US3769941A - Steam generator - Google Patents
Steam generator Download PDFInfo
- Publication number
- US3769941A US3769941A US00210496A US3769941DA US3769941A US 3769941 A US3769941 A US 3769941A US 00210496 A US00210496 A US 00210496A US 3769941D A US3769941D A US 3769941DA US 3769941 A US3769941 A US 3769941A
- Authority
- US
- United States
- Prior art keywords
- steam
- heating surface
- steam generator
- set forth
- working medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000010438 heat treatment Methods 0.000 claims abstract description 67
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 39
- 239000007789 gas Substances 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 10
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 3
- 239000003546 flue gas Substances 0.000 claims description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000004326 stimulated echo acquisition mode for imaging Methods 0.000 description 2
- 239000002826 coolant Substances 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B29/00—Steam boilers of forced-flow type
- F22B29/04—Steam boilers of forced-flow type of combined-circulation type, i.e. in which convection circulation due to the difference in specific gravity between cold and hot water is promoted by additional measures, e.g. by injecting pressure-water temporarily
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B21/00—Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
Definitions
- STEAM GENERATOR This invention relates to steam generators of the kind in which all heating surfaces are situated in a hot gas pass or flue whose walls, at least in the vicinity of the hot gas inlet, are formed of vertical, coolant-carrying tubes. That is, it relates to steam generators which do not have combustion chambers with radiant heating surfaces. Such steam generators may have their own uncooled combustion chambers such as uncooled swirl-type muffle burners or may be heated by exhaust gas.
- the presentinvention consists in a steam generator of which all the heating surfaces are located in a hot gas flue the walls of which, at least in the vicinity of the hot gas inlet, are formed of vertical tubes forming a first evaporator heating surface which is arranged to be cooled by natural circulation of working medium therethrough, the hot gas flue having within it a second evaporator heating surface which is arranged to be cooled by a forced flow of working medium and through which the working medium flows before flowing through the first evaporator heating surface.
- the evaporator heating surface consists of or includes a first heating surface cooledby naturalcirculation and a second heating surface cooled by forced flow, much of the advantage of the natural circulation principle .iscombined with much of the advantage of the forced through-flow principle, although the disadvantages of both principles are not fully manifested.
- the dimensions of the steam/water drum usual in natural circulation steam generators can be madesmaller, possibly to such an extent that they are of the same order of size as those of the water trapsusual in forced through-flow steam generators. This makes it possible to design the steam generator for relatively high steam pressures, without making the walls'of the steam/water separator too thick from the point of view of fabrication and thermal stressing.
- the steam generator can be started in approximately the same short time as a forced through-flow steam generator,'since the separator, being small, contains only a small amount of water.
- the second evaporator heating surface is located between an economiser and a steam/water separator in the forced flow of working medium.
- This arrangement enables the steam/water separator to be made smaller than if the. outlet of the economiser leads into the separator.
- FIGS. 1 and 2 are respectively vertical sections through the two vapor generators.
- the vapor generator 1 shown in FIG. 1 consists essentially of a vertical hot gas pass or hot gas flue 34, whose boundary walls are formed of vertical tubes, and heating surfaces situated inside the flue.
- the heating surface 3 farthest up the flue 34 forms an economiser to which feed water is supplied by a feed pump 17 along a line 16 with a feed valve 18.
- Below the economiser 3 the hot gas pass 34 houses three superheater heating surfaces 51, 55 and 59 arranged in series.
- the superheater surface 51 is connected by a steam line 50 a load.
- Near the bottom of the flue 34 there are four swirl-type muffle burners 70, arranged in pairs opposite one another so that only two burners can be seen in FIG. 1.
- the heat-carrying gas flows out of the muffles of these burners into the flue 34, transferring its heat to theheating surfaces almost entirely by convection since combustion is completed inside the uncooled muffles, Closest to the outlet of the muffle burners inside the flue 34 there is an evaporator heating surface 12 which consists of a plurality of tubes connected in parallel between the inlet header 11 and an outlet header 13 and which is cooled by the working medium in a forced flow.
- the outlet header 13 is connected by a line 14 to the steam space in the drum 15.
- All four walls of the flue are formed of finned tubes welded together, the tubes in the front wall 32 being connected in parallel with those in the rear wall 33 between an inlet header 31 and an outlet header 35. Similarly, the tubes in each of the two side walls 42 are connected .in parallel between an inlet header 41 and an outlet header 43.
- the inlet headers 31, 41 are connected by lines 30 and 40 respectively to a downcomer or gravity tube 20 leading from the drum 15, whereas the outlet headers 35, 43 are connected by lines 36 and 44 respectively to the steam space inthe drum 15.
- the cooled flue gas leaves the flue 34 through an aperture provided at the top of one of its side walls 42.
