EXAMPLE V (Demonstrating the advantages of hydrotreating whole crude oil as opposed to atmospheric residual)
- the whole crude oil of Example I is hydrotreated under essentially identical conditions as in Example IH, except that the liquid hourly space velocity of the total feed is increased sufficiently that more of the 630 F. plus portion of the crude oil is being hydrotreated per day than in Example III using the same size reactor.
- the sulfur content of all of the product fractions is equal to or lower than the corresponding products of Example HI despite the processing of both the lighter portion of the crude and a somewhat greater amount per day of 630 F. plus atmospheric residual.
- said hydrotreating catalyst comprises a metal selected from the group consisting of nickel, molybdenum, cobalt and tungsten or a compound containing one of the foregoing metals.
- feed to said hydrotreater consists essentially of topped crude oil, recycle bottoms from said fractionation of said coker oT erheads, and hydrogen.
- step (a) can consist essentially of whole c rude oil.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15752971A | 1971-06-28 | 1971-06-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3775294A true US3775294A (en) | 1973-11-27 |
Family
ID=22564126
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00157529A Expired - Lifetime US3775294A (en) | 1971-06-28 | 1971-06-28 | Producing coke from hydrotreated crude oil |
Country Status (2)
Country | Link |
---|---|
US (1) | US3775294A (enrdf_load_html_response) |
DE (1) | DE2215664B2 (enrdf_load_html_response) |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3984305A (en) * | 1973-04-12 | 1976-10-05 | Kureha Kagaku Kogyo Kabushiki Kaisha | Process for producing low sulfur content fuel oils |
US4048053A (en) * | 1975-10-30 | 1977-09-13 | Cities Service Company | Upgrading solid fuel-derived tars produced by short residence time low pressure hydropyrolysis |
US4358361A (en) * | 1979-10-09 | 1982-11-09 | Mobil Oil Corporation | Demetalation and desulfurization of oil |
US4388175A (en) * | 1981-12-14 | 1983-06-14 | Texaco Inc. | Hydrocarbon conversion process |
US4388152A (en) * | 1980-08-04 | 1983-06-14 | Conoco Inc. | Process for producing blast furnace grade coke, a distillable product and fuel gases from a heavy, high sulfur, crude oil |
US4455221A (en) * | 1983-02-09 | 1984-06-19 | Intevep | Process for upgrading heavy hydrocarbons employing a diluent |
US4498974A (en) * | 1982-09-17 | 1985-02-12 | Institut Francais Du Petrole | Process for converting a highly viscous hydrocarbon charge to a less viscous, more easily transportable and more easily refinable hydrocarbon fraction |
DE3725764A1 (de) * | 1986-08-04 | 1988-02-25 | Intevep Sa | Verfahren und anlage zum erzeugen von koks in anodenqualitaet |
US6168709B1 (en) | 1998-08-20 | 2001-01-02 | Roger G. Etter | Production and use of a premium fuel grade petroleum coke |
US20060032788A1 (en) * | 1999-08-20 | 2006-02-16 | Etter Roger G | Production and use of a premium fuel grade petroleum coke |
US20090145810A1 (en) * | 2006-11-17 | 2009-06-11 | Etter Roger G | Addition of a Reactor Process to a Coking Process |
US20090152165A1 (en) * | 2006-11-17 | 2009-06-18 | Etter Roger G | System and Method for Introducing an Additive into a Coking Process to Improve Quality and Yields of Coker Products |
US20090209799A1 (en) * | 2006-11-17 | 2009-08-20 | Etter Roger G | System and Method of Introducing an Additive with a Unique Catalyst to a Coking Process |
US20100170827A1 (en) * | 2006-11-17 | 2010-07-08 | Etter Roger G | Selective Cracking and Coking of Undesirable Components in Coker Recycle and Gas Oils |
US9011672B2 (en) | 2006-11-17 | 2015-04-21 | Roger G. Etter | System and method of introducing an additive with a unique catalyst to a coking process |
US20180016503A1 (en) * | 2016-07-15 | 2018-01-18 | Indian Oil Corporation Limited | Delayed coker drum and method of operating thereof |
US10808184B1 (en) | 2016-11-03 | 2020-10-20 | Marathon Petroleum Company Lp | Catalytic stripping process |
US11802257B2 (en) | 2022-01-31 | 2023-10-31 | Marathon Petroleum Company Lp | Systems and methods for reducing rendered fats pour point |
US11860069B2 (en) | 2021-02-25 | 2024-01-02 | Marathon Petroleum Company Lp | Methods and assemblies for determining and using standardized spectral responses for calibration of spectroscopic analyzers |
