US3769630A - Ink jet synchronization and failure detection system - Google Patents
Ink jet synchronization and failure detection system Download PDFInfo
- Publication number
- US3769630A US3769630A US00266790A US3769630DA US3769630A US 3769630 A US3769630 A US 3769630A US 00266790 A US00266790 A US 00266790A US 3769630D A US3769630D A US 3769630DA US 3769630 A US3769630 A US 3769630A
- Authority
- US
- United States
- Prior art keywords
- drops
- gutter
- synchronization
- printing
- potential
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001514 detection method Methods 0.000 title claims description 10
- 238000007639 printing Methods 0.000 claims abstract description 38
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 14
- 239000013078 crystal Substances 0.000 claims description 15
- 239000011159 matrix material Substances 0.000 claims description 6
- 238000007641 inkjet printing Methods 0.000 claims description 5
- 230000008021 deposition Effects 0.000 claims description 3
- 230000003213 activating effect Effects 0.000 claims description 2
- 238000012937 correction Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 description 7
- 239000008710 crystal-8 Substances 0.000 description 3
- 235000009508 confectionery Nutrition 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- HCUOEKSZWPGJIM-YBRHCDHNSA-N (e,2e)-2-hydroxyimino-6-methoxy-4-methyl-5-nitrohex-3-enamide Chemical compound COCC([N+]([O-])=O)\C(C)=C\C(=N/O)\C(N)=O HCUOEKSZWPGJIM-YBRHCDHNSA-N 0.000 description 1
- 101100460844 Mus musculus Nr2f6 gene Proteins 0.000 description 1
- 241000024109 Spiris Species 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 235000014121 butter Nutrition 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/07—Ink jet characterised by jet control
- B41J2/115—Ink jet characterised by jet control synchronising the droplet separation and charging time
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/17—Ink jet characterised by ink handling
- B41J2/18—Ink recirculation systems
- B41J2/185—Ink-collectors; Ink-catchers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/17—Ink jet characterised by ink handling
- B41J2/18—Ink recirculation systems
- B41J2/185—Ink-collectors; Ink-catchers
- B41J2002/1853—Ink-collectors; Ink-catchers ink collectors for continuous Inkjet printers, e.g. gutters, mist suction means
Definitions
- synchronization can also be effected by using the auxil- 3,562,761 2/1971 Stone et a] 346/75 iary gutter. 3,596,276 7/1971 Lovelady 3,681,778 8/1972 Keur 346/75 6 Claims, 4 Drawing Figures t :j :f i 7 u F MASTER MACHINE M ,W
- the Lewis, et al, patent describes drop synchronization using a phase shifter to insure proper charging of drops at the correct time.
- the Keur, et al, U.'S. Pat. No. 3,465,350 describes the use ofa video pulse that is applied to the ink drops, and if the phase is correct, a drop detector is actuated to so indicate.
- the Keur, et al, U.S. Pat. No. 3,465,351 also makes use of a drop detector in various arrangements.
- the Sweet patent describes ink jet writing apparatus incorporating means for variably charging the drops and maintaining a constant potential on the deflection plates.
- the Lovelady patent illustrates a form of servo loop for controlling the phase of the charging voltage and making use of a drop catcher.
- a system incorporates means for producing ink drops as a stream of drops, facilities for variably charging the droplets in accordance with information or for synchronization and checking purposes, deflectionmeans for deflecting the variably charged drops toward paper or either one of a pair of gutters, in dependence upon the amount of charge on thedrops, and circuitry for detecting proper phasing or synchronization of drops with respect to charging and formation of drops, as well as failure detection.
- the invention contemplates an electronic servo or feedback loop operable in a real time fashion to maintain proper synchronization.
- a counter means is advanced until a change current above apredefined level is found.
- the synchronization procedures are combined in one embodiment with a failure detection capability making use of a second gutter that receives drops when properly phased and that develops higher currents that are easier to detect.
- the second gutter may also be used for synchronization purposes if higher charge potentials are applied.
- a primary object of the present inven-, tion is to provide a system for ink jet printing apparatus to determine proper synchronization of drops formed in the system.
- Still another object of the invention is to provide a system having synchronization and failure detection ca-' tablished to check proper drop formation and phasing.
- Another object of the invention is to provide a system that is operable to detect loss of electric field, loss of charge voltage, and related failures in an ink jet apparatus.
- Another object of the invention is to provide monitoring of an ink jet system while printing, between characters or while in the home position etc., by means so as to immediately detect a failure in synchronization.
- a further object of the present invention is to enable synchronization on a line-by-line basis, as when the printing means is at a home position, or between characters during actual printing operations, or within the matrix boundaries of an individual character when unused drops are available for checking purposes.