- the heating surfaces 12, 59, 55, 51 and 3 are mounted on supportingtub'es 8, of which the bottom ends are connected to a manifold 6 and the top' ends lead into an outlet header 9 connected by a line 10 to the inlet header 11 for the evaporator heating surface 12.
- the manifold 6 communicates with the downcomer '20 by a line 21 containing a circulating pump 22 and -ture of feed water and recycled water then flows along the supporting tubes 8 and through the line 10 into the evaporator heating surface 12, where partial evaporation takes place.
- the steam/water mixture flows along the line 14 to the drum 15, which separates the steam from the water.
- the steam separated in the drum 15 flows in succession through the three superheater surfaces 51, 55 and 59 and leaves the steam generator along the live steam line 60.
- a vessel 53 In the line between the superheater surfaces 51 and 55 there is a vessel 53 and in the line between the superheater surfaces 55 and 59 there is a vessel 58.
- Water from the downcomer 20 is injected into these vessels through lines 52, 57.
- the quantity of water injected can be adjusted by means of valves 54, 56.
- injection devices may be arranged to produce percent of the total quantity of steam generated.
- the valve 54 may be set at a fixed value and the valve 56 may be controlled in dependence upon the steam temperature in the live steam line 60.
- Another possibility is to connect the lines 52 and 57 to the line 21 downstream of the circulating pump 22, instead of to the downcomer 20. This enables the valve to be made smaller and/or the atomising pressure at the inlets of the vessels 53, 58 to be raised. Ejectors may be used to add the water instead of the injection vessels.
- the steam generator shown in FIG. 2 does not have a separate circulating pump, since the feed pump 17 is used also to feed the recycled water.
- a heat exchanger 2 is provided in the line 21, the secondary side of the heat exchanger being connected into the feed water line 16.
- the line 21 leads into a feed water reservoir 4 and is provided with a throttle valve 7 between the heat exchanger 2 and the feed water reservoir 4.
- a flow-rate measuring element 19, whose signal output is operatively connected to adjust the throttle valve 7, is linked to the feed water line 16.
- the feed valve 18 in the feed water line 16 is operatively connected to a water level gauge 23 connected to the drum 15.
- valves 7 and 18 may be interchanged; that is to say, the feed valve 18 may be connected to the flow-rate measuring element 19 and the throttle valve 7 to the level gauge 23.
- the sum of the measuring signals from the flow-rate measuring element 19 and level gauge 23 is made to act on the feed valve 18, and the difference between these signals is made to act on the throttle valve 7, or vice versa.
- a further alternative is to supply the vessels 53, 58 with feed water instead of recycled water.
- a steam generator comprising a plurality of walls defining a hot gas flue with a hot gas inlet and an outlet;
- each said wall including a plurality of vertical tubes at leat adjacent said inlet, said tubes defining a first evaporator heating surface for passage of a working medium therethrough under natural circulation;
- a second evaporator heating surface disposed within said flue for passage of the working medium therethrough under forced circulation, said second evaporator heating surface being disposed upstream of said first evaporator heating surface relative to the flow of working medium;
- a steam generator as set forth in claim I which further includes an economiser in said flue and a steam/- water separator in the forced flow of working medium, said second evaporator heating surface being loacted between said economiser and said separator relative to the flow of working medium.
- a steam generator as set forth in claim I which further includes superheater heating surfaces in said flue and means for injecting water into a flow of superheated steam between said superheater heating surfaces.
- a steam generator as set forth in claim 3 which further includes a steam/water separator vessel connected in common to both evaporator heating surfaces and said water injecting means is connected to said separator vessel.
- a steam generator as set forth in claim 1 which further includes at least one swirl-type muffle burner connected to said hot gas flue to supply hot flue gas thereto through said inlet.
- a steam generator as set forth in claim 1 which further includes at least one additional heating surface within said hot gas flue, said second evaporator heating surface being the nearest to said hot gas inlet of said heating surfaces within said hot gas flue.
- a steam generator as set forth in claim 1 which further includes means for supplying a forced through flow of feed water to said second evaporator heating surface and means for superimposing on the forced through flow a forced circulation of working medium.
- a method of generating steam in a steam generator which comprises the steps of heating a first part flow of working medium under natural circulation in a first evaporator heating surface to produce live steam, and
- a method as set forth in claim 9 which further comprises the steps of superheating the live steam from the heating surfaces to produce superheated steam and of injecting water into the superheated steam to produce additional steam.