US11891581B2 (en) | 2017-09-29 | 2024-02-06 | Marathon Petroleum Company Lp | Tower bottoms coke catching device |
US11898109B2 (en) | 2021-02-25 | 2024-02-13 | Marathon Petroleum Company Lp | Assemblies and methods for enhancing control of hydrotreating and fluid catalytic cracking (FCC) processes using spectroscopic analyzers |
US11905479B2 (en) | 2020-02-19 | 2024-02-20 | Marathon Petroleum Company Lp | Low sulfur fuel oil blends for stability enhancement and associated methods |
US11905468B2 (en) | 2021-02-25 | 2024-02-20 | Marathon Petroleum Company Lp | Assemblies and methods for enhancing control of fluid catalytic cracking (FCC) processes using spectroscopic analyzers |
US11970664B2 (en) | 2021-10-10 | 2024-04-30 | Marathon Petroleum Company Lp | Methods and systems for enhancing processing of hydrocarbons in a fluid catalytic cracking unit using a renewable additive |
US11975316B2 (en) | 2019-05-09 | 2024-05-07 | Marathon Petroleum Company Lp | Methods and reforming systems for re-dispersing platinum on reforming catalyst |
US12000720B2 (en) | 2018-09-10 | 2024-06-04 | Marathon Petroleum Company Lp | Product inventory monitoring |
US12031094B2 (en) | 2021-02-25 | 2024-07-09 | Marathon Petroleum Company Lp | Assemblies and methods for enhancing fluid catalytic cracking (FCC) processes during the FCC process using spectroscopic analyzers |
US12031676B2 (en) | 2019-03-25 | 2024-07-09 | Marathon Petroleum Company Lp | Insulation securement system and associated methods |
US12306076B2 (en) | 2023-05-12 | 2025-05-20 | Marathon Petroleum Company Lp | Systems, apparatuses, and methods for sample cylinder inspection, pressurization, and sample disposal |
US12311305B2 (en) | 2022-12-08 | 2025-05-27 | Marathon Petroleum Company Lp | Removable flue gas strainer and associated methods |
US12345416B2 (en) | 2019-05-30 | 2025-07-01 | Marathon Petroleum Company Lp | Methods and systems for minimizing NOx and CO emissions in natural draft heaters |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4178229A (en) * | 1978-05-22 | 1979-12-11 | Conoco, Inc. | Process for producing premium coke from vacuum residuum |
-
1971
- 1971-06-28 US US00157529A patent/US3775294A/en not_active Expired - Lifetime
-
1972
- 1972-03-27 DE DE2215664A patent/DE2215664B2/de active Granted
Cited By (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3984305A (en) * | 1973-04-12 | 1976-10-05 | Kureha Kagaku Kogyo Kabushiki Kaisha | Process for producing low sulfur content fuel oils |
US4048053A (en) * | 1975-10-30 | 1977-09-13 | Cities Service Company | Upgrading solid fuel-derived tars produced by short residence time low pressure hydropyrolysis |
US4358361A (en) * | 1979-10-09 | 1982-11-09 | Mobil Oil Corporation | Demetalation and desulfurization of oil |
US4388152A (en) * | 1980-08-04 | 1983-06-14 | Conoco Inc. | Process for producing blast furnace grade coke, a distillable product and fuel gases from a heavy, high sulfur, crude oil |
US4388175A (en) * | 1981-12-14 | 1983-06-14 | Texaco Inc. | Hydrocarbon conversion process |
US4498974A (en) * | 1982-09-17 | 1985-02-12 | Institut Francais Du Petrole | Process for converting a highly viscous hydrocarbon charge to a less viscous, more easily transportable and more easily refinable hydrocarbon fraction |
US4455221A (en) * | 1983-02-09 | 1984-06-19 | Intevep | Process for upgrading heavy hydrocarbons employing a diluent |
DE3725764A1 (de) * | 1986-08-04 | 1988-02-25 | Intevep Sa | Verfahren und anlage zum erzeugen von koks in anodenqualitaet |
US6168709B1 (en) | 1998-08-20 | 2001-01-02 | Roger G. Etter | Production and use of a premium fuel grade petroleum coke |
US20060032788A1 (en) * | 1999-08-20 | 2006-02-16 | Etter Roger G | Production and use of a premium fuel grade petroleum coke |
US9475992B2 (en) | 1999-08-20 | 2016-10-25 | Roger G. Etter | Production and use of a premium fuel grade petroleum coke |
US9187701B2 (en) | 2006-11-17 | 2015-11-17 | Roger G. Etter | Reactions with undesirable components in a coking process |
US20090145810A1 (en) * | 2006-11-17 | 2009-06-11 | Etter Roger G | Addition of a Reactor Process to a Coking Process |
US20100170827A1 (en) * | 2006-11-17 | 2010-07-08 | Etter Roger G | Selective Cracking and Coking of Undesirable Components in Coker Recycle and Gas Oils |