- FIG. 1 is a diagram of an ink jet printing system incorporating the synchronizing and checking techniques of the present invention and particularly including a pair of gutters, and various circuitry controlling printing, synchronizing, and checking.
- FIG. 2 is a modified comparing arrangement for use i in the circuit of FIG. 1.
- the system of FIG. 1 is primarily intended for printing of intelligence, such as characters or symbols on a record member, such as a sheet of paper 1, by formation, propulsion, charging, deflecting, and deposition of ink drops 2 on paper 1, supported by means 4.
- the drops move in a stream or streams at high speeds from a source' 3.
- Ink from an ink supply 5 is directed by means of pump 6 to source 3 which incorporates a vibrating means, such as a piezoelectric crystal 8 and an associated nozzle 10.
- a master clock 11 provides basic timing pulses to the system including machine logic 13 and a character generator block 14. Crystal 8 is driven at the frequency provided by clock 11 under control of crystal driver 15..
- the frequency may be a very high range such as kilohertz, or more.
- Pulsation by crystal 8 effects formation of individual droplets that are directed through the center of a charge electrode 18 as is known in the art.
- Characters on paper 1 may be formed as a matrix of droplets, for instance, 24 droplets wide by 40 droplets high.
- a varying amount of charging voltage is provided to charge electrode 18 from charge electrode driver 21.
- Individual drops are directed between deflection plates 22 and 23 having a high potential, such as 3,000 volts, supplied from terminal 25.
- the arrangement is such that a constant potential exists between plates 22 and 23 which when combined with the variable charging on drops 2 effects selective displacement of the drops in a vertical sense, for example, to any one of the 40 possible positions in the, matrix.
- Unused drops are directed either to gutter No. 1, designated 35, or togutter No. 2, designated 36, as will be described in greater detail. These drops are returned by lines 27-and 27a under control of pump 30 to ink supply 5.
- the proper voltage applied to drops 2 by charge electrode 18 from driver 21 during printing of characters is'supplied by line 32 from character generator 14.
- a single vertical column of drops is propelled toward paper 1 with selective deflection onto the paper at appropriate positions or into one of the other-of the gutters 35 or 36.
- Source 3 and elements 8, .10, 18, 22-23, 35 and 36 are customarily mounted on a mounted means 37 interconnected with said elements bydashedlines 39a and 3922.
- Formation of a plurality of columns in a horizontal direction, such as the exemplary number of 24 is effected by relatively moving paper l and source 3, as well as electrodes 18, 22, and 23 in a timed fashion to achieve a side-by-side arrangement of columns, as by moving means 38 interconnected to mounting means 37 by line 45a and to support means 4 by line 45b.
- Such movement may be effected on an incremental basis or on a continuous basis. In this manner, entire lines on a document are printed.
- the ink drop generating and deflecting means is relatively displaced with respect to paper 1 to a home position in preparation for a succeeding line.
- the various synchronizing and checking procedures set forth herein may be employed to control drop formation, and the-relative timing of charging by electrode 18 with respect to individual drops passing through electrode 18.
- FIG. 3 shows typical time intervals and pulse wave forms during a single drop time, assumed to be 10 microseconds in duration.
- the first portion of the total of i microseconds, that is, 2.5 microseconds, is set aside to allow the driver time to reach the proper charging voltage.
- the remainder of he. rqp ti srthat sr .7.- Iin !999nd. m-gr ized as the safe area of drop formation. Accordingly, a drop formed any time during this interval should be properly charged and deflected as it is propelled toward paper 1.
- a series of narrow pulses on line 41 may be directed to driver 21 under controlled conditions.
- Sync control 40 adjusts driver 15 voltage through a range of values until the narrow pulseseffect charging of drops 2'.
- pulse signals are applied from Sync Control block 40 by line 41 to charge electrode driver 21 and ultimately to charge electrode 18.
- a typical pulse voltage range is from 0 volts to volts.
- Machine logic 13 by line 44 switches analog analog switch 46 to receive an input only from gutter 35 on line 47 designated A.”
- a sequence of drops moves into gutter No. 1 designated 35 developing a currentzof some level directly proportional to the amount of charge on a series of'individual drops.
- Such a series may comprise a portion of a column of unused drops or several such column s, depending on system sensitivity.
- Means are mounted in association with gutter N o. l to provide a current level on line 47 corresponding to and directly related to the charge levels on drops 2 going into gutter No. 1.
- a current level on line 47 corresponding to and directly related to the charge levels on drops 2 going into gutter No. 1.