- a method as set forth in claim 12 wherein said additional steam at normal load is at least 20 percent of the total live steam produced in the steam generator.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Steam Boilers And Waste-Gas Boilers (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CH1935870A CH532749A (de) | 1970-12-31 | 1970-12-31 | Dampferzeuger |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3769941A true US3769941A (en) | 1973-11-06 |
Family
ID=4438956
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US00210496A Expired - Lifetime US3769941A (en) | 1970-12-31 | 1971-12-21 | Steam generator |
Country Status (11)
| Country | Link |
|---|---|
| US (1) | US3769941A (cs) |
| JP (1) | JPS517241B1 (cs) |
| BE (1) | BE777445A (cs) |
| CA (1) | CA936769A (cs) |
| CH (1) | CH532749A (cs) |
| DE (1) | DE2102024C3 (cs) |
| FR (1) | FR2121184A5 (cs) |
| GB (1) | GB1306659A (cs) |
| IT (1) | IT944637B (cs) |
| NL (1) | NL148993B (cs) |
| SE (1) | SE371285B (cs) |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0936404A3 (de) * | 1998-02-16 | 2002-04-10 | BBP Energy GmbH | Dampferzeuger mit mehreren Rohrbündeln |
| US6526922B2 (en) * | 2001-04-10 | 2003-03-04 | Alstom Power Energy Recovery Gmbh | Steam generator |
| US20040187796A1 (en) * | 2001-05-17 | 2004-09-30 | Sjoerd Bosch | Apparatus and process for heating steam |
| CN101113813B (zh) * | 2006-06-07 | 2010-12-15 | 巴布考克及威尔考克斯公司 | 用于滑动压力蒸汽发生器的循环系统 |
| CN101451705B (zh) * | 2007-11-28 | 2011-01-12 | 中国恩菲工程技术有限公司 | 余热锅炉 |
| US20110162592A1 (en) * | 2008-09-09 | 2011-07-07 | Martin Effert | Continuous steam generator |
| US20110203536A1 (en) * | 2008-09-09 | 2011-08-25 | Martin Effert | Continuous steam generator |
| US20130019817A1 (en) * | 2011-07-19 | 2013-01-24 | Cleaver-Brooks, Inc. | Forced Circulation Steam Generator |
| US20140216363A1 (en) * | 2013-02-05 | 2014-08-07 | General Electric Company | System and method for heat recovery steam generators |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB1583808A (en) * | 1976-12-20 | 1981-02-04 | Electric Power Res Inst | Convective heat transfer steam boiler for fuels of low energy and ash content |
| DE3327151A1 (de) * | 1983-07-28 | 1985-02-07 | La Mont Kessel Herpen & Co KG, 1000 Berlin | Wasserrohrkessel |
| EP0308728B1 (de) * | 1987-09-21 | 1991-06-05 | Siemens Aktiengesellschaft | Verfahren zum Betreiben eines Durchlaufdampferzeugers |
| US5762031A (en) * | 1997-04-28 | 1998-06-09 | Gurevich; Arkadiy M. | Vertical drum-type boiler with enhanced circulation |
| DE19800017C2 (de) * | 1998-01-04 | 2001-04-26 | Reinhard Leithner | Verfahren zum Betreiben eines Zwangdurchlaufdampferzeugers |
| FR3017438B1 (fr) | 2014-02-11 | 2016-10-14 | Technip France | Conduite flexible de transport de fluide et procede associe |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1816434A (en) * | 1923-11-06 | 1931-07-28 | Fuller Lehigh Co | Apparatus for burning fuel |
| US1823050A (en) * | 1926-08-20 | 1931-09-15 | Babcock & Wilcox Co | Boiler |
| US1860363A (en) * | 1926-06-11 | 1932-05-31 | La Mont Corp | Steam generator |
| US1927095A (en) * | 1927-01-03 | 1933-09-19 | Babcock & Wilcox Co | Triple circuit water tube boiler |
| US3496724A (en) * | 1967-11-30 | 1970-02-24 | Allis Chalmers Mfg Co | Main steam line desuperheater systems,apparatus and method |
| US3612003A (en) * | 1968-06-26 | 1971-10-12 | Sulzer Ag | Forced through flow steam generator |
-
1970
- 1970-12-31 CH CH1935870A patent/CH532749A/de not_active IP Right Cessation
-
1971
- 1971-01-16 DE DE2102024A patent/DE2102024C3/de not_active Expired
- 1971-02-09 NL NL717101702A patent/NL148993B/xx unknown
- 1971-12-21 US US00210496A patent/US3769941A/en not_active Expired - Lifetime
- 1971-12-29 BE BE777445A patent/BE777445A/xx unknown
- 1971-12-29 JP JP47004035A patent/JPS517241B1/ja active Pending
- 1971-12-30 FR FR7147675A patent/FR2121184A5/fr not_active Expired
- 1971-12-30 CA CA131407A patent/CA936769A/en not_active Expired
- 1971-12-30 SE SE7116933A patent/SE371285B/xx unknown