US8206574B2 (en) | 2006-11-17 | 2012-06-26 | Etter Roger G | Addition of a reactor process to a coking process |
US8361310B2 (en) | 2006-11-17 | 2013-01-29 | Etter Roger G | System and method of introducing an additive with a unique catalyst to a coking process |
US8372265B2 (en) | 2006-11-17 | 2013-02-12 | Roger G. Etter | Catalytic cracking of undesirable components in a coking process |
US8372264B2 (en) | 2006-11-17 | 2013-02-12 | Roger G. Etter | System and method for introducing an additive into a coking process to improve quality and yields of coker products |
US8394257B2 (en) | 2006-11-17 | 2013-03-12 | Roger G. Etter | Addition of a reactor process to a coking process |
US8888991B2 (en) | 2006-11-17 | 2014-11-18 | Roger G. Etter | System and method for introducing an additive into a coking process to improve quality and yields of coker products |
US8968553B2 (en) | 2006-11-17 | 2015-03-03 | Roger G. Etter | Catalytic cracking of undesirable components in a coking process |
US9011672B2 (en) | 2006-11-17 | 2015-04-21 | Roger G. Etter | System and method of introducing an additive with a unique catalyst to a coking process |
US9150796B2 (en) | 2006-11-17 | 2015-10-06 | Roger G. Etter | Addition of a modified vapor line reactor process to a coking process |
US20090152165A1 (en) * | 2006-11-17 | 2009-06-18 | Etter Roger G | System and Method for Introducing an Additive into a Coking Process to Improve Quality and Yields of Coker Products |
US20090209799A1 (en) * | 2006-11-17 | 2009-08-20 | Etter Roger G | System and Method of Introducing an Additive with a Unique Catalyst to a Coking Process |
US20180016503A1 (en) * | 2016-07-15 | 2018-01-18 | Indian Oil Corporation Limited | Delayed coker drum and method of operating thereof |
US10501692B2 (en) * | 2016-07-15 | 2019-12-10 | Indian Oil Corporation Limited | Delayed coker drum and method of operating thereof |
US10808184B1 (en) | 2016-11-03 | 2020-10-20 | Marathon Petroleum Company Lp | Catalytic stripping process |
US11168270B1 (en) | 2016-11-03 | 2021-11-09 | Marathon Petroleum Company Lp | Catalytic stripping process |
US11891581B2 (en) | 2017-09-29 | 2024-02-06 | Marathon Petroleum Company Lp | Tower bottoms coke catching device |
US12000720B2 (en) | 2018-09-10 | 2024-06-04 | Marathon Petroleum Company Lp | Product inventory monitoring |
US12031676B2 (en) | 2019-03-25 | 2024-07-09 | Marathon Petroleum Company Lp | Insulation securement system and associated methods |
US11975316B2 (en) | 2019-05-09 | 2024-05-07 | Marathon Petroleum Company Lp | Methods and reforming systems for re-dispersing platinum on reforming catalyst |
US12345416B2 (en) | 2019-05-30 | 2025-07-01 | Marathon Petroleum Company Lp | Methods and systems for minimizing NOx and CO emissions in natural draft heaters |
US11920096B2 (en) | 2020-02-19 | 2024-03-05 | Marathon Petroleum Company Lp | Low sulfur fuel oil blends for paraffinic resid stability and associated methods |
US11905479B2 (en) | 2020-02-19 | 2024-02-20 | Marathon Petroleum Company Lp | Low sulfur fuel oil blends for stability enhancement and associated methods |
US11860069B2 (en) | 2021-02-25 | 2024-01-02 | Marathon Petroleum Company Lp | Methods and assemblies for determining and using standardized spectral responses for calibration of spectroscopic analyzers |
US11885739B2 (en) | 2021-02-25 | 2024-01-30 | Marathon Petroleum Company Lp | Methods and assemblies for determining and using standardized spectral responses for calibration of spectroscopic analyzers |
US11905468B2 (en) | 2021-02-25 | 2024-02-20 | Marathon Petroleum Company Lp | Assemblies and methods for enhancing control of fluid catalytic cracking (FCC) processes using spectroscopic analyzers |
US12221583B2 (en) | 2021-02-25 | 2025-02-11 | Marathon Petroleum Company Lp | Assemblies and methods for enhancing control of hydrotreating and fluid catalytic cracking (FCC) processes using spectroscopic analyzers |
US11906423B2 (en) | 2021-02-25 | 2024-02-20 | Marathon Petroleum Company Lp | Methods, assemblies, and controllers for determining and using standardized spectral responses for calibration of spectroscopic analyzers |
US11898109B2 (en) | 2021-02-25 | 2024-02-13 | Marathon Petroleum Company Lp | Assemblies and methods for enhancing control of hydrotreating and fluid catalytic cracking (FCC) processes using spectroscopic analyzers |