- the output of switch 46 is directed to a drop charge amplifier 50 that converts the current levels to a usable voltage level.
- the output of amplifier 50' is directed by line 30 52 along with reference 'voltage from source; 54 on line 55 for comparison in a comparator circuit 57.
- the output of comparator 57 on-line 60 isdirected to Sync Control 40 which concurrently is supplying a series of stepped driving voltage levels by line 62 to crystal 3 driver 15, thereby adjusting the timing of drop separationand maintainingthe time of drop separation in a desired relationship with respect to the potential applied by driver2l. Synchronization is attained when charged drops are first detected. It is also possible to synchronize with narrow pulses using gutter No. Zdesignated 36. Y l
- a ramp signal ranging from 0 to l0volts is provided .by line.42 to driver 21.
- Synchronization is attained using gutter No. '1 desig electrode 18.
- Machine logic 13 by line 44 switches analog switch 46 to receive an input only from gutter 35 on line 47 designated A.
- a sequence of drops moves into gutter No. 1 designated 35 developing a current of some level directlyproportionalto the amount of charge on a series of individual drops.
- Such a series may also comprise a portion of a column'of unused drops or several such columns, depending on system sensitivity.
- a current level is developed on line 47 corresponding to and directly related to the charge levels on drops 2 going into gutter No. 1. The current level will depend upon the time of drop breakoff during the ramp signal interval.
- the output of switch 46 is directed to a drop charge amplifier 50 During synchronization using gutter No. 1, the signal is applied from'Sync Control block 40 by line 42 to charge electrode driver 21 and ultimately to charge SYNCHRONIZATION WITH RAMP SIGNAL GUTTER NO. 2
- Gutter No. 2 designated 36 in FIG. 1 may also be used'for' normal drop synchronization of phasing, if desired.
- a synchronization pulse using gutter No. 2 is illustrated as a ramp wave form in FIG. 3, and is supplied on line 81 from Sync Control 40 to driver 21. Such checking with gutter No. 2 is evidence that proper character height is being maintained. This may also be pulse may, for example, be in the range of 200 to 250 7 volts. It is noted that a greater change that is, 50 volts, occurs in this case than in the case 'of synchronization using gutter No. l, where only a 10 volt change occurs. The greater rate of change whensynchronization is effected with gutter No. 2 provides a much higher level of current that is easier to detect in the circuits.
- a current in nanoamperes is developed that is detectable.
- Amplifier 50 convertsits input current level to low impedance voltage level. If a ramp is used, and, as an example, reference voltage supply 54 indicates 5.0 volts as a desired voltage level, and amplifier 50 provides a 7.5 volt level to co.mparator.57, a corrective signal is developed on line 60 to change thedrive voltage applied by driver under control of Sync Control 40 in order to more closely achieve the 5.0 volt level. It is somewhat impracticalto attempt to sense the current levels developed by a single ink drop aswould be done in a 100 percent servo system. Thus, a series of drops is integrated to develop the'necessary current levels. Such a series of drops would be available, as an example, when an entire column of droplets or most of the droplets in a column are available during printing of characters of symbols.
- the foregoing synchronization procedures and feedback circuit's are gated on by machine logic 13 during any non-printing time, as desired, and may occur when the machine is first turned on, when the first character is printed, in between characters, in between lines, etc.
- a checking pulse may be applied on line 43 ha low voltage range such as 0l0 volts which when sensed by current levels on line 47 can determine various system failure, such as drop charging failure, loss of synchronization, etc. However, for a'most complete check, gutter No. 2 is preferably used.
- machine logic l3 forces switch 46 to pass current only from input b connected to gutter N0. 2, 36, by ling 74.
- a sequence of drops in a given series of drop intervals could be sufficient to develop adequate current on line 74.
- the 10 volt level used for synchronization into gutter No. l develops a gutter current on line 47 in the range of 4 to 6 nanoamperes.
- a greater charge level required to deflect drops 2 up to gutter 36 achieves a higher current level that is easier to sense by circuits 46 and 50.
- the advantage of the checking pulse applied over a number of drop intervals is that the system can determine whether proper synchronization is being maintained, whether the charge electrode and driver are op erating properly, whether the high voltage from terminal'2'5 is present and of course, whether other components in the system are working properly.
- the checking pulses are applied by line 65 to driver 21 in order to produce the required currents in gutter 36. These may be compared by comparator 57- against reference voltage from block 54 with suitable changing of reference level on line 77 from Sync Control 40.