- 1971-12-31 GB GB6104771A patent/GB1306659A/en not_active Expired
- 1971-12-31 IT IT33208/71A patent/IT944637B/it active
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1816434A (en) * | 1923-11-06 | 1931-07-28 | Fuller Lehigh Co | Apparatus for burning fuel |
| US1860363A (en) * | 1926-06-11 | 1932-05-31 | La Mont Corp | Steam generator |
| US1823050A (en) * | 1926-08-20 | 1931-09-15 | Babcock & Wilcox Co | Boiler |
| US1927095A (en) * | 1927-01-03 | 1933-09-19 | Babcock & Wilcox Co | Triple circuit water tube boiler |
| US3496724A (en) * | 1967-11-30 | 1970-02-24 | Allis Chalmers Mfg Co | Main steam line desuperheater systems,apparatus and method |
| US3612003A (en) * | 1968-06-26 | 1971-10-12 | Sulzer Ag | Forced through flow steam generator |
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0936404A3 (de) * | 1998-02-16 | 2002-04-10 | BBP Energy GmbH | Dampferzeuger mit mehreren Rohrbündeln |
| US6526922B2 (en) * | 2001-04-10 | 2003-03-04 | Alstom Power Energy Recovery Gmbh | Steam generator |
| US20040187796A1 (en) * | 2001-05-17 | 2004-09-30 | Sjoerd Bosch | Apparatus and process for heating steam |
| US6886501B2 (en) * | 2001-05-17 | 2005-05-03 | Shell Oil Company | Apparatus and process for heating steam |
| CN101113813B (zh) * | 2006-06-07 | 2010-12-15 | 巴布考克及威尔考克斯公司 | 用于滑动压力蒸汽发生器的循环系统 |
| CN101451705B (zh) * | 2007-11-28 | 2011-01-12 | 中国恩菲工程技术有限公司 | 余热锅炉 |
| US20110162592A1 (en) * | 2008-09-09 | 2011-07-07 | Martin Effert | Continuous steam generator |
| US20110203536A1 (en) * | 2008-09-09 | 2011-08-25 | Martin Effert | Continuous steam generator |
| US20130019817A1 (en) * | 2011-07-19 | 2013-01-24 | Cleaver-Brooks, Inc. | Forced Circulation Steam Generator |
| US9897309B2 (en) * | 2011-07-19 | 2018-02-20 | Cleaver-Brooks, Inc. | Forced circulation steam generator |
| US20140216363A1 (en) * | 2013-02-05 | 2014-08-07 | General Electric Company | System and method for heat recovery steam generators |
| US9739478B2 (en) * | 2013-02-05 | 2017-08-22 | General Electric Company | System and method for heat recovery steam generators |
Also Published As
| Publication number | Publication date |
|---|---|
| SE371285B (cs) | 1974-11-11 |
| CH532749A (de) | 1973-01-15 |
| DE2102024A1 (de) | 1972-07-20 |
| FR2121184A5 (cs) | 1972-08-18 |
| DE2102024B2 (de) | 1973-06-14 |
| CA936769A (en) | 1973-11-13 |
| IT944637B (it) | 1973-04-20 |
| JPS517241B1 (cs) | 1976-03-06 |
| GB1306659A (en) | 1973-02-14 |
| NL148993B (nl) | 1976-03-15 |
| DE2102024C3 (de) | 1974-01-10 |
| NL7101702A (cs) | 1972-07-04 |
| BE777445A (fr) | 1972-06-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3769941A (en) | Steam generator | |
| US2594471A (en) | Heat exchange apparatus | |
| US2063441A (en) | Superheated steam cooling device | |
| US2285442A (en) | Vapor generator | |
| JP4489306B2 (ja) | 化石燃料貫流ボイラ | |
| US2420647A (en) | Vapor generator | |
| JP3571298B2 (ja) | 化石燃料貫流ボイラ | |
| JP4953506B2 (ja) | 化石燃料ボイラ | |
| US2962005A (en) | Forced flow vapor generating unit | |
| JP3652988B2 (ja) | 化石燃料ボイラ | |
| GB768201A (en) | Improvements relating to forced flow once through tubulous vapour generating and superheating units and to the starting of turbines arranged to be supplied with vapour from such units | |
| US3213831A (en) | Vapor generating apparatus | |
| GB772991A (en) | Improvements in and relating to forced recirculation steam generators | |
| US3280559A (en) | Ship propulsion power plant | |
| US2818837A (en) | Vapor generator | |
| US2123860A (en) | Steam generator | |
| US3312198A (en) | Steam generator having improved steam heating sections arranged for parallel flow | |
| US3612003A (en) | Forced through flow steam generator | |
| US2907306A (en) | Hot liquid or vapor generator | |
| US3364904A (en) | Vapour generator for ship propulsion unit | |
| US2806453A (en) | High pressure vapor generators | |
| US2147574A (en) | Steam generator | |
| US2157746A (en) | Superheater boiler | |
| US3472208A (en) | Vapor generator | |
| US1192848A (en) | Steam-generator. |