US12031094B2 (en) | 2021-02-25 | 2024-07-09 | Marathon Petroleum Company Lp | Assemblies and methods for enhancing fluid catalytic cracking (FCC) processes during the FCC process using spectroscopic analyzers |
US11921035B2 (en) | 2021-02-25 | 2024-03-05 | Marathon Petroleum Company Lp | Methods and assemblies for determining and using standardized spectral responses for calibration of spectroscopic analyzers |
US12163878B2 (en) | 2021-02-25 | 2024-12-10 | Marathon Petroleum Company Lp | Methods and assemblies for determining and using standardized spectral responses for calibration of spectroscopic analyzers |
US11970664B2 (en) | 2021-10-10 | 2024-04-30 | Marathon Petroleum Company Lp | Methods and systems for enhancing processing of hydrocarbons in a fluid catalytic cracking unit using a renewable additive |
US12338396B2 (en) | 2021-10-10 | 2025-06-24 | Marathon Petroleum Company Lp | Methods and systems for enhancing processing of hydrocarbons in a fluid catalytic cracking unit using a renewable additive |
US12297403B2 (en) | 2022-01-31 | 2025-05-13 | Marathon Petroleum Company Lp | Systems and methods for reducing rendered fats pour point |
US11802257B2 (en) | 2022-01-31 | 2023-10-31 | Marathon Petroleum Company Lp | Systems and methods for reducing rendered fats pour point |
US12311305B2 (en) | 2022-12-08 | 2025-05-27 | Marathon Petroleum Company Lp | Removable flue gas strainer and associated methods |
US12306076B2 (en) | 2023-05-12 | 2025-05-20 | Marathon Petroleum Company Lp | Systems, apparatuses, and methods for sample cylinder inspection, pressurization, and sample disposal |
Also Published As
Publication number | Publication date |
---|---|
DE2215664A1 (de) | 1973-01-11 |
DE2215664B2 (de) | 1974-10-31 |
DE2215664C3 (enrdf_load_html_response) | 1975-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3775294A (en) | Producing coke from hydrotreated crude oil | |
US3775290A (en) | Integrated hydrotreating and catalytic cracking system for refining sour crude | |
KR102447300B1 (ko) | 선박용 연료들의 제조를 위한 고정층 수소화 처리, 수소화 처리된 잔사유 분획물의 분리 및 접촉 분해 스텝을 포함하는 전환 프로세스 | |
US3287254A (en) | Residual oil conversion process | |
US6620311B2 (en) | Process for converting petroleum fractions, comprising an ebullated bed hydroconversion step, a separation step, a hydrodesulphurization step and a cracking step | |
US4713221A (en) | Crude oil refining apparatus | |
US3507777A (en) | Cracking process | |
US6207041B1 (en) | Process for converting heavy crude oil fractions, comprising an ebullating bed hydroconversion step and a hydrotreatment step | |
US3245900A (en) | Hydrocarbon conversion process | |
EP3683289B1 (en) | Reforming method for low quality oil | |
US3172842A (en) | Hydrocarbon conversion process includ- ing a hydrocracking stage, two stages of catalytic cracking, and a reform- ing stage | |
US3671419A (en) | Upgrading of crude oil by combination processing | |
JP2015059220A (ja) | 水素化処理段階を採用する、接触分解から生じたhcoまたはスラリータイプの炭化水素含有留分からの、低硫黄含有率を有する舶用燃料の生産方法 | |
US4798665A (en) | Combination process for the conversion of a distillate hydrocarbon to maximize middle distillate production | |
US3306845A (en) | Multistage hydrofining process | |
US4218306A (en) | Method for catalytic cracking heavy oils | |
US4792390A (en) | Combination process for the conversion of a distillate hydrocarbon to produce middle distillate product | |
US3658681A (en) | Production of low sulfur fuel oil | |
US3472759A (en) | Process for removal of sulfur and metals from petroleum materials | |
KR100188422B1 (ko) | 잔유의 질을 향상시키는 방법 | |
US4565620A (en) | Crude oil refining | |
US3172835A (en) | Hours on stream | |
US2792336A (en) | Production of lighter hydrocarbons from petroleum oils involving hydrogenation and catalytic cracking | |
CN101412923B (zh) | 加氢改质组合方法 | |
US3185639A (en) | Hydrocarbon conversion process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MARATHON OIL COMPANY, AN OH CORP Free format text: ASSIGNS THE ENTIRE INTEREST IN ALL PATENTS AS OF JULY 10,1982 EXCEPT PATENT NOS. 3,783,944 AND 4,260,291. ASSIGNOR ASSIGNS A FIFTY PERCENT INTEREST IN SAID TWO PATENTS AS OF JULY 10,1982;ASSIGNOR:MARATHON PETROLEUM COMPANY;REEL/FRAME:004172/0421 Effective date: 19830420 |