- a possible approach using this technique is for machine logic 13 to determine the maxium number of drops used during printing of characters and thus also determine the minimum'number of drops that should be available for gutter No. 2 during normal printing. Such minimum number of drops should result in a particular current level on line 74 which is measured by circuits 46 and 50 and compared at comparator 57 with a threshold level from block 54. If such minimum potential is not available, a failure is indicated to machine logic 13 on line 80. The machine logic can then take steps to turn off the crystal drive from driver 15-, to turn off driver 21, deactivate pumps 30 and 6 and take any othersteps necessary to minimize the amount of ink that is sprayed on paper 1 or other parts of the mechanism.
- An important advantage of the checking procedure is that the logic 13 is able to continually monitor the performance of the ink jet mechanism, if desired.
- FIG. 2 illustrates an alternative checking circuit having various members 35, 36, 46, 47, 50 and 74 corresponding to those similarly numbered members in FIG. 1, but having a comparator 57a and an independent second reference source 54a that is based strictly on a go-no-go basis.
- the analog switch 46 monitors drops Zimpinging on gutter No. 2 (36) and essentially determines if the drops are present or absent.
- Reference voltage 2 from source 54a establishes a threshold level for comparator 57a and the output from amplifier 50 should always exceed such level. If it does not then a signal is provided by line 80a to indicate a machine failure.
- the circuit includes a crystal 95 receiving ink on line 96 from an ink supply, not shown, a nozzle 98 and a crystal driver amplifier 99. Amplifier 99 drives crystal 95 to form drops 100 that pass through charging electrode 102 driven by charge electrode driver 104. Driver 104 in turn is driven from Or circuit 88. Individual drops are deflected to paper 1, for printing or to gutter 106 when not used.
- the circuit includes a counter register 110 that serves during normal printing times to define the crystal driver signal.
- Sync Control 40a advances counter'register 110 until a charge current above a predefined level is found. This is done by detection of current levels in gutter 106, supply of such levels on line 112 to amplifier (AMP) 50, conversion of such levels to voltage levels amplifier 50 and comparison of such levels with reference voltage from terminal 113 by comparator (COMP) 114. The output of comparator 114 is directed to Sync Control 40a. When a charge current above a predefined level is recognized, the value in counter 110, is held. This maintains the drive level from amplifier 99 until the next synchronization time. Counter register 110 outputs are decoded by block 84 which in turn is driven from master clock 82.
- the individual clock signals each have a different phase relationship with respect to the synchronization pulse on line 87. If Sync Control block 40a is unable to find a signal which provides synchronization it will so indicate by line 115 to printing logic 86 thereby evidencing a synchronization failure.
- the Sync-Control logic contains a delay-to. compensate for the transit time ofthe drops.
- the sync time signal produced by the printing logic 86 controls gate 88 so as to allow only printing signals to go to the charge electrode driver dring printing and allow only sync pulses to reach the charge electrode driver 104 during synchronization.
- An ink jet printing system for printing on a record mediumby ink drop deposition, comprising: means for supporting said record medium .at a printing station; means for forming and propelling ink drops toward said record medium; i cyclically operable means operable in timed relation with said forming and propelling means for charging and deflecting a plurality of said drops on a selective basis to form visible indicia upon said rec qm s har n .s qifl sflife,
- first gutter means positioned in the path of travel of a first type of unused drops charged at said relatively low potential to collect said first type of drops said first gutter means providing a relatively low synchronization current from charged drops travelling in said first gutter means
- second gutter means positioned in the path of travel of a second type of unused drops charged at said relatively high potential to collect said second type of drops said second gutter means providing a relatively high checking current level; from charged drops travelling in said second gutter means; amplifier means interconnected with said first gutter means for providing a low synchronization potential responsive to the relatively low synchronization current provided by said first gutter means, and further interconnected with said second gutter means for providing a high checking potential responsive to the high checking current level from said second gutter means; character generating means for activating said charging and deflecting means in a printing range within but not including said relatively low and relatively high potential in order to deflect selected ones of said drops within a printin range on
- comparing means for comparing said synchronization potential with predetermined'reference levels representative of correct synchronization in said systemyw means controlled by said comparing means for main- A taining correct phase between drop formation and charging; said comparing means comparing said checking potential with predetermined reference levels representative of correct operation of said system; and output means from said comparing means for indicating a failure of said system.
- the system of claim 1 further comprising: means mounting said forming and propelling means, said charging and deflecting means and said first and second gutter means in a unitary structure adjac ent said record medium; means operable in timed relation to drop propulsion toward said record medium for relatively moving said mounting means and said record medium from a home position in order to form matrices arranged in lines printed intelligence on said record medium each of said matrices comprising a set of vertical columns and horizontal rows of drop locations and each of said matrices being separated from a preceding or succeedingmatrix by an inter-matrix gap.
- said synchronization control means provides synchronization pulses when said mounting means and said record medium are relatively positioned at home position;
- checking pulses any time during relative movement when drops are not required for printing.
- an analog switch responsive .to current levels from said first sensing means when activated in a first mode and to current levels from said second sensing means when activated in a second mode;
- selection means for selecting said first and second modes of said switch on a selective basis
- amplifier means responsive to current levels from said analog switch to developpotentials therefrom,
Landscapes
- Particle Formation And Scattering Control In Inkjet Printers (AREA)
- Fax Reproducing Arrangements (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US26679072A | 1972-06-27 | 1972-06-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3769630A true US3769630A (en) | 1973-10-30 |
Family
ID=23016007
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00266790A Expired - Lifetime US3769630A (en) | 1972-06-27 | 1972-06-27 | Ink jet synchronization and failure detection system |
Country Status (7)
Country | Link |
---|---|
US (1) | US3769630A (enrdf_load_stackoverflow) |
JP (1) | JPS5617236B2 (enrdf_load_stackoverflow) |
CA (1) | CA1004722A (enrdf_load_stackoverflow) |
DE (1) | DE2331803A1 (enrdf_load_stackoverflow) |
FR (1) | FR2191477A5 (enrdf_load_stackoverflow) |
GB (1) | GB1405197A (enrdf_load_stackoverflow) |
IT (1) | IT987134B (enrdf_load_stackoverflow) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3866237A (en) * | 1973-06-22 | 1975-02-11 | Ibm | Digital phase control for ink jet printer |
US3969733A (en) * | 1974-12-16 | 1976-07-13 | International Business Machines Corporation | Sub-harmonic phase control for an ink jet recording system |
US3972052A (en) * | 1972-10-24 | 1976-07-27 | Oki Electric Industry Company, Ltd. | Compensation apparatus for high speed dot printer |
US3999188A (en) * | 1973-12-05 | 1976-12-21 | Hitachi, Ltd. | Ink-jet recording apparatus |
US4005435A (en) * | 1975-05-15 | 1977-01-25 | Burroughs Corporation | Liquid jet droplet generator |
US4012745A (en) * | 1975-11-28 | 1977-03-15 | Burroughs Corporation | Phase correction system |
US4025926A (en) * | 1973-01-17 | 1977-05-24 | Sharp Kabushiki Kaisha | Phase synchronization for ink jet system printer |
US4034379A (en) * | 1972-11-13 | 1977-07-05 | Teletype Corporation | Ink jet writing process and apparatus |
US4050078A (en) * | 1974-12-09 | 1977-09-20 | Ricoh Company, Ltd. | Automatic nozzle cleaning system for ink ejection printer |
US4063253A (en) * | 1975-03-10 | 1977-12-13 | Hitachi, Ltd. | Ink jet recording apparatus |
DE2724687A1 (de) * | 1976-06-01 | 1977-12-15 | Mead Corp | Tintenstrahldrucker zum bedrucken einer sich bewegenden bahn und dazu angewendetes verfahren |
EP0015727A1 (en) * | 1979-02-28 | 1980-09-17 | Xerox Corporation | Electrostatic ink jet printing apparatus and method |
EP0016628A3 (en) * | 1979-03-19 | 1980-10-15 | Xerox Corporation | Fiber optic sensing apparatus for sensing the relative position of ink droplets or other objects of similar size in flight |
US4343596A (en) * | 1978-06-29 | 1982-08-10 | Sharp Kabushiki Kaisha | Constant flow rate liquid supply pump |
US4357617A (en) * | 1978-06-29 | 1982-11-02 | Sharp Kabushiki Kaisha | Ink recirculating device of ink jet printer |
US4358775A (en) * | 1979-07-28 | 1982-11-09 | Ricoh Company, Ltd. | Ink jet printing apparatus |
US4360817A (en) * | 1981-05-15 | 1982-11-23 | A. B. Dick Company | Low evaporation ink catcher for ink jet printing system |
US4499475A (en) * | 1980-11-25 | 1985-02-12 | Ricoh Company, Ltd. | Ink jet printing apparatus |
EP0036787B1 (en) * | 1980-03-26 | 1985-06-12 | Cambridge Consultants Limited | Liquid jet printing apparatus |
US4577197A (en) * | 1985-01-17 | 1986-03-18 | Xerox Corporation | Ink jet printer droplet height sensing control |
WO1986003457A1 (en) * | 1984-12-05 | 1986-06-19 | Commonwealth Scientific And Industrial Research Or | Apparatus for monitoring and adjusting liquid jets in ink jet printers |
US4631550A (en) * | 1985-08-15 | 1986-12-23 | Eastman Kodak Company | Device and method for sensing the impact position of an ink jet on a surface of an ink catcher, in a continuous ink jet printer |
WO1989000504A1 (en) * | 1987-07-20 | 1989-01-26 | Hertz Carl H | Method and apparatus for ink jet recording |
US20040207676A1 (en) * | 2003-03-25 | 2004-10-21 | Takahiro Yamada | Detection device for detecting ejection condition of nozzles |
US20070064068A1 (en) * | 2005-09-16 | 2007-03-22 | Eastman Kodak Company | Continuous ink jet apparatus with integrated drop action devices and control circuitry |
CN103813905A (zh) * | 2011-09-20 | 2014-05-21 | 西马科有限公司 | 用于获得喷墨仪器用的均匀的墨的方法和设备 |
US20140168322A1 (en) * | 2011-05-27 | 2014-06-19 | Markem-Imaje | Binary continuous ink jet printer |
US10336077B2 (en) | 2015-12-22 | 2019-07-02 | Dover Europe Sàrl | Print head or ink jet printer with reduced solvent consumption |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4364061A (en) * | 1980-02-28 | 1982-12-14 | Ricoh Company, Ltd. | Ink jet printing apparatus comprising automatic ink jet deflection adjustment means |
US4395717A (en) * | 1980-03-07 | 1983-07-26 | Ricoh Company, Ltd. | Ink jet recording apparatus |
JPS5714053A (en) * | 1980-06-30 | 1982-01-25 | Sharp Corp | Detecting apparatus for abnormally directed jet in ink jet printer |
JPS5769482A (en) * | 1980-10-16 | 1982-04-28 | Ricoh Co Ltd | Method for setting charge level in multilevel deflection control ink jet recording |
JPS57145732A (en) * | 1981-03-03 | 1982-09-08 | Kubota Ltd | Discharging device for pulverulent material |
US4418352A (en) * | 1981-05-18 | 1983-11-29 | Ricoh Company, Ltd. | Ink jet printing apparatus |
US4435720A (en) * | 1981-05-21 | 1984-03-06 | Ricoh Company, Ltd. | Deflection control type ink jet printing apparatus |
DE3247870C2 (de) * | 1981-12-24 | 1987-04-02 | Ricoh Co., Ltd., Tokio/Tokyo | Farbstrahldrucker |
US4439776A (en) * | 1982-06-24 | 1984-03-27 | The Mead Corporation | Ink jet charge electrode protection circuit |
US4555711A (en) * | 1982-08-30 | 1985-11-26 | Ricoh Company, Ltd. | Deflection control ink jet operation adjustment control |
DE3331587A1 (de) * | 1982-09-01 | 1984-03-01 | Ricoh Co., Ltd., Tokyo | Farbstrahlschreiber mit ablenksteuerung |
US4598299A (en) * | 1982-11-11 | 1986-07-01 | Ricoh Company, Ltd. | Deflection control ink jet printing apparatus |
JPS5993357A (ja) * | 1982-11-18 | 1984-05-29 | Fujitsu Ltd | インクジエツト記録装置 |
JPS59214661A (ja) * | 1983-05-20 | 1984-12-04 | Hitachi Ltd | インクジエツト記録装置 |
JPS6153053A (ja) * | 1984-08-24 | 1986-03-15 | Hitachi Ltd | インクジエツト記録装置 |
JP2608806B2 (ja) * | 1990-11-29 | 1997-05-14 | シルバー精工株式会社 | インクジェットプリンタにおけるレジストレーション調整装置 |
GB2277394B (en) * | 1990-11-29 | 1995-05-24 | S R Tecnos Kk | Ink jet recording apparatus |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3465350A (en) * | 1968-03-13 | 1969-09-02 | Dick Co Ab | Ink drop writing apparatus |
US3465351A (en) * | 1968-03-13 | 1969-09-02 | Dick Co Ab | Ink drop writing apparatus |
US3596276A (en) * | 1969-02-10 | 1971-07-27 | Recognition Equipment Inc | Ink jet printer with droplet phase control means |
-
1972
- 1972-06-27 US US00266790A patent/US3769630A/en not_active Expired - Lifetime
-
1973
- 1973-04-24 CA CA170,049A patent/CA1004722A/en not_active Expired
- 1973-05-04 IT IT23713/73A patent/IT987134B/it active
- 1973-05-10 JP JP5121573A patent/JPS5617236B2/ja not_active Expired
- 1973-05-14 GB GB2276073A patent/GB1405197A/en not_active Expired
- 1973-06-06 FR FR7321776A patent/FR2191477A5/fr not_active Expired
- 1973-06-22 DE DE2331803A patent/DE2331803A1/de active Pending
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3972052A (en) * | 1972-10-24 | 1976-07-27 | Oki Electric Industry Company, Ltd. | Compensation apparatus for high speed dot printer |
US4034379A (en) * | 1972-11-13 | 1977-07-05 | Teletype Corporation | Ink jet writing process and apparatus |
US4025926A (en) * | 1973-01-17 | 1977-05-24 | Sharp Kabushiki Kaisha | Phase synchronization for ink jet system printer |
US3866237A (en) * | 1973-06-22 | 1975-02-11 | Ibm | Digital phase control for ink jet printer |
US3999188A (en) * | 1973-12-05 | 1976-12-21 | Hitachi, Ltd. | Ink-jet recording apparatus |
US4050078A (en) * | 1974-12-09 | 1977-09-20 | Ricoh Company, Ltd. | Automatic nozzle cleaning system for ink ejection printer |
US3969733A (en) * | 1974-12-16 | 1976-07-13 | International Business Machines Corporation | Sub-harmonic phase control for an ink jet recording system |
US4063253A (en) * | 1975-03-10 | 1977-12-13 | Hitachi, Ltd. | Ink jet recording apparatus |
US4005435A (en) * | 1975-05-15 | 1977-01-25 | Burroughs Corporation | Liquid jet droplet generator |
US4012745A (en) * | 1975-11-28 | 1977-03-15 | Burroughs Corporation | Phase correction system |
DE2724687A1 (de) * | 1976-06-01 | 1977-12-15 | Mead Corp | Tintenstrahldrucker zum bedrucken einer sich bewegenden bahn und dazu angewendetes verfahren |
US4343596A (en) * | 1978-06-29 | 1982-08-10 | Sharp Kabushiki Kaisha | Constant flow rate liquid supply pump |
US4357617A (en) * | 1978-06-29 | 1982-11-02 | Sharp Kabushiki Kaisha | Ink recirculating device of ink jet printer |
EP0015727A1 (en) * | 1979-02-28 | 1980-09-17 | Xerox Corporation | Electrostatic ink jet printing apparatus and method |
US4238804A (en) * | 1979-02-28 | 1980-12-09 | Xerox Corporation | Stitching method and apparatus for multiple nozzle ink jet printers |
EP0016628A3 (en) * | 1979-03-19 | 1980-10-15 | Xerox Corporation | Fiber optic sensing apparatus for sensing the relative position of ink droplets or other objects of similar size in flight |
US4358775A (en) * | 1979-07-28 | 1982-11-09 | Ricoh Company, Ltd. | Ink jet printing apparatus |
EP0036787B1 (en) * | 1980-03-26 | 1985-06-12 | Cambridge Consultants Limited | Liquid jet printing apparatus |
US4499475A (en) * | 1980-11-25 | 1985-02-12 | Ricoh Company, Ltd. | Ink jet printing apparatus |
US4360817A (en) * | 1981-05-15 | 1982-11-23 | A. B. Dick Company | Low evaporation ink catcher for ink jet printing system |
AU594031B2 (en) * | 1984-12-05 | 1990-03-01 | Commonwealth Scientific And Industrial Research Organisation | Monitor jet control for ink jet printer |
WO1986003457A1 (en) * | 1984-12-05 | 1986-06-19 | Commonwealth Scientific And Industrial Research Or | Apparatus for monitoring and adjusting liquid jets in ink jet printers |
US4577197A (en) * | 1985-01-17 | 1986-03-18 | Xerox Corporation | Ink jet printer droplet height sensing control |
US4631550A (en) * | 1985-08-15 | 1986-12-23 | Eastman Kodak Company | Device and method for sensing the impact position of an ink jet on a surface of an ink catcher, in a continuous ink jet printer |
US4839665A (en) * | 1987-07-20 | 1989-06-13 | Carl Hellmuth Hertz | Method and apparatus for controlling the electrical charging of drops in an ink jet recording apparatus |
WO1989000504A1 (en) * | 1987-07-20 | 1989-01-26 | Hertz Carl H | Method and apparatus for ink jet recording |
US20040207676A1 (en) * | 2003-03-25 | 2004-10-21 | Takahiro Yamada | Detection device for detecting ejection condition of nozzles |
US7246890B2 (en) * | 2003-03-25 | 2007-07-24 | Ricoh Printing Systems, Ltd. | Detection device for detecting ejection condition of nozzles |
US20070064068A1 (en) * | 2005-09-16 | 2007-03-22 | Eastman Kodak Company | Continuous ink jet apparatus with integrated drop action devices and control circuitry |
US7364276B2 (en) * | 2005-09-16 | 2008-04-29 | Eastman Kodak Company | Continuous ink jet apparatus with integrated drop action devices and control circuitry |
US20080122900A1 (en) * | 2005-09-16 | 2008-05-29 | Piatt Michael J | Continuous ink jet apparatus with integrated drop action devices and control circuitry |
US9475287B2 (en) * | 2011-05-27 | 2016-10-25 | Markem-Image Holding | Binary continuous ink jet printer |
US20140168322A1 (en) * | 2011-05-27 | 2014-06-19 | Markem-Imaje | Binary continuous ink jet printer |
CN103813905A (zh) * | 2011-09-20 | 2014-05-21 | 西马科有限公司 | 用于获得喷墨仪器用的均匀的墨的方法和设备 |
US20140225965A1 (en) * | 2011-09-20 | 2014-08-14 | Simaco GmbH | Method and Apparatus for Obtaining Homogeneous Ink for Inkjet Devices |
US9067429B2 (en) * | 2011-09-20 | 2015-06-30 | Simaco GmbH | Method and apparatus for obtaining homogeneous ink for inkjet devices |
RU2580092C2 (ru) * | 2011-09-20 | 2016-04-10 | Зимако Гмбх | Способ и устройство получения однородных чернил для струйных принтеров |
CN103813905B (zh) * | 2011-09-20 | 2016-08-24 | 西马科有限公司 | 用于获得喷墨仪器用的均匀的墨的方法和设备 |
KR20140078645A (ko) * | 2011-09-20 | 2014-06-25 | 시마코 게엠베하 | 잉크젯 장치를 위한 균질한 잉크를 얻는 방법 및 장치 |
US10336077B2 (en) | 2015-12-22 | 2019-07-02 | Dover Europe Sàrl | Print head or ink jet printer with reduced solvent consumption |
US11084288B2 (en) | 2015-12-22 | 2021-08-10 | Dover Europe Sàrl | Print head or ink jet printer with reduced solvent consumption |
Also Published As
Publication number | Publication date |
---|---|
JPS4952540A (enrdf_load_stackoverflow) | 1974-05-22 |
JPS5617236B2 (enrdf_load_stackoverflow) | 1981-04-21 |
IT987134B (it) | 1975-02-20 |
GB1405197A (en) | 1975-09-03 |
DE2331803A1 (de) | 1974-01-17 |
CA1004722A (en) | 1977-02-01 |
FR2191477A5 (enrdf_load_stackoverflow) | 1974-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3769630A (en) | Ink jet synchronization and failure detection system | |
US3969733A (en) | Sub-harmonic phase control for an ink jet recording system | |
US3761941A (en) | Phase control for a drop generating and charging system | |
US4122458A (en) | Ink jet printer having plural parallel deflection fields | |
EP0323989B1 (en) | Electronic method and device for adjustment of jet direction in an ink jet apparatus | |
GB1211955A (en) | Improvements in ink drop writing systems | |
GB1210203A (en) | Improvements in ink drop writing systems | |
US4158204A (en) | Time correction system for multi-nozzle ink jet printer | |
US3769631A (en) | Increasing throughput in ink jet printing by drop skipping and reducing ink jet merging and splatter using a stairstep generator | |
US6280023B1 (en) | Continuous ink-jet printer and method of operation | |
US4025926A (en) | Phase synchronization for ink jet system printer | |
US4612553A (en) | Method for operational status checks of an ink jet printer | |
EP0166384B1 (en) | Ink-jet recording apparatus | |
US4520368A (en) | Ink jet printing method and apparatus | |
US4288796A (en) | Phase detection in an ink jet system printer of the charge amplitude controlling type | |
US4424518A (en) | Column dot formation in an ink jet system printer of the charge amplitude controlling type | |
US4015267A (en) | Ink jet printer having air resistance distortion control | |
US4064513A (en) | Ink drop character line printer with traversing orifice band | |
JPS5931469B2 (ja) | インク・ジェツト印刷装置の同期試験方法 | |
US6508537B2 (en) | Ink jet recording device capable of controlling impact positions of ink droplets in electrical manner | |
JPS6322663A (ja) | インクジェット記録装置及びその制御方法 | |
US4051485A (en) | Printing apparatus | |
US4499475A (en) | Ink jet printing apparatus | |
JPS6021068B2 (ja) | インクジエツト印写のドツトずれ補正装置 | |
US4368475A (en) | Jet drop copier |